O pêndulo simples é constituído por uma partícula de massa

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "O pêndulo simples é constituído por uma partícula de massa"

Transcrição

1 AULA 42 APLICAÇÕES DO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: APLICAR A TEORIA DO MOVIMENTO HARMÔNICO SIMPLES A PÊNDULOS 42.1 PÊNDULO SIMPLES: O pêndulo simples é constituído por uma partícula de massa corda inextensível de comprimento posição que faz um ângulo suspensa por uma e de massa desprezível. Quando solta de uma com a vertical, sob ação da força da gravidade, a partícula oscila sob ação da força da gravidade no plano vertical, descrevendo um arco de círculo em torno da posição de equilíbrio que é a vertical. A Figura 42 1 mostra o pêndulo e as forças que atuam nele. Figura 42 1: O pêndulo simples A diferença entre a tensão na corda e a componente do peso da partícula na direção radial produz a força centrípeta necessária para que a partícula tenha movimento circular no plano vertical. A componente tangencial do peso da partícula obriga o pêndulo a sempre voltar para a posição de equilíbrio e faz o papel da força restauradora. Se medirmos o deslocamento angular, relativo à posição de equilíbrio, no sentido trigonométrico, a força restauradora terá sempre sentido oposto ao do aumento do ângulo ; assim, podemos escrever para ela: 575

2 Como a força restauradora não é proporcional ao ângulo, o movimento do pêndulo não é um movimento harmônico simples. Com efeito, a equação do movimento do pêndulo é: Esta equação diferencial não é linear e requer métodos especiais para ser resolvida. Entretanto, se o ângulo for pequeno, podemos escrever que (em radianos!). Logo, o deslocamento da partícula ao longo do arco é dizer que:. Podemos isto é, a força pode ser considerada como proporcional ao deslocamento e o movimento, como no harmônico simples. A tabela abaixo mostra vários valores de, esses valores: e a diferença percentual entre (graus) (radianos) Dif. (%) A equação do movimento do pêndulo fica, então, com essas aproximações: ou: ou, ainda, cuja solução é: em que é a amplitude do movimento. O período do pêndulo simples em movimento harmônico simples independe da massa dele. Com efeito, da definição de período: (42.1) 576

3 Essa equação mostra também que o período independe da amplitude do movimento (desde que ela seja pequena!). Embora o movimento oscilatório do pêndulo diminua com o tempo por causa da ação de forças dissipativas, o período continua praticamente constante. Por isso, ele foi o primeiro mecanismo usado em relógios mecânicos. Em um relógio de pêndulo, a perda de energia é compensada por um mecanismo que foi inventado por Christian Huygens ( ). Para grandes amplitudes, o período do pêndulo pode ser colocado na forma: o que mostra que o período depende da amplitude. Atividade 42.1: Procure na internet informações sobre C.Huygens e sobre o pêndulo isócrono, que é um pêndulo cujo período independe da amplitude de oscilação, qualquer que seja ela O PÊNDULO DE TORÇÃO O pêndulo de torção consiste em um disco suspenso por um fio inextensível e de massa desprezível e preso ao centro de massa do disco (Figura42 2). Se o disco é girado de um ângulo a partir de sua posição de equilíbrio (indicada pela linha OP da figura), o fio é torcionado dando origem a um torque restaurador que tende a fazer o fio voltar à sua forma original. Figura 42 2: O pêndulo de torção Para pequenas torções, o torque restaurador angular do disco e podemos escrever: é proporcional ao deslocamento 577

4 em que Como: é a constante de torção do fio, que depende das propriedades dele. em que é o momento de inércia do disco relativo ao centro de massa, a segunda lei de Newton para a rotação nos dá: ou: (42.2) que mostra que, para pequenas deformações do fio, o movimento do pêndulo é harmônico simples. A solução da equação acima é: sendo a ampitude do movimento e dado por: (42.3) (42.4) O período do pêndulo é: Em geral, o pêndulo pode ser qualquer corpo laminar, isto é, cuja espessura seja muito menor que as suas outras dimensões. Exemplo 42.1: Uma barra fina de massa 0,1 kg e comprimento m forma um pêndulo de torção. Ela é colocada para oscilar e verifica se que o período é de 2,0 s. Substitui se, então, a barra por uma placa triangular equilátera, que é colocada para oscilar. Seu período é medido, dando como resultado 6.0 s. Calcule o momento de inércia da placa, relativamente ao eixo que coincide com o fio do pêndulo. Solução: O momento de inércia da barra, relativo a uma eixo perpendicular a ela e passando pelo seu centro de massa é:.então: 578

5 Mas, da expressão do período, a relação entre o período da barra para o da placa triangular é: Então: 42.3 O PÊNDULO FÍSICO O pêndulo físico consiste em um corpo posto para oscilar preso por de seus pontos, o qual chamamos de pivô, podendo se mover no plano vertical. A Figura 42 3 mostra um corpo rígido preso pelo ponto P, podendo girar sem atrito em torno de um eixo horizontal passando por P. Figura 42 3: O pêndulo físico Em equilíbrio, a linha OP que liga P ao centro de massa C do corpo é vertical. Quando o corpo é tirado dessa posição, PC faz com a vertical um ângulo e a força peso do corpo exerce sobre ele um torque vertical. O torque é dado por: relativo a P, que tende a tornar PC em que é o módulo do vetor. O sinal negativo indica que o torque se opõe ao deslocamento do corpo. O torque é proporcional a mas, para pequenos valores de, podemos escrever: 579

6 Então, tal como no pêndulo de torção, a equação de movimento de rotação para o corpo é: ou: (42.5) O período de oscilação do pêndulo físico é: Para amplitudes grandes, o pêndulo físico continua a ter movimento harmônico, mas ele não é harmônico simples. A equação acima pode ser resolvida para o momento de inércia, dando: que permite obter o momento de inércia do corpo por medida do período de oscilação. Notemos que o pêndulo simples é um caso particular do físico. Com efeito, como toda a massa do pêndulo simples está concentrada na extremidade livre dele, o seu momento de inércia relativo ao ponto de suspensão é ; o centro de massa do pêndulo simples coincide com a massa. Então,. Assim, o período do pêndulo é: Atividade 42.2: Encontre o comprimento de um pêndulo simples cujo período seja o mesmo do pêndulo físico. Exemplo 42.2: Um disco homogêneo de raio é suspenso por um pivot (P) preso em sua borda. Ache o período de oscilação do disco para pequenas amplitudes e o centro de oscilação dele. 580

7 Figura 42 4: O pêndulo físico formado por um disco Solução: O momento de inércia do disco, em relação a um eixo perpendicular ao seu plano e passando pelo seu centro (que também é seu centro de massa) é: Como o pivot está à distância do centro de massa, o teorema dos eixos paralelos nos dá que: O período é: O pêndulo simples que possui o mesmo período tem um comprimento: Atividade 42.3: Se aplicarmos o pivot no ponto O situado à distância centro do disco, qual será o período de oscilação dele? do A Atividade 42.3 ilustra uma propriedade geral do centro de oscilação O. Quando o pivô do pêndulo é colocado no seu centro de oscilação relativo a um ponto dado (por exemplo P), o período de oscilação não muda e este ponto (P) passa a ser o centro de oscilação relativo a O. 581

8 RESPOSTAS COMENTADAS DAS ATIVIDADES PROPOSTAS Atividade 42.1 Utilize o fórum de discussão para compartilhar os resultados de sua busca. Atividade 42.2 Igualando os períodos dos pêndulos, temos: de onde tiramos: Essa atividade nos mostra que, no que se refere ao período do pêndulo físico, sua massa pode ser considerada como concentrada em um ponto Q cuja distância ao ponto de suspensão do pêndulo é. Esse ponto Q é denominado centro de oscilação do pêndulo físico. Sua localização depende do ponto de suspensão; para cada ponto O de suspensão, temos um centro de oscilação Q cuja posição obedece à equação acima. Atividade 42.3 Nesse caso, temos e: O período é: tal como no Exemplo EXERCÍCIOS DE FIXAÇÃO E42.1 Um pêndulo simples tem comprimento L = 1.00 m e completa 100 oscilações em 201 segundos em um certo local. Qual é o valor da aceleração da gravidade neste local? 582

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

Tópico 8. Aula Prática: Pêndulo Simples

Tópico 8. Aula Prática: Pêndulo Simples Tópico 8. Aula Prática: Pêndulo Simples 1. INTRODUÇÃO Um pêndulo é um sistema composto por uma massa acoplada a um pivô que permite sua movimentação livremente. A massa fica sujeita à força restauradora

Leia mais

Profº Carlos Alberto

Profº Carlos Alberto Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como descrever a rotação de um corpo rígido em termos da coordenada angular,

Leia mais

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros

Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Universidade Federal Rural do Semi Árido UFERSA Pro Reitoria de Graduação PROGRAD Disciplina: Física II Professora: Subênia Medeiros Movimento Periódico O movimento é um dos fenômenos mais fundamentais

Leia mais

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2)

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) A CINEMÁTICA NO MHS 1.1.- (HALLIDAY, 4ª EDIÇÃO, CAP. 14, 1E) Um objeto sujeito a um movimento harmônico simples leva 0,25 s para

Leia mais

Física MHS. Questão 01 - (FUVEST SP/2016)

Física MHS. Questão 01 - (FUVEST SP/2016) Questão 01 - (FUVEST SP/2016) Um pêndulo simples, constituído por um fio de comprimento L e uma pequena esfera, é colocado em oscilação. Uma haste horizontal rígida é inserida perpendicularmente ao plano

Leia mais

Física I Prova 3 7/06/2014

Física I Prova 3 7/06/2014 Nota Física I Prova 3 7/06/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 2 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 12

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

Parte 2 - PF de Física I NOME: DRE Teste 1

Parte 2 - PF de Física I NOME: DRE Teste 1 Parte 2 - PF de Física I - 2017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [2,5 ponto] Um astronauta está ligado a uma nave no espaço através de uma corda de 120 m de comprimento, que está completamente estendida

Leia mais

Exercício 1. Exercício 2.

Exercício 1. Exercício 2. Exercício 1. Em um barbeador elétrico, a lâmina se move para frente e para trás ao longo de uma distância de 2,0 mm em movimento harmônico simples, com frequência de 120 Hz. Encontre: (a) a amplitude,

Leia mais

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA

Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA Engenharia Civil Exercícios de Física de Física Ficha 8 Corpo Rígido Capítulo 6 Ano lectivo 010-011 Conhecimentos e capacidades a adquirir pelo aluno Aplicação das leis fundamentais da dinâmica. Aplicação

Leia mais

Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova. Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

Lista de Exercícios - OSCILAÇÕES

Lista de Exercícios - OSCILAÇÕES UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - OSCILAÇÕES Perguntas: 1. O gráfico da figura 1 mostra a aceleração

Leia mais

a unidade de θ em revoluções e do tempo t em segundos (θ(rev.) t(s)). Também construa o gráfico da velocidade angular ω em função do tempo (ω( rev.

a unidade de θ em revoluções e do tempo t em segundos (θ(rev.) t(s)). Também construa o gráfico da velocidade angular ω em função do tempo (ω( rev. 30195-Física Geral e Exp. para a Engenharia I - 3 a Prova - 8/06/01 Nome: N o USP: Professor: Turma: A duração da prova é de horas. Material: lápis, caneta, borracha, régua. O uso de calculadora é proibido

Leia mais

Capí tulo 6 Movimento Oscilato rio Harmo nico

Capí tulo 6 Movimento Oscilato rio Harmo nico Capí tulo 6 Movimento Oscilato rio Harmo nico 1. O Movimento Harmónico Simples Vamos estudar o movimento de um corpo sujeito a uma força elástica. Consideramos o sistema como constituído por um corpo de

Leia mais

Resultante Centrípeta

Resultante Centrípeta Questão 01) Uma criança está em um carrossel em um parque de diversões. Este brinquedo descreve um movimento circular com intervalo de tempo regular. A força resultante que atua sobre a criança a) é nula.

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.12: Rotação de um Corpo Rígido Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Fundamental que o aluno tenha lido o capítulo. Introdução: Produto vetorial Ilustração da

Leia mais

Lista 9 : Dinâmica Rotacional

Lista 9 : Dinâmica Rotacional Lista 9 : Dinâmica Rotacional NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder

Leia mais

Lista 10: Dinâmica das Rotações NOME:

Lista 10: Dinâmica das Rotações NOME: Lista 10: Dinâmica das Rotações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Ler os enunciados com atenção. iii. Responder

Leia mais

Lista 12: Oscilações NOME:

Lista 12: Oscilações NOME: Lista 12: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

Capítulo 11 Rotações e Momento Angular

Capítulo 11 Rotações e Momento Angular Capítulo 11 Rotações e Momento Angular Corpo Rígido Um corpo rígido é um corpo ideal indeformável de tal forma que a distância entre 2 pontos quaisquer do corpo não muda nunca. Um corpo rígido pode realizar

Leia mais

Lista 12: Rotação de corpos rígidos

Lista 12: Rotação de corpos rígidos Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. iv. Siga a estratégia para

Leia mais

MHS Movimento Harmônico Simples

MHS Movimento Harmônico Simples 2010 ESCOLA ALUNO MHS Movimento Harmônico Simples 1. (Mackenzie) Uma partícula descreve um movimento harmônico simples segundo a equação X = 0,3. cos (π /3 + 2.t), no S.I.. O módulo da máxima velocidade

Leia mais

Física. Resultante Centrípeta. Questão 01 - (UNIFOR CE/2015)

Física. Resultante Centrípeta. Questão 01 - (UNIFOR CE/2015) ! Questão 01 - (UNIFOR CE/2015) O lançamento do martelo é esporte olímpico praticado por ambos os sexos. O recorde mundial deste esporte foi batido pela alemã Betty Heidler em 2011 em Stuttgart. O esporte

Leia mais

EXERCÍCIOS PARA PROVA ESPECÍFICA E TESTÃO 1 ANO 4 BIMESTRE

EXERCÍCIOS PARA PROVA ESPECÍFICA E TESTÃO 1 ANO 4 BIMESTRE 1. (Unesp 89) Um cubo de aço e outro de cobre, ambos de massas iguais a 20 g estão sobre um disco de aço horizontal, que pode girar em torno de seu centro. Os coeficientes de atrito estático para aço-aço

Leia mais

Universidade do Estado do Rio de Janeiro - Instituto de Física Lista de exercícios para a P2 - Física 1

Universidade do Estado do Rio de Janeiro - Instituto de Física Lista de exercícios para a P2 - Física 1 Universidade do Estado do Rio de Janeiro - Instituto de Física Lista de exercícios para a P2 - Física 1 1. Dois corpos A e B, de massa 16M e M, respectivamente, encontram-se no vácuo e estão separados

Leia mais

Lista Básica Aulas 22 e 23 Frente 3

Lista Básica Aulas 22 e 23 Frente 3 TEXTO PARA A PRÓXIMA QUESTÃO: Considere os dados abaixo para resolver a(s) questão(ões), quando for necessário. Constantes físicas Aceleração da gravidade próximo à superfície da Terra: Aceleração da gravidade

Leia mais

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos:

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: Segunda Lei de Newton para Rotações Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: L t = I ω t e como L/ t = τ EXT e ω/ t = α, em que α

Leia mais

Figura 1 Figura 2. Sabendo-se que a folha movimenta-se a uma velocidade de 7,0 cm/s, faça o que se pede:

Figura 1 Figura 2. Sabendo-se que a folha movimenta-se a uma velocidade de 7,0 cm/s, faça o que se pede: PROCESSO SELETIVO/2006 3 O DIA CADERNO 3 1 FÍSICA QUESTÕES DE 06 A 10 06. Uma impressora de computador, do tipo matricial, desloca o formulário contínuo a uma velocidade constante. Concomitantemente ao

Leia mais

Deslocamento, velocidade e aceleração angular. s r

Deslocamento, velocidade e aceleração angular. s r Rotação Deslocamento, velocidade e aceleração angular s r s r O comprimento de uma circunferência é πr que corresponde um ângulo de π rad (uma revolução) ( rad) (deg ou graus) 180 Exemplo 0 60 3 rad Porque

Leia mais

5ª Lista de Exercícios Fundamentos de Mecânica Clássica Profº. Rodrigo Dias

5ª Lista de Exercícios Fundamentos de Mecânica Clássica Profº. Rodrigo Dias 5ª Lista de Exercícios Fundamentos de Mecânica Clássica Profº. Rodrigo Dias Obs: Esta lista de exercícios é apenas um direcionamento, é necessário estudar a teoria referente ao assunto e fazer os exercícios

Leia mais

As variáveis de rotação

As variáveis de rotação Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento

Leia mais

Dinâ micâ de Mâ quinâs e Vibrâçõ es II

Dinâ micâ de Mâ quinâs e Vibrâçõ es II Dinâ micâ de Mâ quinâs e Vibrâçõ es II Aula 1 Revisão e princípios básicos: O objetivo desta aula é recapitular conceitos básicos utilizados em Dinâmica e Vibrações. MCU Movimento circular uniforme 1.

Leia mais

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal.

O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. CENTRÓIDES E MOMENTO DE INÉRCIA Centróide O centróide de área é definido como sendo o ponto correspondente ao centro de gravidade de uma placa de espessura infinitesimal. De uma maneira bem simples: centróide

Leia mais

Estática. Vista da estrutura da ponte Golden Gate, São Francisco, Califórnia (EUA).

Estática. Vista da estrutura da ponte Golden Gate, São Francisco, Califórnia (EUA). Estática Todo o nosso estudo até agora foi dedicado quase que exclusivamente ao movimento. Passamos da Cinemática - descrição matemática dos movimentos - à Dinâmica, em que essa descrição se aprofunda

Leia mais

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é:

A energia potencial em um ponto de coordenada, associada à força, quando o nível zero é tomado no ponto de coordenada em que, é: AULA 41 ENERGIA NO MOVIMENTO HARMÔNICO SIMPLES OBJETIVOS: - Estudar a conservação da energia no movimento harmônico simples 41.1 Introdução: A força restauradora que atua sobre uma partícula que possui

Leia mais

PROGRAD / COSEAC Padrão de Respostas Física Grupos 05 e 20

PROGRAD / COSEAC Padrão de Respostas Física Grupos 05 e 20 1 a QUESTÃO: Dois blocos estão em contato sobre uma mesa horizontal. Não há atrito entre os blocos e a mesa. Uma força horizontal é aplicada a um dos blocos, como mostra a figura. a) Qual é a aceleração

Leia mais

Segunda Prova de Física I, Turma MAA+MAI 8h-10h, 30 de novembro de 2011

Segunda Prova de Física I, Turma MAA+MAI 8h-10h, 30 de novembro de 2011 Segunda Prova de Física I, Turma MAA+MAI 8h-10h, 30 de novembro de 2011 A vista da prova será feita na 2 a feira 5/12/2011, na sala de aula no horário de 8h-8h30. Primeira Questão No sistema de coordenadas

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

GABARITO SIMULADO DISCURSIVO 2 3ª SÉRIE 2014

GABARITO SIMULADO DISCURSIVO 2 3ª SÉRIE 2014 GABARITO SIMULADO DISCURSIVO 3ª SÉRIE 014 1) Os peixes da família Toxotidae, pertencentes à ordem dos Perciformes, naturais da Ásia e da Austrália, são encontrados em lagoas e no litoral. Eles são vulgarmente

Leia mais

Prova 1/3. Nome: Assinatura: Matrícula UFES: Semestre: 2013/2 Curso: Física (B e L) Turmas: 01 e 02 Data: 11/11/2013 GABARITO

Prova 1/3. Nome: Assinatura: Matrícula UFES: Semestre: 2013/2 Curso: Física (B e L) Turmas: 01 e 02 Data: 11/11/2013 GABARITO Universidade Federal do Espírito Santo Centro de Ciências Eatas Departamento de Física FIS09066 Física Prof. Anderson Coser Gaudio Prova /3 Nome: Assinatura: Matrícula UFES: Semestre: 03/ Curso: Física

Leia mais

LECTURE NOTES PROF. CRISTIANO. Leis de Newton. Isaac Newton. Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202

LECTURE NOTES PROF. CRISTIANO. Leis de Newton. Isaac Newton. Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202 Fisica I - IO Leis de Newton Prof. Cristiano Oliveira Ed. Basilio Jafet sala 202 crislpo@if.usp.br http://pt.wikipedia.org/wiki/isaac_newton Isaac Newton Teorema Binomial Cálculo Lei da gravitação universal

Leia mais

O Movimento Harmônico Simples

O Movimento Harmônico Simples O Movimento Harmônico Simples Bibliografia e Figuras: Halliday, Resnick e Walker, vol 2 8 a ed, Cap 15. Todo o movimento que se repete em intervalos regulares é chamado de movimento periódico ou movimento

Leia mais

Aula 18: Cordas Vibrantes e Intensidade de Uma Onda. Prof a Nair Stem Instituto de Física da USP

Aula 18: Cordas Vibrantes e Intensidade de Uma Onda. Prof a Nair Stem Instituto de Física da USP Aula 18: Cordas Vibrantes e Intensidade de Uma Onda Prof a Nair Stem Instituto de Física da USP Cordas Vibrantes Considere vibrações transversais em uma corda distendida como as que encontramos em instrumentos

Leia mais

Lista 5 Leis de Newton

Lista 5 Leis de Newton Sigla: Disciplina: Curso: FISAG Física Aplicada a Agronomia Agronomia Lista 5 Leis de Newton 01) Um corpo de massa m sofre ação de duas forças F1 e F2, como mostra a figura. Se m = 5,2 kg, F1 = 3,7 N e

Leia mais

3 Movimentos com vínculos

3 Movimentos com vínculos 3.1-1 3 Movimentos com vínculos Se obrigarmos um corpo de mover-se ao longo de uma trajetória (curva) fixa (por exemplo, ao longo de uma montanha-russa, ou preso à extremidade de uma haste fina que obriga

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS

UNIVERSIDADE CATÓLICA DE GOIÁS 01 NOTA DE AULA 0 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 01) Coordenador: PROF. EDSON VAZ CAPÍTULOS: 05 e 06 CAPÍTULO 5 FORÇA

Leia mais

Capítulo 5 - Aplicações das leis de Newton. Hoje reconhecemos 4 forças da natureza. São elas (em ordem crescente de

Capítulo 5 - Aplicações das leis de Newton. Hoje reconhecemos 4 forças da natureza. São elas (em ordem crescente de Capítulo 5 - Aplicações das leis de Newton Hoje reconhecemos 4 forças da natureza. São elas (em ordem crescente de intensidade) Força Gravitacional Força Fraca Intensidade Força Eletromagnética Força Forte

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Física Geral e Experimental I Prof.a: Érica Muniz 1 Período Lançamentos Movimento Circular Uniforme Movimento de Projéteis Vamos considerar a seguir, um caso especial de movimento

Leia mais

d) [1,0 pt.] Determine a velocidade v(t) do segundo corpo, depois do choque, em relação à origem O do sistema de coordenadas mostrado na figura.

d) [1,0 pt.] Determine a velocidade v(t) do segundo corpo, depois do choque, em relação à origem O do sistema de coordenadas mostrado na figura. 1) Uma barra delgada homogênea de comprimento L e massa M está inicialmente em repouso como mostra a figura. Preso a uma de suas extremidades há um objeto de massa m e dimensões desprezíveis. Um segundo

Leia mais

FÍSICA - 1 o ANO MÓDULO 23 FORÇA CENTRÍPETA

FÍSICA - 1 o ANO MÓDULO 23 FORÇA CENTRÍPETA FÍSICA - 1 o ANO MÓDULO 23 FORÇA CENTRÍPETA N T P R O A B C T B P Como pode cair no enem? O Brasil pode se transformar no primeiro país das Américas a entrar no seleto grupo das nações que dispõem

Leia mais

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples

Leia mais

Problemas de Mecânica e Ondas 7

Problemas de Mecânica e Ondas 7 Problemas de ecânica e Ondas 7 P 7. Considere que as vagonetas de massa m e m (ver figur podem ser representadas por dois pontos materiais localizados nos centros de massa respectivos, para efeito da descrição

Leia mais

Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo.

Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa à posição inicial depois de um intervalo de tempo. Física 12.º Ano MOVIMENTOS OSCILATÓRIOS ADAPTADO DE SERWAY & JEWETT POR MARÍLIA PERES 2013 Movimento Periódico 2 Movimento periódico é um movimento que um objecto repete com regularidade. O objecto regressa

Leia mais

LISTA DE EXERCÍCIOS PLANO INCLINADO PROF. PEDRO RIBEIRO

LISTA DE EXERCÍCIOS PLANO INCLINADO PROF. PEDRO RIBEIRO LISTA DE EXERCÍCIOS PLANO INCLINADO PROF. PEDRO RIBEIRO 1 Um bloco de massa m = 10 kg, inicialmente a uma altura de 2 m do solo, desliza em uma rampa de inclinação 30 o com a horizontal. O bloco é seguro

Leia mais

Theory Portuguese (Portugal) Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope.

Theory Portuguese (Portugal) Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope. Q1-1 Dois Problemas de Mecânica Antes de iniciar este problema, leia cuidadosamente as Instruções Gerais que pode encontrar noutro envelope. Parte A. O Disco Escondido (3,5 pontos) Considere um cilindro

Leia mais

Física I Reposição 2 3/12/2014

Física I Reposição 2 3/12/2014 Nota Física I Reposição 3/1/014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 14

Leia mais

Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA

Notas de aula resumo de mecânica. Prof. Robinson RESUMO DE MECÂNICA RESUMO DE MECÂNICA Ano 2014 1 1. DINÂMICA DE UMA PARTÍCULA 1.1. O referencial inercial. O referencial inercial é um sistema de referência que está em repouso ou movimento retilíneo uniforme ao espaço absoluto.

Leia mais

F = K.x. Vale também para distensão!!! Lei de Hooke:

F = K.x. Vale também para distensão!!! Lei de Hooke: Lei de Hooke: A força necessária para se comprimir uma mola, depende de dois fatores: a dureza da mola (constante elástica) e a deformação a ser causada. F K.x Vale também para distensão!!! ATENÇÃO: o

Leia mais

Física Geral e Experimental III

Física Geral e Experimental III Física Geral e Experimental III Oscilações Nosso mundo está repleto de oscilações, nas quais os objetos se movem repetidamente de um lado para outro. Eis alguns exemplos: - quando um taco rebate uma bola

Leia mais

Aula do cap. 16 MHS e Oscilações

Aula do cap. 16 MHS e Oscilações Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento

Leia mais

m 1 m 2 FIG. 1: Máquina de Atwood m 1 m 2 g (d) Qual a relação entre as massas para que o sistema esteja em equilíbrio?

m 1 m 2 FIG. 1: Máquina de Atwood m 1 m 2 g (d) Qual a relação entre as massas para que o sistema esteja em equilíbrio? 1 II.5. Corpo rígido (versão: 20 de Maio, com respostas) 1. Determine o momento de inércia de uma régua de comprimento L e densidade uniforme nas seguintes situações : (a) em relação ao eixo que passa

Leia mais

EXEMPLOS FORÇA CENTRÍFUGA AULA 23. Prof a Nair Stem Instituto de Física da USP

EXEMPLOS FORÇA CENTRÍFUGA AULA 23. Prof a Nair Stem Instituto de Física da USP EXEMPLOS FORÇA CENTRÍFUGA AULA 3 Prof a Nair Stem Instituto de Física da USP FORÇA CENTRÍFUGA Forças que aparecem em um referencial S em rotação uniforme em relação a um referencial S. Como por exemplo

Leia mais

LEIS DE NEWTON DINÂMICA 3ª LEI TIPOS DE FORÇAS

LEIS DE NEWTON DINÂMICA 3ª LEI TIPOS DE FORÇAS DINÂMICA É a parte da Mecânica que estuda as causas e os movimentos. LEIS DE NEWTON 1ª Lei de Newton 2ª Lei de Newton 3ª Lei de Newton 1ª LEI LEI DA INÉRCIA Quando a resultante das forças que agem sobre

Leia mais

Ao atingir o ponto B pela quarta vez, temos 3,5 oscilações completas em 7 segundos; logo:

Ao atingir o ponto B pela quarta vez, temos 3,5 oscilações completas em 7 segundos; logo: 01 Ao atingir o ponto B pela quarta vez, temos 3,5 oscilações completas em 7 segundos; logo: 7 T = T = 2 s 3,5 Resposta: E 1 02 Sabemos que o período de uma oscilação é proporcional a L é o comprimento;

Leia mais

Data e horário da realização: 15/02/2016 das 14 às 17 horas

Data e horário da realização: 15/02/2016 das 14 às 17 horas re UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE DEPARTAMENTO DE FÍSICA PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA Exame de Seleção para o curso de mestrado em Física - 2016-1 Data e horário da realização: 15/02/2016

Leia mais

onde: F : força exercida pelo cavalo. P: peso, força exercida pela terra. N: força exercida pelo plano inclinado (normal ao plano inclinado).

onde: F : força exercida pelo cavalo. P: peso, força exercida pela terra. N: força exercida pelo plano inclinado (normal ao plano inclinado). Prova de Conhecimentos Específicos 1 a QUESTÃO: (1,0 ponto) Um cavalo pua uma carroça para cima num plano inclinado, com velocidade constante. A força de atrito entre a carroça e o plano inclinado é desprezível.

Leia mais

Mais aplicações das Leis de Newton

Mais aplicações das Leis de Newton Mais aplicações das Leis de Newton Disciplina: Física Geral e Experimental Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: A natureza dos diversos tipos de

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão preliminar 9 de setembro de 00 Notas de Aula de ísica. EQUIÍBRIO... CONDIÇÕES ARA O EQUIÍBRIO... SOUÇÃO DE AGUNS ROBEMAS... 0... 5... 9... 4 5... 5 7... 6 4... 7 5... 8 9... 8 rof. Romero Tavares

Leia mais

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA 1.0 Definições Posição angular: utiliza-se uma medida de ângulo a partir de uma direção de referência. É conveniente representar a posição da partícula com suas

Leia mais

Verificar as equações para a constante de mola efetiva em um sistema com molas em série e outro com molas em paralelo.

Verificar as equações para a constante de mola efetiva em um sistema com molas em série e outro com molas em paralelo. 74 9.4 Experiência 4: Deformações Elásticas e Pêndulo Simples 9.4.1 Objetivos Interpretar o gráfico força x elongação; Enunciar e verificar a validade da lei de Hooke; Verificar as equações para a constante

Leia mais

Força. Aceleração (sai ou volta para o repouso) Força. Vetor. Aumenta ou diminui a velocidade; Muda de direção. Acelerar 1kg de massa a 1m/s 2 (N)

Força. Aceleração (sai ou volta para o repouso) Força. Vetor. Aumenta ou diminui a velocidade; Muda de direção. Acelerar 1kg de massa a 1m/s 2 (N) Força Empurrão ou puxão; Força é algo que acelera ou deforma alguma coisa; A força exercida por um objeto sobre o outro é correspondida por outra igual em magnitude, mas no sentido oposto, que é exercida

Leia mais

Física I Prova 2 25/10/2014

Física I Prova 2 25/10/2014 Física I Prova 2 25/10/2014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8 questões

Leia mais

3. Considere as duas diferentes situações em que uma mala está suspensa por dois dinamómetros como representado na Fig.1.

3. Considere as duas diferentes situações em que uma mala está suspensa por dois dinamómetros como representado na Fig.1. 1 II. 2. Mecânica de Newton 1. Um partícula carregada com carga q quando colocada num campo eléctrico E fica sujeita a uma força F = q E. Considere o movimento de um electrão e um protão colocados num

Leia mais

Questões Conceituais

Questões Conceituais Questões em Sala de Aula Módulo 3 Parte B Questões Conceituais QC.1) Num oscilador harmônico simples, massa-mola, a velocidade do bloco oscilante depende (a) da constante elástica k da mola e da amplitude;

Leia mais

Capítulo 3 O Oscilador Hamônico

Capítulo 3 O Oscilador Hamônico Capítulo 3 O Oscilador Hamônico Uma força unidimensional, que depende somente da posição x, tem uma expansão de Taylor em torno da sua posição de equilíbrio x=0 (onde F=0) Quando somente o termo linear

Leia mais

Estática do ponto material e do corpo extenso

Estática do ponto material e do corpo extenso Estática do ponto material e do corpo extenso Estática do ponto material e do corpo extenso Estática é a área da Física que estuda as condições de equilíbrio do ponto material e do corpo extenso. Estática

Leia mais

FÍSICA - 1 o ANO MÓDULO 24 FORÇA CENTRÍPETA REVISÃO

FÍSICA - 1 o ANO MÓDULO 24 FORÇA CENTRÍPETA REVISÃO FÍSICA - 1 o ANO MÓDULO 24 FORÇA CENTRÍPETA REVISÃO Fixação 1) Um pêndulo é abandonado na posição A e atinge a posição E, como mostra a figura abaixo. Assinale a alternativa que melhor indica a direção

Leia mais

Laboratório de Física Básica 2

Laboratório de Física Básica 2 Objetivo Geral: Determinar a aceleração da gravidade local a partir de medidas de periodo de oscilação de um pêndulo simples. Objetivos específicos: Teoria 1. Obter experimentalmente a equação geral para

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS MAF- 04.05.2012 Prof. Dr. Antônio Newton Borges 1. Na caixa de 2,0 kg da figura abaixo são aplicadas duas forças, mais somente uma é mostrada. A aceleração da

Leia mais

Lista 10: Momento Angular. Lista 10: Momento Angular

Lista 10: Momento Angular. Lista 10: Momento Angular Lista 10: Momento Angular NOME: Matrícula: Turma: Prof. : Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Analisar

Leia mais

Física I 2010/2011. Aula 13 Rotação I

Física I 2010/2011. Aula 13 Rotação I Física I 2010/2011 Aula 13 Rotação I Sumário As variáveis do movimento de rotação As variáveis da rotação são vectores? Rotação com aceleração angular constante A relação entre as variáveis lineares e

Leia mais

NOME: N O : TURMA: 2M311. PROFESSOR: Glênon Dutra

NOME: N O : TURMA: 2M311. PROFESSOR: Glênon Dutra Apostila de Revisão n 2 DISCIPLINA: Física NOME: N O : TURMA: 2M311 PROFESSOR: Glênon Dutra DATA: Mecânica - 2. FORÇAS E LEIS DE NEWTON É importante que o candidato saiba, em uma situação específica, identificar

Leia mais

Física I Prova 3 29/11/2014

Física I Prova 3 29/11/2014 Nota Física I Prova 3 9/11/014 NOME MATRÍCULA TURMA PROF. Lembrete: A prova consta de 6 questões discursivas (que deverão ter respostas justificadas, desenvolvidas e demonstradas matematicamente) e 8 questões

Leia mais

Trabalho de Recuperação de Física 3º Ano Física- Ulisses

Trabalho de Recuperação de Física 3º Ano Física- Ulisses Trabalho de Recuperação de Física 3º Ano Física- Ulisses Tema: Introdução a Leis de Newton. Tipos de Forças. Força Resultante. Força resultante centrípeta. Dinâmica Circular. Questão 01 - (CEFET MG) A

Leia mais

Por outro lado, sabemos que o módulo e o sentido da força que atua sobre uma partícula em MHS são dados, genericamente, por:

Por outro lado, sabemos que o módulo e o sentido da força que atua sobre uma partícula em MHS são dados, genericamente, por: Sistema Corpo-Mola Um corpo de massa m se apóia sobre uma superfície horizontal sem atrito e está preso a uma mola (de massa desprezível) de constante elástica k (Fig.18). Se o corpo é abandonado com a

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

5 Forças em Dinâmica. 1 Princípio da inércia (primeira lei de Newton) 2 Princípio fundamental da Dinâmica (segunda lei de Newton)

5 Forças em Dinâmica. 1 Princípio da inércia (primeira lei de Newton) 2 Princípio fundamental da Dinâmica (segunda lei de Newton) F=m.a 5 Forças em Dinâmica A Dinâmica é a parte da Mecânica que estuda os movimentos e as causas que os produzem ou os modificam. Significa que a força resultante F produz uma aceleração a com mesma direção

Leia mais

Física I -2010/2011. a c

Física I -2010/2011. a c Física I -2010/2011 9 a Série - Rotação Questões: Q1 -. Um pêndulo oscila desde a extremidade da trajectória, à esquerda (ponto 1), até à outra extremidade, à direita (ponto 5). Em cada um dos pontos indicados,

Leia mais

Resolução: V 2 = T.senθ R/M V = 3 m/s. d) V = w R w = v/r w = 3/1,2 w = 2,5 rad/s

Resolução: V 2 = T.senθ R/M V = 3 m/s. d) V = w R w = v/r w = 3/1,2 w = 2,5 rad/s FÍSICA 1ª QUESTÃO Durante uma aula de Física, o Professor Raimundo faz uma demonstração com um pêndulo cônico. Esse pêndulo consiste em uma pequena esfera pendurada na extremidade de um fio, como mostrado

Leia mais

Considerando que o fio e a polia são ideais, qual o coeficiente de atrito cinético entre o bloco B e o plano?

Considerando que o fio e a polia são ideais, qual o coeficiente de atrito cinético entre o bloco B e o plano? 2ª Série do Ensino Médio 01. No sistema a seguir, A e B têm massa m = 10 kg e a = 45 0. A aceleração da gravidade é de 10 m/s 2 e o peso da corda, o atrito no eixo da roldana e a massa da roldana são desprezíveis:

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento

Leia mais

1 Movimento Circular Lista de Movimento circular Cinemática do Ponto Material 7

1 Movimento Circular Lista de Movimento circular Cinemática do Ponto Material 7 Sumário 1 Movimento Circular 3 1.1 Lista de Movimento circular................................... 3 2 Cinemática do Ponto Material 7 3 Equilíbrio de Corpos no Espaço 9 3.1 Equilíbrio de Partícula.....................................

Leia mais

Curso Física 1. Aula Dinâmica de Rotação de um Corpo Rígido

Curso Física 1. Aula Dinâmica de Rotação de um Corpo Rígido Curso Física Aula - 8 Dinâmica de Rotação de um Corpo Rígido Torque, Definição: Torque,, é a tendência de uma força causar rotação num objeto ao redor de um determinado eixo. Seja F uma força agindo

Leia mais

FIS-26 Prova 03 Maio/2013

FIS-26 Prova 03 Maio/2013 FIS-26 Prova 03 Maio/2013 Nome: Turma: Duração máxima da prova: 120 min. Responda às questões de forma clara, completa e concisa. Uma parte da pontuação de cada questão será atribuída para o resultado

Leia mais

Qual o valor máximo da força F que se poderá aplicar a um dos blocos, na mesma direção do fio, sem romper o fio?

Qual o valor máximo da força F que se poderá aplicar a um dos blocos, na mesma direção do fio, sem romper o fio? TC DE FISICA PROFESSOR ÍTALO REANN CONTEUDO: LEIS DE NEWTON E FORÇA CENTRIPETA 01. Dois blocos idênticos, unidos por um fio de massa desprezível, jazem sobre uma mesa lisa e horizontal conforme mostra

Leia mais

Capítulo 12 Dinâmica de Corpos Rígidos

Capítulo 12 Dinâmica de Corpos Rígidos Capítulo 12 Dinâmica de Corpos Rígidos Breve Revisão Dois pontos quaisquer de um corpo rígido têm sempre a mesma distância (fixa e constante no tempo). Para localizar qualquer ponto do corpo rígido basta

Leia mais

Caro Aluno: Este texto apresenta uma revisão sobre movimento circular uniforme MCU e MCU. Bom estudo e Boa Sorte!

Caro Aluno: Este texto apresenta uma revisão sobre movimento circular uniforme MCU e MCU. Bom estudo e Boa Sorte! TEXTO DE EVISÃO 10 Movimento Circular Caro Aluno: Este texto apresenta uma revisão sobre movimento circular uniforme MCU e MCU. om estudo e oa Sorte! 1 - Movimento Circular: Descrição do Movimento Circular

Leia mais

Atividade de revisão

Atividade de revisão Física Atividade - Revisão 2 os anos Hugo ago/09 Nome: Nº: Turma: Atividade de revisão Esta atividade tem por objetivo revisar alguns conteúdos do primeiro semestre e ajudá-lo a se preparar para o próximo.

Leia mais