Inferência para várias populações normais análise de variância (ANOVA)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Inferência para várias populações normais análise de variância (ANOVA)"

Transcrição

1 Inferência para várias populações normais análise de variância (ANOVA) Capítulo 15, Estatística Básica (Bussab&Morettin, 8a Edição) 9a AULA 11/05/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 9a aula (11/05/2015) MAE229 1 / 24

2 Motivação Ideia chave: Construir um teste para comparar k (k > 2) populações normais com a mesma variância. Exemplos: Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário para eliminar a doença. Comparar três lojas quanto ao volume médio de vendas a aula (11/05/2015) MAE229 2 / 24

3 Seja Y a v.a. de interesse de uma determinada população (indivíduos, animais, empresas...), e admita-se que os elementos da população podem ser classificados em níveis de um fator. Exemplo: Consideremos: Y altura dos indivíduos (variável de interesse) P população constituída por todos os indivíduos, fator: sexo (com dois níveis F e M) (i = 1, 2). Extraímos uma amostra de dimensão n 1 da população P 1 : pessoas do sexo masculino (y 11, y 12,..., y 1n1 ). Extraímos uma amostra de dimensão n 2 da população P 2 : pessoas do sexo feminino (y 21, y 22,..., y 2n2 ), e suporemos que as amostras recolhidas são independentes 9a aula (11/05/2015) MAE229 3 / 24

4 Seja: E(Y ) = µ a média global da v.a. Y para a população P (média das alturas de todos os indivíduos) E(Y P 1 ) = µ 1 a média da v.a. Y para a subpopulação P 1 (média das alturas do homens) E(Y P 2 ) = µ 2 a média da v.a. Y para subpopulação P 2 (média das alturas das mulheres) Neste exemplo, a hipótese a testar é, H 0 : µ 1 = µ 2 = µ versus H 1 : µ 1 µ 2 A questão é saber se o factor exerce alguma influência na variação da característica em estudo. 9a aula (11/05/2015) MAE229 4 / 24

5 No caso mais geral, admitimos que temos k amostras independentes, de k subpopulações (populações) P 1, P 2,..., P k, e onde k representa o número de níveis do fator, onde subpopulação P 1 = amostra y 11, y 12,..., y 1n1 subpopulação P 2 = amostra y 21, y 22,..., y 2n2 subpopulação P k = amostra y k1, y k2,..., y knk P 1 N(µ 1, σ 2 ) P 2 N(µ 2, σ 2 ) P k N(µ k, σ 2 ) 9a aula (11/05/2015) MAE229 5 / 24

6 Sejam: Y ij v.a. s que representam as observações (i = 1,..., k e j = 1,..., n i ) n i dimensão da subpopulação P i (i = 1,..., k) k número de níveis do fator µ i média da subpopulação P i (i = 1,..., k) µ média global (de todas as subpopulações) τ i = µ µ i o efeito do nível i ( k i=1 τ i = 0) e ij v.a s que representam o erro aleatório de cada observação e que supomos independentes entre si (E(e ij e im ) = 0 e E(e 1j e 2m ) = 0), e com variância σ 2. Modelo Y ij = µ i + e ij, i = 1,..., k j = 1,..., n i = µ + τ i + e ij, i = 1,..., k j = 1,..., n i 9a aula (11/05/2015) MAE229 6 / 24

7 Objetivo Admitindo que temos um fator com k níveis, o objetivo é estimar as médias de cada uma das subpopulações µ i (i = 1,..., k) e testar a hipótese ou { H0 : µ 1 = µ 2 =... = µ k = µ H 1 : µ i µ j, para algum par (i, j) { H0 : τ 1 = τ 2 =... = τ k = 0 H 1 : τ i 0, para algum i Nota: O modelo anterior é designado de modelo de efeitos (níveis) fixos uma vez que as subpopulações, determinadas pelos níveis do fator, são pré-determinadas. 9a aula (11/05/2015) MAE229 7 / 24

8 Exemplo: Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário para eliminar a doença. Temos apenas um factor, Tratamento, que se apresenta em quatro níveis, A, B, C e D. Através da aplicação da análise de variância com um factor ou one-way ANOVA, podemos saber se os tratamentos produzem os mesmos resultados no que diz respeito à característica em estudo. 9a aula (11/05/2015) MAE229 8 / 24

9 Pressupostos: A aplicação da análise de variância pressupõe a verificação das seguintes condições: As amostras devem ser aleatórias e independentes. As amostras devem ser extraídas de populações normais. As populações devem ter variâncias iguais σ1 2 = σ2 2 =... = σ2 k, ou seja, o modelo é homocedástico. 9a aula (11/05/2015) MAE229 9 / 24

10 Temos então duas situações possíveis: H 0 é verdadeiro: As diferenças observadas entre as médias amostrais são devidas a flutuações amostrais e portanto todas as amostras provêm de populações com médias iguais. Como se supôs que todas as populações são normais e têm variâncias iguais, isto é o mesmo que extrair todas as amostras de uma única população. H 0 é falso: As diferenças observadas entre as médias amostrais são demasiado grandes para serem devidas unicamente a flutuações amostrais. As médias das populações não são iguais e as amostras recolhidas provêm de populações diferentes. 9a aula (11/05/2015) MAE / 24

11 Análise Variância - ANOVA A análise de variância vai estimar a variância por dois métodos diferentes, um sob a validade da hipótese nula e o outro não. As duas estimativas obtidas são depois comparadas para tomarmos uma decisão: se os grupos tiverem todos a mesma média (isto é, se H 0 é verdadeiro), as duas estimativas devem estar próximas uma da outra, caso contrário (isto é, se H 1 é verdadeiro) devem diferir significativamente. 9a aula (11/05/2015) MAE / 24

12 Decomposição da soma de quadrados Seja N = k n i, y i = i=1 k n i (y ij y) 2 = i=1 j=1 } {{ } SQTot ni j=1 y ij n i, y = k i=1 ni j=1 y ij N k n i (y i y) 2 + i=1 } {{ } SQEnt k i=1 = n iy i. N k n i (y ij y i ) 2 i=1 j=1 } {{ } SQDen SQTot = SQEnt + SQDen 9a aula (11/05/2015) MAE / 24

13 SQTot > é a soma de quadrados total e mede a variação total nos dados; SQEnt > é a soma de quadrados entre os níveis, ou grupos, do factor e mede a variação entre grupos (populações); é por vezes designada por variação explicada, pois ela é explicada pelo facto de as amostras poderem provir de populações diferentes; SQDen > é a soma de quadrados dentro dos níveis, ou grupos, do factor e mede a variação dentro dos grupos (populações); é por vezes designada por variação não explicada ou residual, pois é atribuída a flutuações dentro do mesma população, portanto não pode ser explicada pelas possíveis diferenças entre os grupos (populações). 9a aula (11/05/2015) MAE / 24

14 Estimativa entre da variância: Mostra-se que: k SQEnt i=1 σ 2 = n i(y i y) 2 σ 2 e que a estimativa da variância σ 2 é dada por: QMEnt = SQEnt k 1. H0 χ 2 (k 1) Estimativa dentro da variância: Mostra-se que: k ni SQDen i=1 j=1 σ 2 = (y ij y i ) 2 σ 2 e que a estimativa da variância σ 2 é dada por: QMDen = SQDen N k. H0 χ 2 (N k) 9a aula (11/05/2015) MAE / 24

15 Estatística de Teste A estimativa dentro da variância, QMDen, não é afectada pela veracidade ou falsidade de H 0. Ao contrário, a estimativa entre da variância, QMEnt, já o é, sendo aproximadamente igual a QMDen quando H 0 é verdadeira e maior do que esta se H 0 é falsa. F = QMEnt QMDen H 0 F (k 1,N k) Se H 0 é verdadeira, σ 2 pode ser estimada pelos dois processos e como as duas estimativas serão aproximadamente iguais, a razão F será próxima de 1. Se H 0 for falsa, as diferenças nas médias populacionais vão provocar maior variabilidade nas médias amostrais e portanto QMEnt será também grande comparativamente com QMDen. A razão F tomará um valor maior que 1. Região Crítica RC=(c, + ), onde P(F (k 1,N k) > c) = α 9a aula (11/05/2015) MAE / 24

16 Tabela de Análise de Variância Fonte da graus de SQ QM F Variação (F.V.) liberdade (g.l.) Entre k 1 SQEnt QMEnt= SQEnt QMEnt k 1 QMDen grupos Dentro N k SQDen dos grupos QMDen= SQDen N k Total N 1 SQTot QMTot 9a aula (11/05/2015) MAE / 24

17 Fórmulas para cálculo das somas de quadrados SQTot = k ni i=1 j=1 y ij 2 Ny 2 ; SQDen = k i=1 (n i 1)S 2 i = k i=1 ( ni ) j=1 y ij 2 n i y 2 i SQEnt = k i=1 n i(y i y) 2 = k i=1 n iy 2 i Ny 2 Dados balanceados Se n 1 = n 2 =... = n k = n então N = nk. 9a aula (11/05/2015) MAE / 24

18 Exemplo (pág. 431): Uma escola analisa seu curso por meio de um questionário com 50 questões sobre diversos aspectos de interesse. Cada pergunta tem uma resposta, numa escala de 1 a 5 (a v.a. Y ), em que a maior nota significa melhor desempenho. Na última avaliação, usou-se uma amostra de alunos de cada período, e os resultados estão na tabela abaixo. Existem as indicações estatísticas para dizer que o desempenho no curso tem uma influencia de período de aplicação do curso? Período Manhã Tarde Noite 4,2 2,7 4,6 4,0 2,4 3,9 3,1 2,4 3,8 2,7 2,2 3,7 2,3 1,9 3,6 3,3 1,8 3,5 4,1 3,4 2,8 9a aula (11/05/2015) MAE / 24

19 Fator: período com 3 níveis i = 1 manhã (n 1 = 7) i = 2 tarde (n 2 = 6) i = 3 noite (n 2 = 8) N = = 21 Hipóteses: H 0 : µ 1 = µ 2 = µ 3 versus H 1 : µ i µ j, para algum par (i, j) Estatística de Teste: F = QMEnt QMDen H 0 F (2,18) TABELA ANOVA 9a aula (11/05/2015) MAE / 24

20 Teste de Homocedasticidade Uma das suposições para a aplicação da técnica da ANOVA é que a variância é igual em todos os níveis, mas nem sempre é possível garantir que este pressuposto é válido. Este teste tem como pressuposto que as populações tenham distribuição normal. Além disso, só é aplicável quando as diferentes amostras envolvidas têm dimensões n i 4 ( i). Teste de Bartlett Hipótese Nula: H 0 : σ 2 1 = σ2 2 =... = σ2 k Calcular a variância comum S 2 = k i=1 (n i 1)S 2 i N k = SQDen N k = QMDEn Calcular k M = (N k) ln S 2 (n i 1) ln Si 2 i=1 9a aula (11/05/2015) MAE / 24

21 Calcular C = (k 1) [ k i=1 ( 1 ) ( 1 ) ] n i 1 N k Estatística de Teste (distribuição aproximada válida para amostras grandes): M C H 0 χ 2 (k 1) Região Crítica: RC=(c, + ), com α = P(χ 2 (k 1) > c). 9a aula (11/05/2015) MAE / 24

22 Exemplo: Suponha que é director de marketing de uma empresa que pretende relançar um produto no mercado. Você estudou três campanhas de marketing diferentes, cada uma deles combina de modo diferente factores como o preço do produto, a apresentação do produto, promoções associadas, etc. Qualquer uma destas campanhas é levada a cabo no ponto de venda, não havendo qualquer publicidade nos meios de comunicação. Para saber se há diferença entre as três campanhas relativamente à sua eficácia, cada uma delas é feita num conjunto de lojas seleccionadas aleatoriamente, durante um período de duração limitada. Note que as lojas são seleccionadas de modo a que as três amostras sejam aleatórias e independentes entre si. As vendas (em unidades monetárias) registradas durante este período constam da tabela seguinte. 9a aula (11/05/2015) MAE / 24

23 Campanha 1 Campanha 2 Campanha Total Seja Y i a v.a. que representa o volume de vendas da loja sujeita à campanha i (i = 1, 2, 3). Estatísticas y 1 = 6.4; y 2 = ; y 3 = ; y = SQEnt = 44.04; QMEnt = ; SQDen = ; QMDen = a aula (11/05/2015) MAE / 24

24 H 0 : σ1 2 = σ2 2 = σ2 3 versus H 1 : σi 2 σj 2, para algum par (i, j) QMDen = M = C = M C H 0 χ 2 (2) RC = (9.21, + ) M/C = / RC Ao nível de significância de 0.01, não se pode rejeitar a hipótese de que as três variáveis populacionais tenham iguais variâncias. TABELA ANOVA 9a aula (11/05/2015) MAE / 24

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV. INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário

Leia mais

Testes de hipóteses Paramétricos

Testes de hipóteses Paramétricos Testes de hipóteses Paramétricos Modelos de análise de variância com um factor Teste de Bartlett Teste de comparações múltiplas de Scheffé Rita Brandão (Univ. Açores) Testes de hipóteses Paramétricos 1

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

Testes de Hipóteses Paramétricos

Testes de Hipóteses Paramétricos Testes de Hipóteses Paramétricos Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplos Testar se mais de metade da população irá consumir um novo produto

Leia mais

X e Y independentes. n + 1 m

X e Y independentes. n + 1 m DEPARTAMENTO DE ESTATÍSTICA / CCEN / UFPA Disciplina: Inferência I Prof: Regina Tavares 5.0. TESTE DE HIPÓTESES PARA DUAS POPULAÇÕES 5.0.. Duas Populações Normais independentes : X, X 2,, X n uma a.a.

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

DELINEAMENTO EM BLOCOS AO ACASO

DELINEAMENTO EM BLOCOS AO ACASO DELINEAMENTO EM BLOCOS AO ACASO Sempre que não houver condições experimentais homogêneas, devemos utilizar o principio do controle local, instalando Blocos, casualizando os tratamentos, igualmente repetidos.

Leia mais

Teste de hipótese de variância e Análise de Variância (ANOVA)

Teste de hipótese de variância e Análise de Variância (ANOVA) Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Testes sobre variâncias Problema: queremos saber se há diferenças estatisticamente

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

TESTE DE MANN-WHITNEY

TESTE DE MANN-WHITNEY TESTE DE MANN-WHITNEY A importância deste teste é ser a alternativa não paramétrica ao teste t para a diferença de médias. Sejam (X,X,...,X n ) e (Y,Y,...,Y m ) duas amostras independentes, de tamanhos

Leia mais

Estatística - Análise de Regressão Linear Simples. Professor José Alberto - (11) sosestatistica.com.br

Estatística - Análise de Regressão Linear Simples. Professor José Alberto - (11) sosestatistica.com.br Estatística - Análise de Regressão Linear Simples Professor José Alberto - (11 9.7525-3343 sosestatistica.com.br 1 Estatística - Análise de Regressão Linear Simples 1 MODELO DE REGRESSÃO LINEAR SIMPLES

Leia mais

Poder do teste e determinação do tamanho da amostra:pca & PBC

Poder do teste e determinação do tamanho da amostra:pca & PBC Poder do teste e determinação do tamanho da amostra:pca & PBC Relembrando: α = probabilidade do erro do tipo I: P(Rejeitar H 0 H 0 é verdadeira). β = probabilidade do erro do tipo II: P(Não rejeitar H

Leia mais

ANOVA FACTORIAL EXEMPLO 1. ANOVA TWO-WAY COM O SPSS. a capacidade de reconhecimento do odor materno

ANOVA FACTORIAL EXEMPLO 1. ANOVA TWO-WAY COM O SPSS. a capacidade de reconhecimento do odor materno ANOVA FACTORIAL Quando a variável dependente é influenciada por mais do que uma variável independente (Factor) estamos interessados em estudar o efeito não só de cada um dos factores mas e também a possível

Leia mais

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa 2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante

Leia mais

TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA

TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA Suponha que numa amostra aleatória de tamanho n de uma dada população são observados dois atributos ou características A e B (qualitativas ou quantitativas), uma

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) 2a AULA 02/03/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 2a aula (02/03/2015) MAE229 1 / 16

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

Métodos Quantitativos Aplicados

Métodos Quantitativos Aplicados Métodos Quantitativos Aplicados Aula 6 http://www.iseg.utl.pt/~vescaria/mqa/ Tópicos apresentação Análise de dados bivariada: os casos dos testes de proporções para duas amostras independentes e emparelhadas

Leia mais

ANOVA - parte I Conceitos Básicos

ANOVA - parte I Conceitos Básicos ANOVA - parte I Conceitos Básicos Erica Castilho Rodrigues 9 de Agosto de 2011 Referências: Noções de Probabilidade e Estatística - Pedroso e Lima (Capítulo 11). Textos avulsos. Introdução 3 Introdução

Leia mais

Planejamento de Experimentos. 13. Experimentos com fatores aleatórios

Planejamento de Experimentos. 13. Experimentos com fatores aleatórios Planejamento de Experimentos 13. Experimentos com fatores aleatórios Até aqui assumimos que os fatores nos experimentos eram fixos, isto é, os níveis dos fatores utilizados eram níveis específicos de interesse.

Leia mais

MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões

MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões MEDIDAS DE DISPERSÃO Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões Cidade A: 185, 185, 185 x 185mm Cidade B: 18, 184, 189 x 185mm

Leia mais

mat.ufrgs..ufrgs.br br/~viali/ mat.ufrgs..ufrgs.br

mat.ufrgs..ufrgs.br br/~viali/ mat.ufrgs..ufrgs.br Prof. Lorí Viali, Dr. http://www. ://www.mat mat.ufrgs..ufrgs.br br/~viali/ viali@mat mat.ufrgs..ufrgs.br Média Uma amostra Proporção Variância Dependentes Diferença de médias m Duas amostras Independentes

Leia mais

DELINEAMENTO FATORIAL. Profª. Sheila Regina Oro

DELINEAMENTO FATORIAL. Profª. Sheila Regina Oro DELINEAMENTO FATORIAL Profª. Sheila Regina Oro Existem casos em que vários fatores devem ser estudados simultaneamente para que possam nos conduzir a resultados de interesse. Experimentos fatoriais: são

Leia mais

Planejamento de Experimentos

Planejamento de Experimentos Planejamento de Experimentos Analise de Variância (ANOVA) com um Fator Planejamento de Experimentos Muitas vezes é necessário obter informações sobre produtos e processos empiricamente. Trabalho assemelha-se

Leia mais

Análise do tempo médio gasto para travessia de uma avenida durante três horários de pico de trânsito do dia.

Análise do tempo médio gasto para travessia de uma avenida durante três horários de pico de trânsito do dia. Metodologia de Planejamento e Análise de Experimentos 1 Análise do tempo médio gasto para travessia de uma avenida durante três horários de pico de trânsito do dia. Carlos Roberto Castelano Júnior Universidade

Leia mais

Capítulo 6 Estatística não-paramétrica

Capítulo 6 Estatística não-paramétrica Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Algumas considerações Slide 2 As secções deste capítulo referem-se

Leia mais

ANÁLISE DE VARIÂNCIA. y j = µ + τ i + e i j = µ i + e i j

ANÁLISE DE VARIÂNCIA. y j = µ + τ i + e i j = µ i + e i j SUMÁRIO 1 Análise de Variância 1 1.1 O Teste F...................................... 1.2 Verificando as pressuposições do modelo..................... 5 1.2.1 Verificação de Normalidade.........................

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques e Nuno Bastos (DepMAT) Intervalos de Confiança 2010/2011 1 / 33 Introdução

Leia mais

EXPERIMENTAÇÃO AGRÁRIA

EXPERIMENTAÇÃO AGRÁRIA EXPERIMENTAÇÃO AGRÁRIA Tema : Delineamentos experimentais básicos (DCC/DBCC/DQL) Delineamento de Blocos Completos Casualizados (DBCC) Quando usar? Quando as unidades experimentais não apresentam características

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

i. f Y (y, θ) = 1/θ... 0 y θ 0... y < 0 ou y > θ Se a amostra selecionada foi ( ), qual será a estimativa para θ?

i. f Y (y, θ) = 1/θ... 0 y θ 0... y < 0 ou y > θ Se a amostra selecionada foi ( ), qual será a estimativa para θ? Fundação Getulio Vargas Curso: Graduação Disciplina: Estatística Professor: Moisés Balassiano Lista de Exercícios Inferência. Seja (Y, Y 2,..., Y n ) uma amostra aleatória iid, de tamanho n, extraída de

Leia mais

7. Testes de Hipóteses

7. Testes de Hipóteses 7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,

Leia mais

Aula 7. Testes de Hipóteses Paramétricos (II)

Aula 7. Testes de Hipóteses Paramétricos (II) Aula 7. Testes de Hipóteses Paramétricos (II) Métodos Estadísticos 008 Universidade de Averio Profª Gladys Castillo Jordán IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais.

Leia mais

TÉCNICAS DE AMOSTRAGEM

TÉCNICAS DE AMOSTRAGEM TÉCNICAS DE AMOSTRAGEM Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Amostragem estratificada Divisão da população em

Leia mais

Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E

Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA QUANTIFICAÇÃO DOS GRUPOS DO ESTUDO PESQUISA INFERÊNCIA ESTATÍSTICA TESTE DE HIPÓTESES E Escolha dos testes INTRODUÇÃO À BIOESTATÍSTICA Determinada a pergunta/ hipótese Recolhidos os dados Análise descritiva = Estatística descritiva QUAIS TESTES ESTATÍSTICOS DEVEM SER REALIZADOS?? PROFESSORA:

Leia mais

Estatística. Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários à aplicação da ANOVA são verificados.

Estatística. Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários à aplicação da ANOVA são verificados. INSTITUTO SUPERIOR POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Ano Lectivo 007/008 Estatística Ficha n.º Nos exercícios que se seguem, e caso seja necessário, considere que os pressupostos necessários

Leia mais

Inferência Estatística: Conceitos Básicos II

Inferência Estatística: Conceitos Básicos II Inferência Estatística: Conceitos Básicos II Distribuição Amostral e Teorema do Limite Central Análise Exploratória de dados no SPSS Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação

Leia mais

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS

VERSÃO RESPOSTAS PROVA DE MÉTODOS QUANTITATIVOS UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO DE ORGANIZAÇÕES PROCESSO SELETIVO MESTRADO - TURMA 2012 PROVA

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

Estatística e Probabilidade. Aula 11 Cap 06

Estatística e Probabilidade. Aula 11 Cap 06 Aula 11 Cap 06 Intervalos de confiança para variância e desvio padrão Confiando no erro... Intervalos de Confiança para variância e desvio padrão Na produção industrial, é necessário controlar o tamanho

Leia mais

a) 19% b) 20% c) Aproximadamente 13% d) 14% e) Qualquer número menor que 20%

a) 19% b) 20% c) Aproximadamente 13% d) 14% e) Qualquer número menor que 20% 0. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº 5: Testes Paramétricos Probabilidades e Estatística 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas

Leia mais

TESTES DE HIPÓTESES. HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não.

TESTES DE HIPÓTESES. HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não. TESTES DE HIPÓTESES HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não. HIPÓTESES ESTATÍSTICA: Hipótese Nula (H 0 ): a ser validada pelo teste.

Leia mais

Nome: N o : Espaço reservado a classificações

Nome: N o : Espaço reservado a classificações ESTATÍSTICA I 2 o Ano/Gestão 1 o Semestre Época Normal Duração: 2 horas 1 a Parte Teórica N o de Exame: abcde 03.Jan.11 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação: 8 valores).

Leia mais

Capítulo 11 Análise da Variância. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1

Capítulo 11 Análise da Variância. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1 Capítulo 11 Análise da Variância Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1 Objetivos do Aprendizado Neste capítulo você aprenderá: Os conceitos básicos da modelagem

Leia mais

Os testes. Objetivos. O teste Q de Cochran; O teste de Friedman (Análise de variância de duplo fator por postos)

Os testes. Objetivos. O teste Q de Cochran; O teste de Friedman (Análise de variância de duplo fator por postos) Prof. Lorí Viali, Dr. http://www.mat.ufrgs.br/viali/ viali@mat.ufrgs.br Os testes O teste Q de Cochran; O teste de Friedman (Análise de variância de duplo fator por postos) William Gemmell Cochran (1909-1980)

Leia mais

Inferência Estatística

Inferência Estatística Metodologia de Diagnóstico e Elaboração de Relatório FASHT Inferência Estatística Profa. Cesaltina Pires cpires@uevora.pt Plano da Apresentação Duas distribuições importantes Normal T- Student Estimação

Leia mais

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste

Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta

Leia mais

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência Introdução 1 Muito frequentemente fazemos perguntas do tipo se alguma coisa tem relação com outra. Estatisticamente

Leia mais

Testes de Hipóteses. Professor: Josimar Vasconcelos Contato: ou

Testes de Hipóteses. Professor: Josimar Vasconcelos Contato: ou Testes de Hipóteses Professor: Josimar Vasconcelos Contato: josimar@ufpi.edu.br ou josimar@uag.ufrpe.br http://prof-josimar.blogspot.com.br/ Universidade Federal do Piauí UFPI Campus Senador Helvídio Nunes

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Estatística Aplicada I

Universidade Federal do Pará Instituto de Tecnologia. Estatística Aplicada I 8/8/05 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 8/08/05 06:55 ESTATÍSTICA APLICADA

Leia mais

ANÁLISE DE VARIÂNCIA (ANOVA) Prof. Anderson Rodrigo da Silva

ANÁLISE DE VARIÂNCIA (ANOVA) Prof. Anderson Rodrigo da Silva ANÁLISE DE VARIÂNCIA (ANOVA) Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br Exemplo 1 de Introdução Medley & Clements (1998) estudaram o efeito de metais pesados, especialmente zinco, sobre

Leia mais

Testes de Hipóteses Não Paramétricos. Rita Brandão (Univ. Açores) Testes de hipóteses não paramétricos 1 / 48

Testes de Hipóteses Não Paramétricos. Rita Brandão (Univ. Açores) Testes de hipóteses não paramétricos 1 / 48 Testes de Hipóteses Não Paramétricos Rita Brandão (Univ. Açores) Testes de hipóteses não paramétricos 1 / 48 Testes de Hipóteses Não Paramétricos:Introdução Nos testes de hipóteses não paramétricos não

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB DISCIPLINA BIOEXPERIMENTAÇÃO Exercício de experimento fatorial resolução passo-à-passo Os dados apresentados abaixo são uma adaptação do exemplo apresentado por Banzato e Kronka (199) Os dados são valores

Leia mais

Aula 7 Intervalos de confiança

Aula 7 Intervalos de confiança Aula 7 Intervalos de confiança Nesta aula você aprenderá um método muito importante de estimação de parâmetros. Na aula anterior, você viu que a média amostral X é um bom estimador da média populacional

Leia mais

AULA 19 Análise de Variância

AULA 19 Análise de Variância 1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Dependentes Teste t para amostras emparelhadas Variâncias Teste z Conhecidas Independentes Variâncias Desconhecidas Supostas iguais

Leia mais

Métodos Quantitativos em Medicina

Métodos Quantitativos em Medicina Métodos Quantitativos em Medicina Comparação de Duas Médias Terceira Aula 009 Teste de Hipóteses - Estatística do teste A estatística do teste de hipótese depende da distribuição da variável na população

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução O curso foi dividido em três etapas:

Leia mais

Bioestatística Básica RCA 5804 COMPARANDO GRUPOS INDEPENDENTES. Prof. Dr. Alfredo J Rodrigues

Bioestatística Básica RCA 5804 COMPARANDO GRUPOS INDEPENDENTES. Prof. Dr. Alfredo J Rodrigues Bioestatística Básica RCA 5804 COMPARANDO GRUPOS INDEPENDENTES Prof. Dr. Alfredo J Rodrigues Departamento de Cirurgia e Anatomia Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo alfredo@fmrp.usp.br

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin Grupo de Neurofísica. ANOVA e MANOVA

UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin Grupo de Neurofísica. ANOVA e MANOVA UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin Grupo de Neurofísica e M ANalysis Of Variance Permite determinar se as médias de 2 ou mais populações são iguais População: o grupo (universo)

Leia mais

Homocedasticidade? Exemplo: consumo vs peso de automóveis

Homocedasticidade? Exemplo: consumo vs peso de automóveis REGRESSÃO Análise de resíduos Homocedasticidade? Exemplo: consumo vs peso de automóveis 60 50 Consumo (mpg) 40 30 0 10 0 1500 000 500 3000 3500 4000 4500 Peso 0 Diagrama de resíduos 15 10 Resíduos 5 0-5

Leia mais

HEP-5800 BIOESTATÌSTICA

HEP-5800 BIOESTATÌSTICA HEP-58 BIOESTATÌSTICA UNIDADE IV INFERÊNCIA ESTATÍSTICA: TESTES DE HIPÓTESES Nila Nunes da Silva Regina I. T. Bernal I. QUADRO CONCEITUAL São procedimentos estatísticos que consistem em usar dados de amostras

Leia mais

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses PODER DO TESTE Poder do Teste e Tamanho de Amostra para Testes de Hipóteses 1 Tipos de erro num teste estatístico Realidade (desconhecida) Decisão do teste aceita H rejeita H H verdadeira decisão correta

Leia mais

Estatística Indutiva

Estatística Indutiva Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição

Leia mais

Análise da Variância. Prof. Dr. Alberto Franke (48)

Análise da Variância. Prof. Dr. Alberto Franke (48) Análise da Variância Prof. Dr. Alberto Franke (48) 91471041 Análise da variância Até aqui, a metodologia do teste de hipóteses foi utilizada para tirar conclusões sobre possíveis diferenças entre os parâmetros

Leia mais

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Medidas de Dispersão Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Introdução Estudo de medidas que mostram a dispersão dos dados em torno da tendência central Analisaremos as seguintes

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) INTRODUÇÃO AOS MÉTODOS ESTATÍSTICOS EM ENGENHARIA VARIABILIDADE NA MEDIDA DE DADOS CIENTÍFICOS Se numa pesquisa, desenvolvimento de um processo ou produto, o valor

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Testes de Aderência, Homogeneidade e Independência

Testes de Aderência, Homogeneidade e Independência Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa

Leia mais

Módulo IV Medidas de Variabilidade ESTATÍSTICA

Módulo IV Medidas de Variabilidade ESTATÍSTICA Módulo IV Medidas de Variabilidade ESTATÍSTICA Objetivos do Módulo IV Compreender o significado das medidas de variabilidade em um conjunto de dados Encontrar a amplitude total de um conjunto de dados

Leia mais

16/6/2014. Teste Qui-quadrado de independência

16/6/2014. Teste Qui-quadrado de independência UNIVERSIDADE FEDERAL DA PARAÍBA TESTES NÃO- PARAMÉTRICOS Parte I Prof. Luiz Medeiros Departamento de Estatística Teste Qui-quadrado de independência Um dos principais objetivos de se construir uma tabela

Leia mais

TESTES NÃO PARAMÉTRICOS (para mediana/média)

TESTES NÃO PARAMÉTRICOS (para mediana/média) MAE212: Introdução à Probabilidade e à Estatística II - Profas. Beti e Chang (2012) 1 TESTES NÃO PARAMÉTRICOS (para mediana/média) Os métodos de estimação e testes de hipóteses estudados até agora nessa

Leia mais

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis

Leia mais

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

DELINEAMENTO INTEIRAMENTE CASUALIZADO e CASUALIZADOS

DELINEAMENTO INTEIRAMENTE CASUALIZADO e CASUALIZADOS DELINEAMENTO INTEIRAMENTE CASUALIZADO e DELINEAMENTO EM BLOCOS CASUALIZADOS Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br 1. Objetivos Estudar o procedimento de instalação e análise de

Leia mais

TESTES DE NORMALIDADE E SIGNIFICÂNCIA. Profª. Sheila Regina Oro

TESTES DE NORMALIDADE E SIGNIFICÂNCIA. Profª. Sheila Regina Oro TESTES DE NORMALIDADE E SIGNIFICÂNCIA Profª. Sheila Regina Oro A suposição de normalidade dos dados amostrais ou experimentais é uma condição exigida para a realização de muitas inferências válidas a respeito

Leia mais

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média TESTES DE HIPÓTESES Conceitos, Testes de 1 proporção, Testes de 1 média 1 Testes de Hipóteses População Conjectura (hipótese) sobre o comportamento de variáveis Amostra Decisão sobre a admissibilidade

Leia mais

Inferência Estatística

Inferência Estatística Inferência Estatística Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Núcleo de Estatística e Informática HUUFMA email: alcione.miranda@terra.com.br Inferência Estatística Inferências

Leia mais

TESTES DE HIPÓTESES. O procedimento básico de um teste de hipóteses pode ser decomposto em quatro fases: i) Definição das hipóteses.

TESTES DE HIPÓTESES. O procedimento básico de um teste de hipóteses pode ser decomposto em quatro fases: i) Definição das hipóteses. 227 TESTES DE HIPÓTESES Objectivo: Verificar se os dados amostrais (ou estimativas obtidas a partir deles) são ou não compatíveis com determinadas populações (ou com valores previamente fixados dos correspondentes

Leia mais

Princípios de Modelagem Matemática Aula 10

Princípios de Modelagem Matemática Aula 10 Princípios de Modelagem Matemática Aula 10 Prof. José Geraldo DFM CEFET/MG 19 de maio de 2014 1 Alguns resultados importantes em estatística A distribuição normal tem importante papel em estatística pois

Leia mais

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula Prof.: Patricia Maria Bortolon, D. Sc. Distribuições Amostrais ... vocês lembram que: Antes de tudo... Estatística Parâmetro Amostra População E usamos estatíticas das amostras para

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) EXPERIMENTOS COM DOIS FATORES E O PLANEJAMENTO FATORIAL Dr Sivaldo Leite Correia CONCEITOS E DEFINIÇÕES FUNDAMENTAIS Muitos experimentos são realizados visando

Leia mais

Modelos de Regressão Linear Simples - Análise de Resíduos

Modelos de Regressão Linear Simples - Análise de Resíduos Modelos de Regressão Linear Simples - Análise de Resíduos Erica Castilho Rodrigues 1 de Setembro de 2014 3 O modelo de regressão linear é dado por Y i = β 0 + β 1 x i + ɛ i onde ɛ i iid N(0,σ 2 ). O erro

Leia mais

Inferência Estatística. Estimação

Inferência Estatística. Estimação Inferência Estatística Estimação Inferência Estatística fazer inferências tirar conclusões fazer inferência estatística tirar conclusões sobre uma população com base em somente uma parte dela, a amostra,

Leia mais

Planejamento e Análise de Experimentos

Planejamento e Análise de Experimentos Planejamento e Análise de Experimentos Aula 3 Felipe Campelo http://www.cpdee.ufmg.br/~fcampelo Programa de Pós-Graduação em Engenharia Elétrica Belo Horizonte Agosto de 2011 ANOVA para Fator Único Análise

Leia mais

Teste Mann-Whitney. Contrapartida não-paramétrica para. Teste-t para amostras independentes

Teste Mann-Whitney. Contrapartida não-paramétrica para. Teste-t para amostras independentes Teste Mann-Whitney Contrapartida não-paramétrica para Teste-t para amostras independentes Teste Mann-Whitney pequenas amostras independentes 1. Testes para Duas Populações, X e Y, Independentes. Corresponde

Leia mais

Universidade Federal de Viçosa Departamento de Estatística

Universidade Federal de Viçosa Departamento de Estatística Universidade Federal de Viçosa Departamento de Estatística Prova Seletiva para o Programa de Pós-Graduação em Estatística Aplicada e Biometria. Nível Doutorado - 22/nov/2013 Nome: Assinatura:. Número do

Leia mais

INTRODUÇÃO À ESTATÍSTICA BÁSICA AULA 4

INTRODUÇÃO À ESTATÍSTICA BÁSICA AULA 4 INTRODUÇÃO À ESTATÍSTICA BÁSICA AULA 4 Dr. Pedro Giovâni da Silva (Ecologia UFC) MSc. Juliano André Bogoni (Ecologia UFSC) Florianópolis, agosto de 2015 Aula 4: Wilcoxon-Mann-Whitney; Kruskall-Wallis;

Leia mais

INTRODUÇÃO A MODELOS MISTOS

INTRODUÇÃO A MODELOS MISTOS INTRODUÇÃO A MODELOS MISTOS Delineamento experimental ou desenho experimental, de uma forma bastante simples, é a forma em que os tratamentos (níveis de um fator ou combinações de níveis de fatores) são

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

EXAME DE ESTATÍSTICA / ESTATÍSTICA I

EXAME DE ESTATÍSTICA / ESTATÍSTICA I INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE EAME DE ESTATÍSTICA / ESTATÍSTICA I Cursos: Licenciatura em Enfermagem e Licenciaturas Bi-etápicas em Fisioterapia e em Terapia da Fala Época de

Leia mais

Análise de Variância a um factor

Análise de Variância a um factor 1 Análise de Variância a um factor Análise de experiências com vários grupos de observações classificados através de um só factor (por exemplo grupos de indivíduos sujeitos a diferentes tratamentos para

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

( ) = σ 2. Capítulo 8 - Testes de hipóteses. 8.1 Introdução

( ) = σ 2. Capítulo 8 - Testes de hipóteses. 8.1 Introdução Capítulo 8 - Testes de hipóteses 8.1 Introdução Nos capítulos anteriores vimos como estimar um parâmetro desconhecido a partir de uma amostra (obtendo estimativas pontuais e intervalos de confiança para

Leia mais