Mineração da opinião sobre aspectos de candidatos a eleições em comentários de notícias

Tamanho: px
Começar a partir da página:

Download "Mineração da opinião sobre aspectos de candidatos a eleições em comentários de notícias"

Transcrição

1 paper:78 Mineração da opinião sobre aspectos de candidatos a eleições em comentários de notícias Leonardo Augusto Sápiras, Karin Becker Instituto de Informática Universidade Federal do Rio Grande do Sul (UFRGS) Caixa Postal Porto Alegre RS Brazil Resumo. A classificação automática da opinião pública sobre aspectos de candidatos a eleições, a partir de opiniões disponíveis na web, é um problema complexo para a Mineração de Opiniões. Este artigo descreve uma experiência de mineração de opiniões em nível de aspecto no contexto de comentários de leitores de jornais sobre notícias eleitorais. Nosso desafio é identificar e sumarizar a opinião baseada em aspectos a partir de fontes de opiniões fracamente estruturadas. Mostramos ser possível identificar, classificar a polaridade e sumarizar a opinião de leitores de um jornal sobre os aspectos Saúde e Educação relacionados a candidatos de uma eleição municipal. Abstract. The automatic classification of opinions about aspects of political candidates, from public web data, is a complex Opinion Mining problem. This paper describes a case study of aspect-based opinion mining in the context of comments that newspaper readers express about political news. Our challenge is to identify and summarize opinions on aspects of election candidates, using an ill-structured source of opinion. Our case study propose techniques that can be used to identify, classify and summarize opinions on Health and Education issued by readers about political candidates. 1. Introdução A opinião pública sobre entidades e seus aspectos expressa em documentos textuais pode ser analisada e sintetizada através de Mineração de Opiniões, que realiza essas atividades combinando técnicas de mineração de dados com processamento de linguagem natural [Liu 2012]. Os trabalhos pioneiros nessa área buscaram identificar a opinião global contida em revisões sobre produtos e serviços, escritas por usuários [Pang and Lee 2008, Tsytsarau and Palpanas 2012]. Como um substancial avanço, a opinião passou a ser detalhada em termos dos diferentes aspectos de produtos/serviços [Hu and Liu 2004, Guo et al. 2009, Qiu et al. 2011, Liu et al. 2013], tais como o preço, capacidade ou desempenho de um computador. Essas opiniões detalhadas são extremamente úteis e influenciam potenciais consumidores. Revisões de produto são fontes de opinião bem estruturadas e possibilitam obter a opinião pública sobre entidades e seus aspectos mais facilmente [Tsytsarau and Palpanas 2012, Liu 2012], porque o alvo da opinião é a entidade sendo revisada. Por outro lado, as opiniões expressas em fontes de opiniões menos estruturadas, tais como redes sociais [Tumasjan et al. 2010, Castellanos et al. 2011], blogs e notícias [Balahur et al. 2010], são mais difíceis de serem mineradas porque as tarefas de 117

2 encontrar o conteúdo de opinião, e o seu alvo, são bem mais complexas. Ao contrário do contexto de revisão de produtos, no qual o objeto da revisão é a entidade alvo da opinião, documentos nessas mídias podem conter opiniões sobre múltiplas entidades, sobre aspectos específicos destas, ou mesmo podem não conter nenhuma opinião. Este artigo descreve uma experiência de mineração de opiniões em nível de aspecto no contexto de comentários de leitores de jornais sobre notícias eleitorais. Nosso desafio é identificar e sumarizar a opinião baseada em aspectos a partir de fontes de opiniões fracamente estruturadas. Aplicamos a mineração de opiniões em fontes de dados relacionadas com eleições, já que a plataforma eleitoral de candidatos inclui propostas relevantes para a população em diversas áreas, tais como saúde, educação, segurança, as quais são exploradas durante uma campanha com o intuito de obter votos. Essas áreas são tratadas neste trabalho como os aspectos de um candidato sobre os quais os leitores podem opinar. Assim, partimos da premissa que, além da percepção global de um candidato, é possível identificar a opinião pública em relação a aspectos específicos deste. Por exemplo, desejase identificar que a percepção sobre um candidato X em relação à saúde é mais positiva que a do candidato Y, mas no que se refere à educação a percepção é mais negativa. A contribuição do presente trabalho é uma abordagem para minerar e sumarizar, em nível de aspecto, opiniões sobre candidatos a eleições, a qual foi aplicada a um estudo de caso. Ela integra resultados parciais de experimentos sobre extração de aspectos [Sapiras and Becker 2014], e de mineração de opiniões em nível de sentença sobre a mesma fonte de opiniões fracamente estruturada [Tumitan and Becker 2013, Tumitan and Becker 2014], a saber, opiniões expressas por leitores de jornal em comentários como reações a notícias. Em nosso conhecimento, este é um trabalho pioneiro de mineração de opiniões em nível de aspecto fora do contexto de revisões de produtos. O restante deste artigo está estruturado como segue: a Seção 2 descreve os trabalhos relacionados; a Seção 3 detalha um estudo de caso para minerar a opinião sobre aspectos de entidades políticas; a Seção 4 apresenta conclusões e trabalhos futuros. 2. Trabalhos relacionados A mineração de opiniões pode ser dividida em três grandes tarefas [Tsytsarau and Palpanas 2012]: a) identificação de conteúdo subjetivo e do alvo das opiniões; b) classificação da polaridade das opiniões; c) sumarização das opiniões através de métricas e/ou recursos visuais. A mineração de opiniões pode ser realizada em nível de documento, sentença ou aspecto, sendo este último o foco deste trabalho. Métodos para classificação da polaridade de opiniões incluem abordagens baseadas em dicionário, aprendizagem de máquina, estatísticas e semânticas [Tsytsarau and Palpanas 2012], sendo as duas primeiras as mais frequentemente empregadas [Liu 2012]. A abordagem baseada em dicionários requer bons léxicos sentimento para a língua alvo, e pesquisas mostram a importância de dicionários de domínio (e.g. [Hu and Liu 2004]). Já para bons resultados usando aprendizagem de máquina, é necessário um extenso corpus anotado para treino. O trabalho pioneiro na identificação de opinião em nível de aspecto foi o de [Hu and Liu 2004], o qual utiliza regras de associação envolvendo substantivos. [Qiu et al. 2011] utilizam dependências sintáticas para identificar o alvo da opinião, mas 118

3 bons analisadores sintáticos não estão disponíveis para o português. Modelos mais sofisticados de co-ocorrência (e.g. [Guo et al. 2009]) também foram propostos com o mesmo fim. Essas pesquisas exploram revisão de produtos, que são fontes de opinião mais estruturadas, pois: (i) geralmente apresentam opiniões sobre uma única entidade, (ii) explicitam a entidade-alvo da opinião, (iii) pertencem ao mesmo domínio (e.g. informática, cinema). Não se pode assumir tais características em fontes de dados menos estruturados, como blogs ou redes sociais, pois esses tipos de documentos podem apresentar opiniões sobre múltiplos alvos (ou mesmo não conter opinião) e em domínios sem relação entre si. Trabalhos que usam fontes de opinião fracamente estruturadas (e.g. tweets, comentários) identificam o alvo de opinião no momento da extração, usando um conjunto de termos que representam a entidade alvo. Trabalhos que se propõem a fazer previsões sobre eleições políticas baseadas em sentimentos usando tweets [Tumasjan et al. 2010, O Connor et al. 2010] ou comentários de jornais [Tumitan and Becker 2014] usam essa estratégia e realizam a mineração de opiniões em nível de documento ou sentença. LCI [Castellanos et al. 2011] monitora o sentimento em tweets, agrupando os termos mais frequentes em tópicos e sumarizando as opiniões envolvendo esses termos. O Observatório da Web 1 monitora tweets sobre vários assuntos, incluindo eleições, sumarizando os principais tópicos, mas sem envolver mineração da opiniões. Modelos visuais para a tarefa de sumarização são propostos em trabalhos como [Hu and Liu 2004, Castellanos et al. 2011]. Em nível de aspecto, um modelo comum mostra a quantidade de opiniões positivas/negativas para cada um dos aspectos de um produto frequentemente citados [Hu and Liu 2004]. LCI [Castellanos et al. 2011] usa este modelo de sumarização para entidades e seus aspectos, além de propor uma nuvem de termos para os aspectos mais comentados. O presente artigo integra contribuições desenvolvidas em trabalhos prévios dos autores. Experimentos para extrair aspectos de comentários de notícias foram reportados em [Sapiras and Becker 2014], mas não envolveram mineração de opiniões. Observamos como comportamento dos leitores que os comentários não necessariamente têm relação com o conteúdo da notícia (e.g. uma notícia sobre transportes pode ter comentários opinando sobre saúde, transportes ou corrupção). Assim, optamos por considerar todos comentários, e experimentamos diferentes técnicas probabilísticas de co-ocorrência para identificar aspectos. O processo de mineração de opiniões para o mesmo estudo de caso foi detalhado em [Tumitan and Becker 2013], incluindo a extração e pré-processamento de comentários, identificação dos candidatos alvo, e classificação da opinião em nível de sentença. A classificação da polaridade usando léxicos de sentimento e aprendizado supervisionado foi comparada em [Tumitan and Becker 2014], também em nível de sentença. O presente trabalho diferencia-se destes ao propor uma abordagem para minerar e sumarizar opiniões em nível de aspecto para a mesma fonte de opiniões fracamente estruturada, a saber, comentários de jornais sobre candidatos a eleições. 3. Estudo de caso 3.1. Objetivo Neste estudo de caso realizamos uma experiência pioneira de mineração de opiniões em nível de aspecto fora do contexto de revisão de produtos. Tal como em

4 [Tumitan and Becker 2013], usamos como fonte de opinião comentários sobre notícias envolvendo eleições municipais de 2012 da cidade de São Paulo, e os três candidatos a prefeito mais comentados (i.e. Serra, Russomanno e Haddad). As notícias e comentários foram extraídos da Folha de São Paulo, e o período analisado corresponde ao mês que antecede o primeiro turno da eleição. O objetivo do estudo foi propor uma abordagem que permitisse detalhar a opinião dos leitores em relação a aspectos específicos destes candidatos (e.g. a percepção de X sobre saúde é mais positiva que a dos candidatos Y e Z no mesmo aspecto), e aplicá-la sobre o corpus escolhido. Consideramos os mesmos aspectos já explorados em [Sapiras and Becker 2014]: saúde e educação Abordagem proposta A abordagem proposta para o estudo de caso é apresentada na Figura 1. As caixas com fundo cinza correspondem às técnicas discutidas em trabalhos prévios dos autores e as com fundo verde correspondem às etapas desenvolvidas no presente artigo. Uma vez extraídos os comentários dos jornais relevantes ao estudo de caso [Tumitan and Becker 2013], dois procedimentos são realizados: a) a identificação dos comentários envolvendo os aspectos alvo de acordo [Sapiras and Becker 2014]; e b) a mineração de opiniões em nível de sentença, para sentenças mencionando os candidatos observados [Tumitan and Becker 2014]. O nível de sentença foi adotado para a polarização da opinião porque cada comentário pode envolver opiniões sobre mais de um candidato. Então, a relação entre as sentenças polarizadas e os respectivos comentários é analisada para verificar se se referem a algum aspecto específico. Finalmente, a opinião dos leitores é sumarizada por candidato e por seus aspectos. Na discussão que segue, sejam A = {a i } um conjunto de aspectos, E = {e j } um conjunto de candidatos monitorados e C = {c k } um conjunto de comentários. Figura 1. Abordagem de mineração de opiniões em nível de aspecto. Extração de comentários: extração de comentários sobre notícias eleitorais, identificadas usando rótulos pré-definidos em um indexador de notícias (Google Reader). O pré-processamento elimina comentários duplicados (similaridade superior a 85% usando cosseno), ou muito curtos (até 3 palavras). Os detalhes da extração e limpeza de comentários são relatados em [Tumitan and Becker 2013]. Identificação de comentários que mencionam aspectos: identificação dos comentários C a C que contêm termos representativos de cada aspecto a A, de acordo o método detalhado na Seção 3.4. Divisão de comentários em sentenças: utilizando o módulo punkt do NLTK 2, treinado para português, os comentários são divididos em sentenças. A relação entre 2 Natural Language Toolkit

5 sentença e comentário de origem é armazenada, criando o conjunto de sentenças S = {< s i, c k >: c k C}. Identificação de sentenças que mencionam entidades eleitorais: filtragem de todas sentenças de S que fazem menções explícitas aos candidatos e E, criando um conjunto SM = {< s i, e j, c k >: e j E < s i, c k > S}. As menções são identificadas usando os nomes dos candidatos (e.g. Serra, Russomano) e suas variações (e.g. vampissera, tarussomano), encontradas a partir de expressões regulares. Polarização de sentenças: as sentenças com menções SM são polarizadas em três classes, gerando o conjunto SP = {< s i, e j, pol, c k >: pol {pos, neut, neg} < s i, e j, c k > SM}. Os detalhes relacionados à classificação das opiniões são discutidos na Seção 3.5. Associação das sentenças polarizadas aos aspectos: as sentenças com opiniões sobre aspectos específicos são separadas, usando o seu relacionamento com os respectivos comentários. Para cada aspecto a A, buscamos as sentenças SP a = {< s i, e j, pol, c a >: c a C a }, SP a SP, considerando estas como opiniões sobre o aspecto a do candidato e j. Sumarização da opinião sobre as entidades e seus aspectos: sumarização das opiniões sobre os candidatos em geral, e sobre seus aspectos, de acordo com os mecanismos apresentados na Seção 3.6. Agregamos as sentenças por comentário e candidato, para representar o número de pessoas emitindo opiniões sobre cada candidato Corpus e Gold Standard O corpus utilizado consiste de comentários de notícias sobre as eleições municipais de São Paulo relativos aos meses de setembro e outubro de Após pré-processamento, o corpus foi reduzido a comentários, divididos em sentenças. Deste corpus, foram extraídos dois subconjuntos de dados a serem usados como Gold Standard. Todos os dados foram anotados por três anotadores, em que somente anotações com no mínimo duas concordâncias foram consideradas. Os anotadores foram orientados a basear sua avaliação apenas no conteúdo explicitamente escrito, sem usar julgamento próprio ou conhecimento do domínio político para inferir entendimento. A concordância dos anotadores para polaridade foi 91,81%, e para aspectos, 85,75%. Os datasets 1 e 2 são subconjunto dos comentários sobre eleições municipais de 2012, enquanto que o Dataset3 foi criado para as pesquisas relatas em [Tumitan and Becker 2014], e envolve eleições de A identificação de aspectos foi validada usando o Dataset1. Os datasets 2 e 3 foram utilizadas para treinar e testar os classificadores de opinião. Dataset1: aleatoriamente, foram selecionadas 407 notícias eleitorais do corpus, as quais foram anotadas em relação aos tópicos que evocavam (i.e. saúde ou educação). Dos respectivos comentários, foram selecionadas também aleatoriamente 2072 sentenças, em que cada anotador deveria avaliar se a sentença evocava um dos tópicos, quais candidatos eram explicitamente mencionados, se expressava uma opinião e a respectiva polaridade. Assumiu-se que todo comentário que contivesse pelo menos uma sentença anotada como evocando um dado tópico, por transitividade, também mencionava aquele tópico. 121

6 Dataset2: aleatoriamente foram selecionadas 1071 sentenças de comentários do mesmo corpus, as quais foram anotadas no tocante à polaridade, possuindo 732 sentenças negativas, 180 neutras e 159 positivas. Dataset3: considerando as eleições presidenciais e governamentais de São Paulo de 2010, foram selecionadas aleatoriamente 990 sentenças de comentários extraídos segundo o mesmo processo, que, após anotação quanto à polaridade, resultaram em 356 sentenças negativas, 480 neutras e 154 positivas Identificação de Aspectos A Figura 2 detalha a abordagem utilizada para encontrar os aspectos [Sapiras and Becker 2014], a qual visa identificar os comentários que mencionam determinado aspecto com base em um conjunto de termos representativos do mesmo. Dado um conjunto de notícias sobre um dado aspecto (documentos de domínio), os termos representativos são encontrados com base na co-ocorrência entre termos encontrados nestes documentos (palavras candidatas), e um conjunto de palavras-semente. Figura 2. Processo de identificação de aspectos. No estudo de caso, as palavras-semente foram definidas pelos próprios autores a partir do conhecimento do domínio. Exemplos de palavras-semente para Saúde são hospital, médico e vacinação, e para o aspecto Educação, aula e escola. O processo de identificação dos termos representativos tem início com a extração de documentos específicos do domínio de cada aspecto. Nosso estudo de caso utiliza um corpora de notícias classificadas pelo Jornal Folha de São Paulo para os aspectos saúde e educação. O processo de extração desse corpora resultou em 1000 notícias com o rótulo Educação, e 1000 notícias com o rótulo Saúde. De cada um desses corpora, foram extraídas, usando NLTK, todas as palavras existentes, junto com suas respectivas frequências e classes gramaticais (part-of-speech tags). Stopwords foram eliminadas. Foram consideradas como palavras candidatas apenas os substantivos que apareciam no respectivo corpus (e.g. notícias sobre saúde) e que não apareciam no outro (e.g. notícias sobre educação). Dentre as técnicas de co-ocorrência examinadas, os melhores resultados foram obtidos com EMIM (Expected Mutual Information Measure), detalhada na Equação

7 Dado que x representa uma palavra candidata e y representa uma palavra-semente, a é número de vezes que as palavras x e y co-ocorrem em um documento; b é o número de vezes que x ocorre em um documento e y não ocorre; c é o número de vezes que y ocorre e x não ocorre, e d é o número de vezes que nem x nem y ocorrem um documento. EMIM (x,y) = log 2 a(a + b + c + d) (a + b)(a + c) (1) Um termo x é considerado como representativo quando: a) EMIM(x, y) > 0, e b) x e y co-ocorrem em, no mínimo, 10 documentos do domínio, em que estes limites foram fixados empiricamente. Em nossos experimentos, melhor detalhados em [Sapiras and Becker 2014], obtivemos 73,83% de precisão, 79,8% de revocação e 76,7% de F-score para o aspecto Saúde. Já para o aspecto Educação, obtivemos 70,54% de precisão, 80,53% de revocação e 75,21% de F-score. Também experimentamos as técnicas LSI e Phi-squared, mas essas apresentaram resultados inferiores Polarização de Opinião Usamos a experiência desenvolvida em [Tumitan and Becker 2014] para polarizar as sentenças, com a diferença de que consideramos três classes: positivo, neutro e negativo. Optamos por utilizar apenas técnicas de aprendizagem de máquina, testando diferentes classificadores no WEKA [Hall et al. 2009]. Os melhores resultados foram obtidos usando o algoritmo SMO para treinar um classificador Support Vector Machine (SVM). Para preparação de features, utilizamos unigramas, representação de pesos usando TF-IDF e seleção de atributos utilizando a técnica BestFirst. Testamos várias outras preparações (e.g. n-gramas, stopwords, representação binária e frequência, outras funções de seleção), mas os resultados foram inferiores e não são descritos aqui. A Tabela 1 apresenta os resultados usando Precisão, Revocação, Medida-F e a respectiva média ponderada. Foram feitos dois experimentos: com validação cruzada, e com conjuntos de treino e teste distintos. Na abordagem SVM (Cross-validation), mesclamos os datasets 2 e 3, e verificamos o desempenho do classificador utilizando validação cruzada com 10 folds. Já na segunda abordagem, utilizamos o Dataset3 como conjunto de treinamento e o Dataset2 como conjunto de teste. Os resultados são animadores quanto à precisão, mas com baixa revocação para algumas classes, em particular a neutra. O pior desempenho da segunda abordagem é devido a overfiting, já que termos distintos foram usados em cada eleição. Por exemplo, nas eleições de 2010 existiam várias referências às primeiras candidatas à presidência (e.g. guerreira, presidenta ), enquanto que, em 2012, foram evocados feitos passados dos candidatos e os escândalos de seus partidos. Tabela 1. Resultados da polarização das sentenças com Precisão (P), Revocação (R), F-score (F), respectivas médias ponderadas (WP, WR, WF) e Acurácia (A). Abordagem Polaridade P(%) R(%) F(%) WP(%) WR(%) WF(%) A(%) Positivo 86,6 51,9 64,9 SVM (Cross-validation) Neutro 93,7 26,8 41,7 83,9 82,5 79,5 82,46 Negativo 81,6 98,5 89,3 Positivo 76,2 48,4 59,2 SVM (Com conjunto de teste) Neutro 92,5 20,6 33,6 79,3 77,3 73,2 77,31 Negativo 76,8 97,5 85,9 123

8 Os melhores resultados foram obtidos para a classe negativa, já que há um número muito maior de sentenças negativas, quando comparado às demais classes. No futuro, reavaliaremos os resultados com classes mais equilibradas. A sumarização dos resultados descrita na próxima seção utiliza SVM com validação cruzada, pois foi a que apresentou o melhor desempenho Sumarização O modelo visual de sumarização adotado, exemplificado nas Figuras 3 e 4, é semelhante ao apresentado em [Castellanos et al. 2011]. Através dele, é possível visualizar a percepção da população sobre cada candidato em geral, os aspectos analisados em particular, bem como os termos mais comentados em cada tópico. Figura 3. Modelo visual de sumarização de opiniões. A opinião sobre cada candidato é sumarizada usando o número absoluto e percentual de comentários positivos, negativos ou neutros. O mesmo é feito especificamente para cada aspecto. Os resultados mostrados na Figura 3 correspondem à aplicação da abordagem proposta no corpus completo (i.e comentários). Agregamos as opiniões por comentários para representar pessoas emitindo opiniões. O uso de sentenças, como em [Tumitan and Becker 2014], provocaria distorções nos resultados, e.g. um comentário com diversas sentenças negativas teria mais peso que um comentário com uma única sentença positiva. Classificamos um comentário c k C como positivo em relação a uma entidade e j, se contiver mais sentenças positivas sp i P relacionadas a c k que mencionem e j, do que negativas. Caso o número de sentenças negativas seja superior, o comentário é classificado como negativo, se não, ele é neutro. Note-se que o mesmo comentário pode ser contabilizado para mais de um candidato, caso expresse opiniões sobre múltiplos candidatos. Neste caso, são contabilizadas as sentenças referentes a cada candidato. A mesma lógica foi aplicada na sumarização dos comentários por aspecto. Com base na sumarização apresentada na Figura 3, concluímos que os leitores expressam um número substancialmente maior de opiniões negativas, tanto para os candidatos em geral, quanto para seus aspectos. Observamos também que, apesar de existir 124

9 uma grande quantidade de comentários com opinião sobre os candidatos, a proporção em relação ao total de comentários foi relativamente baixa (51%). Além disso, a quantidade de opinião da população sobre os aspectos analisados (saúde e educação) também foi baixa. Isso está relacionado ao fato de que o conteúdo dos comentários apresenta opiniões sobre outros aspectos (e.g. corrupção) ou opiniões diretas aos candidatos. Considerando que dois candidatos haviam sido ex-ministros de educação e saúde, é interessante interpretar os comentários por aspecto. Os leitores têm uma percepção mais positiva sobre educação do ex-ministro da saúde do que o ex-ministro da educação sobre educação. A nuvem de palavras (Figura 4) mostra os termos representativos para cada aspecto, em que o tamanho das palavras está relacionado à frequência de ocorrência de tais termos nos comentários. (a) Saúde (b) Educação Figura 4. Nuvem de palavras para termos representativos de cada aspecto. 4. Conclusões Este artigo apresentou uma proposta de mineração de opinião pública em nível de aspecto para entidades eleitorais, considerando uma fonte de opinião fracamente estruturada. Desenvolvemos um estudo de caso completo, no qual, identificamos, classificamos e sumarizamos a percepção dos leitores de um jornal sobre os aspectos saúde e educação de candidatos, baseado em seus comentários. Em nosso conhecimento, trata-se de um trabalho pioneiro de mineração de opiniões em nível de aspecto fora do contexto de revisões de produtos. No estudo de caso, foi possível observar que apesar de existir uma grande quantidade de opiniões em relação aos candidatos, a quantidade em relação aos aspectos analisados é pequena. Isso se deve ao fato da população apresentar opiniões sobre outras dimensões destes candidatos. Este trabalho apresenta limitações, que serão tratadas em trabalhos futuros, tais como a extensão do estudo de caso para outros aspectos, o uso de corpus balanceado para classificação de opiniões, o tratamento de opiniões irregulares e implícitas e a identificação automática das entidades eleitorais nos comentários. Também é importante a identificação automática de aspectos. Para resolver o problema de uma sentença expressar opiniões sobre vários candidatos (e.g. X é horrível, votarei em Y ), a solução seria polarizar a opinião em nível de cláusulas. Pretendemos também aplicar nossa abordagem para as eleições presidenciais de 2014 e utilizar outros meios além de comentários de notícias, tais como posts em redes sociais. Referências Balahur, A., Steinberger, R., Kabadjov, M., Zavarella, V., Van Der Goot, E., Halkia, M., Pouliquen, B., and Belyaeva, J. (2010). Sentiment analysis in the news. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC), volume 10, page

10 Castellanos, M., Dayal, U., Hsu, M., Ghosh, R., Dekhil, M., Lu, Y., Zhang, L., and Schreiman, M. (2011). Lci: a social channel analysis platform for live customer intelligence. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, SIGMOD 11, pages , New York, NY, USA. ACM. Guo, H., Zhu, H., Guo, Z., Zhang, X., and Su, Z. (2009). Product feature categorization with multilevel latent semantic association. In Proceedings of the 18th ACM Conference on Information and Knowledge Management, CIKM 09, pages , New York, NY, USA. ACM. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009). The weka data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1): Hu, M. and Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 04, pages , New York, NY, USA. ACM. Liu, B. (2012). Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers. Liu, Q., Gao, Z., Liu, B., and Zhang, Y. (2013). A logic programming approach to aspect extraction in opinion mining. In Proceedings of the 2013 IEEE/WIC/ACM International Conferences on Web Intelligence, pages O Connor, B., Balasubramanyan, R., Routledge, B. R., and Smith, N. A. (2010). From tweets to polls: Linking text sentiment to public opinion time series. ICWSM, 11: Pang, B. and Lee, L. (2008). Opinion mining and sentiment analysis. Found. Trends Inf. Retr., 2(1-2): Qiu, G., Liu, B., Bu, J., and Chen, C. (2011). Opinion word expansion and target extraction through double propagation. Computational Linguistics, 37(1):9 27. Sapiras, L. and Becker, K. (2014). Identificação de aspectos de candidatos eleitorais em comentários de notícias. In Anais do III Brazilian Workshop on Social Network Analysis and Mining - BraSNAM Tsytsarau, M. and Palpanas, T. (2012). Survey on mining subjective data on the web. Data Min. Knowl. Discov., 24(3): Tumasjan, A., Sprenger, T. O., Sandner, P. G., and Welpe, I. M. (2010). Predicting elections with twitter: What 140 characters reveal about political sentiment. In ICWSM 10. Tumitan, D. and Becker, K. (2013). Tracking Sentiment Evolution on User-Generated Content: A Case Study on the Brazilian Political Scene. In Anais do XXVIII Simpósion Brasileiro de Banco de Dados, pages Tumitan, D. and Becker, K. (2014). Sentiment-based features for predicting election polls: a case study on the brazilian scenario. In Proceedings of the 2014 IEEE/WIC/ACM International Conferences on Web Intelligence, page 8p. IEEE Computer Society. 126

Mineração de Opinião / Análise de Sentimentos

Mineração de Opinião / Análise de Sentimentos Mineração de Opinião / Análise de Sentimentos Carlos Augusto S. Rodrigues Leonardo Lino Vieira Leonardo Malagoli Níkolas Timmermann Introdução É evidente o crescimento da quantidade de informação disponível

Leia mais

Mineração de emoções em textos multilíngues usando um corpus paralelo

Mineração de emoções em textos multilíngues usando um corpus paralelo paper:79 Mineração de emoções em textos multilíngues usando um corpus paralelo Aline Graciela Lermen dos Santos, Karin Becker, Viviane Moreira Instituto de Informática Universidade Federal do Rio Grande

Leia mais

Laboratório de Mídias Sociais

Laboratório de Mídias Sociais Laboratório de Mídias Sociais Aula 02 Análise Textual de Mídias Sociais parte I Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Universidade Federal de Goiás O que é Análise Textual? Análise

Leia mais

Revisando o Método de Análise da Semântica Latente para Propósitos de Mineração de Opiniões sobre Produtos

Revisando o Método de Análise da Semântica Latente para Propósitos de Mineração de Opiniões sobre Produtos Revisando o Método de Análise da Semântica Latente para Propósitos de Mineração de Opiniões sobre Produtos Wilson Pires Gavião Neto 1, Sidnei Renato Silveira 1 1 Sistemas de Informação: Ciência e Tecnologia

Leia mais

Análise de Sentimentos e Mineração de Links em uma Rede de Co-ocorrência de Hashtags

Análise de Sentimentos e Mineração de Links em uma Rede de Co-ocorrência de Hashtags Universidade Federal de Pernambuco Graduação em Ciência da Computação 2012.2 Análise de Sentimentos e Mineração de Links em uma Rede de Co-ocorrência de Hashtags Proposta de Trabalho de Graduação Aluno:

Leia mais

Uma Análise de Comentários Sobre Produtos e Empresas, Usando o Corpus do Reclame Aqui

Uma Análise de Comentários Sobre Produtos e Empresas, Usando o Corpus do Reclame Aqui Uma Análise de Comentários Sobre Produtos e Empresas, Usando o Corpus do Reclame Aqui Roney L. de S. Santos 1, João P. A. Vieira 1, Jardeson L. N. Barbosa 1, Carlos A. de Sá 1, Raimundo S. Moura 1 1 Departamento

Leia mais

PROCESSAMENTO TEXTUAL EM PÁGINAS DA WEB

PROCESSAMENTO TEXTUAL EM PÁGINAS DA WEB PROCESSAMENTO TEXTUAL EM PÁGINAS DA WEB Aluno: Pedro Lazéra Cardoso Orientador: Eduardo Sany Laber Antecedentes Na primeira fase da Iniciação Científica, o aluno deu continuidade ao projeto que estava

Leia mais

Descoberta de Domínio Conceitual de Páginas Web

Descoberta de Domínio Conceitual de Páginas Web paper:25 Descoberta de Domínio Conceitual de Páginas Web Aluno: Gleidson Antônio Cardoso da Silva gleidson.silva@posgrad.ufsc.br Orientadora: Carina Friedrich Dorneles dorneles@inf.ufsc.br Nível: Mestrado

Leia mais

Organizaçãoe Recuperação de Informação GSI521. Prof. Rodrigo Sanches Miani FACOM/UFU

Organizaçãoe Recuperação de Informação GSI521. Prof. Rodrigo Sanches Miani FACOM/UFU Organizaçãoe Recuperação de Informação GSI521 Prof. Rodrigo Sanches Miani FACOM/UFU Introdução Organização e Recuperação de Informação(GSI521) Tópicos Recuperação de informação (RI); Breve histórico; O

Leia mais

Análise de Web Reviews Sobre Produtos ou Serviços Usando um Léxico de Sentimentos

Análise de Web Reviews Sobre Produtos ou Serviços Usando um Léxico de Sentimentos Análise de Web Reviews Sobre Produtos ou Serviços Usando um Léxico de Sentimentos João Paulo A. Vieira 1, Jardeson L. N. Barbosa¹, Roney L. de S. Santos¹, Carlos A. de Sá¹, Raimundo S. Moura 1 1 Departamento

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS

UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS UNIVERSIDADE FEDERAL DE SANTA CATARINA GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO DEPARTAMENTO DE INFORMÁTICA E ESTATÍSTICA DATA MINING EM VÍDEOS VINICIUS DA SILVEIRA SEGALIN FLORIANÓPOLIS OUTUBRO/2013 Sumário

Leia mais

Como monitorar seus concorrentes e fazer pesquisa de mercado nas redes sociais. Por Gustavo Valvasori

Como monitorar seus concorrentes e fazer pesquisa de mercado nas redes sociais. Por Gustavo Valvasori Como monitorar seus concorrentes e fazer pesquisa de mercado nas redes sociais Por Gustavo Valvasori Índice 1. Introdução 2. Por que monitorar? 3. O que monitorar? 4. Como dialogar 5. Fluxo de comunicação

Leia mais

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka

Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka Extração de Árvores de Decisão com a Ferramenta de Data Mining Weka 1 Introdução A mineração de dados (data mining) pode ser definida como o processo automático de descoberta de conhecimento em bases de

Leia mais

Classes Funcionais 21

Classes Funcionais 21 Classes Funcionais 21 3 Classes Funcionais Em todo trabalho de classificação funcional é necessário determinar quais serão as classes funcionais utilizadas. Esta divisão não se propõe a ser extensiva,

Leia mais

Monitoramento de Redes Sociais

Monitoramento de Redes Sociais Monitoramento de Redes Sociais O QlikBrand é uma ferramenta profissional para monitoramento de mídias sociais e o primeiro "Social Mídia Discovery" com Qlikview. Localiza menções nas mídias sociais, interage

Leia mais

5 Extraindo listas de produtos em sites de comércio eletrônico

5 Extraindo listas de produtos em sites de comércio eletrônico 5 Extraindo listas de produtos em sites de comércio eletrônico Existem diversos trabalhos direcionadas à detecção de listas e tabelas na literatura como (Liu et. al., 2003, Tengli et. al., 2004, Krüpl

Leia mais

3 Metodologia de Previsão de Padrões de Falha

3 Metodologia de Previsão de Padrões de Falha 3 Metodologia de Previsão de Padrões de Falha Antes da ocorrência de uma falha em um equipamento, ele entra em um regime de operação diferente do regime nominal, como descrito em [8-11]. Para detectar

Leia mais

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br MINERAÇÃO DE DADOS APLICADA Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br Processo Weka uma Ferramenta Livre para Data Mining O que é Weka? Weka é um Software livre do tipo open source para

Leia mais

Data, Text and Web Mining

Data, Text and Web Mining Data, Text and Web Mining Fabrício J. Barth TerraForum Consultores Junho de 2010 Objetivo Apresentar a importância do tema, os conceitos relacionados e alguns exemplos de aplicações. Data, Text and Web

Leia mais

Prof. Msc. Paulo Muniz de Ávila

Prof. Msc. Paulo Muniz de Ávila Prof. Msc. Paulo Muniz de Ávila O que é Data Mining? Mineração de dados (descoberta de conhecimento em bases de dados): Extração de informação interessante (não-trivial, implícita, previamente desconhecida

Leia mais

RECUPERAÇÃO DE DOCUMENTOS TEXTO USANDO MODELOS PROBABILISTICOS ESTENDIDOS

RECUPERAÇÃO DE DOCUMENTOS TEXTO USANDO MODELOS PROBABILISTICOS ESTENDIDOS ISBN 978-85-61091-05-7 Encontro Internacional de Produção Científica Cesumar 27 a 30 de outubro de 2009 RECUPERAÇÃO DE DOCUMENTOS TEXTO USANDO MODELOS PROBABILISTICOS ESTENDIDOS Marcello Erick Bonfim 1

Leia mais

Nathalie Portugal Vargas

Nathalie Portugal Vargas Nathalie Portugal Vargas 1 Introdução Trabalhos Relacionados Recuperação da Informação com redes ART1 Mineração de Dados com Redes SOM RNA na extração da Informação Filtragem de Informação com Redes Hopfield

Leia mais

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto Estudos Comparativos Recentes - Behavior Scoring Roteiro Objetivo Critérios de Avaliação

Leia mais

Web Data Mining com R

Web Data Mining com R Web Data Mining com R Fabrício J. Barth fabricio.barth@gmail.com VAGAS Tecnologia e Faculdade BandTec Maio de 2014 Objetivo O objetivo desta palestra é apresentar conceitos sobre Web Data Mining, fluxo

Leia mais

Administração de dados - Conceitos, técnicas, ferramentas e aplicações de Data Mining para gerar conhecimento a partir de bases de dados

Administração de dados - Conceitos, técnicas, ferramentas e aplicações de Data Mining para gerar conhecimento a partir de bases de dados Universidade Federal de Pernambuco Graduação em Ciência da Computação Centro de Informática 2006.2 Administração de dados - Conceitos, técnicas, ferramentas e aplicações de Data Mining para gerar conhecimento

Leia mais

2 Conceitos Gerais de Classificação de Documentos na Web

2 Conceitos Gerais de Classificação de Documentos na Web Conceitos Gerais de Classificação de Documentos na Web 13 2 Conceitos Gerais de Classificação de Documentos na Web 2.1. Páginas, Sites e Outras Terminologias É importante distinguir uma página de um site.

Leia mais

SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI LEARNING SYSTEMS FOR IDENTIFICATION OF PEQUI FRUIT SEEDS NUMBER

SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI LEARNING SYSTEMS FOR IDENTIFICATION OF PEQUI FRUIT SEEDS NUMBER SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI Fernando Luiz de Oliveira 1 Thereza Patrícia. P. Padilha 1 Conceição A. Previero 2 Leandro Maciel Almeida 1 RESUMO O processo

Leia mais

Recuperação de Imagens na Web Baseada em Informações Textuais

Recuperação de Imagens na Web Baseada em Informações Textuais Recuperação de Imagens na Web Baseada em Informações Textuais André Ribeiro da Silva Mário Celso Candian Lobato Universidade Federal de Minas Gerais Departamento de Ciência da Computação {arsilva,mlobato}@dcc.ufmg.br

Leia mais

PROJETO DE REDES www.projetoderedes.com.br

PROJETO DE REDES www.projetoderedes.com.br PROJETO DE REDES www.projetoderedes.com.br Centro Universitário de Volta Redonda - UniFOA Curso Tecnológico de Redes de Computadores 5º período Disciplina: Tecnologia WEB Professor: José Maurício S. Pinheiro

Leia mais

OBSERVATÓRIO DE GESTÃO DA INFORMAÇÃO. Palavras-chave: Gestão da Informação. Gestão do conhecimento. OGI. Google alertas. Biblioteconomia.

OBSERVATÓRIO DE GESTÃO DA INFORMAÇÃO. Palavras-chave: Gestão da Informação. Gestão do conhecimento. OGI. Google alertas. Biblioteconomia. XIV Encontro Regional dos Estudantes de Biblioteconomia, Documentação, Ciência da Informação e Gestão da Informação - Região Sul - Florianópolis - 28 de abril a 01 de maio de 2012 RESUMO OBSERVATÓRIO DE

Leia mais

Reconhecimento de entidades nomeadas em textos em português do Brasil no domínio do e-commerce

Reconhecimento de entidades nomeadas em textos em português do Brasil no domínio do e-commerce Reconhecimento de entidades nomeadas em textos em português do Brasil no domínio do e-commerce Lucas Hochleitner da Silva 1,2, Helena de Medeiros Caseli 1 1 Departamento de Computação Universidade Federal

Leia mais

MARACATU. A component search tool. Especificação, Projeto e Implementação de uma Arquitetura para um Engenho de Busca de Componentes

MARACATU. A component search tool. Especificação, Projeto e Implementação de uma Arquitetura para um Engenho de Busca de Componentes MARACATU A component search tool Especificação, Projeto e Implementação de uma Arquitetura para um Engenho de Busca de Componentes Vinicius Cardoso Garcia July 29, 2005 Agenda Introdução Especificação

Leia mais

Organizaçãoe Recuperaçãode Informação GSI521. Prof. Dr. Rodrigo Sanches Miani FACOM/UFU

Organizaçãoe Recuperaçãode Informação GSI521. Prof. Dr. Rodrigo Sanches Miani FACOM/UFU Organizaçãoe Recuperaçãode Informação GSI521 Prof. Dr. Rodrigo Sanches Miani FACOM/UFU Aula anterior Organização e Recuperação de Informação(GSI521) Modelo vetorial- Definição Para o modelo vetorial, o

Leia mais

Introdução. Capítulo 1

Introdução. Capítulo 1 Capítulo 1 Introdução Em computação, muitos problemas são resolvidos por meio da escrita de um algoritmo que especifica, passo a passo, como resolver um problema. No entanto, não é fácil escrever um programa

Leia mais

7x1 PT: um Corpus extraído do Twitter para Análise de Sentimentos em Língua Portuguesa

7x1 PT: um Corpus extraído do Twitter para Análise de Sentimentos em Língua Portuguesa Proceedings of Symposium in Information and Human Language Technology. Natal, RN, Brazil, November 4 7, 2015. c 2015 Sociedade Brasileira de Computação. 7x1 PT: um Corpus extraído do Twitter para Análise

Leia mais

UTILIZANDO O SOFTWARE WEKA

UTILIZANDO O SOFTWARE WEKA UTILIZANDO O SOFTWARE WEKA O que é 2 Weka: software livre para mineração de dados Desenvolvido por um grupo de pesquisadores Universidade de Waikato, Nova Zelândia Também é um pássaro típico da Nova Zelândia

Leia mais

Aula 02: Conceitos Fundamentais

Aula 02: Conceitos Fundamentais Aula 02: Conceitos Fundamentais Profa. Ms. Rosângela da Silva Nunes 1 de 26 Roteiro 1. Por que mineração de dados 2. O que é Mineração de dados 3. Processo 4. Que tipo de dados podem ser minerados 5. Que

Leia mais

Pesquisa Eleitoral em Redes Sociais: Inclusão da Análise de Novas Dimensões

Pesquisa Eleitoral em Redes Sociais: Inclusão da Análise de Novas Dimensões Pesquisa Eleitoral em Redes Sociais: Inclusão da Análise de Novas Dimensões Renato Miranda Filho 1,2, Jussara M. Almeida 1, Gisele L. Pappa 1 1 Departamento de Ciência da Computação Universidade Federal

Leia mais

Categorização de Textos baseada em Conceitos

Categorização de Textos baseada em Conceitos Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Informática Programa de Pós-Graduação em Ciência da Computação Encontro de PLN Categorização de Textos baseada em Conceitos Silvia Maria

Leia mais

Extração Automática de Palavras-chave de Textos da Língua Portuguesa

Extração Automática de Palavras-chave de Textos da Língua Portuguesa Extração Automática de Palavras-chave de Textos da Língua Portuguesa Maria Abadia Lacerda Dias, Marcelo de Gomensoro Malheiros Centro Universitário UNIVATES Lajeado RS Brasil {mald,mgm}@univates.br Abstract.

Leia mais

MINERAÇÃO DE OPINIÕES DE USUÁRIOS NA BUSCA DE CONHECIMENTO RESUMO

MINERAÇÃO DE OPINIÕES DE USUÁRIOS NA BUSCA DE CONHECIMENTO RESUMO 84 MINERAÇÃO DE OPINIÕES DE USUÁRIOS NA BUSCA DE CONHECIMENTO Rafael Guedes Derkian Afonso Lúcia Helena de Magalhães RESUMO Este trabalho visa utilizar as técnicas de Web Mining para mineração de opiniões

Leia mais

Aprendizado de classificadores das ementas da Jurisprudência do Tribunal Regional do Trabalho da 2ª. Região - SP

Aprendizado de classificadores das ementas da Jurisprudência do Tribunal Regional do Trabalho da 2ª. Região - SP Aprendizado de classificadores das ementas da Jurisprudência do Tribunal Regional do Trabalho da 2ª. Região - SP Thiago Ferauche, Maurício Amaral de Almeida Laboratório de Pesquisa em Ciência de Serviços

Leia mais

Fabrício J. Barth. Apontador http://www.apontador.com.br http://www.apontador.com.br/institucional/ fabricio.barth@lbslocal.com

Fabrício J. Barth. Apontador http://www.apontador.com.br http://www.apontador.com.br/institucional/ fabricio.barth@lbslocal.com Uma Introdução à Mineração de Informações Fabrício J. Barth Apontador http://www.apontador.com.br http://www.apontador.com.br/institucional/ fabricio.barth@lbslocal.com Outubro de 2010 Objetivo Apresentar

Leia mais

MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO

MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO Fernanda Delizete Madeira 1 ; Aracele Garcia de Oliveira Fassbinder 2 INTRODUÇÃO Data

Leia mais

Mídias Sociais do jeito mais fácil. Guia do Usuário

Mídias Sociais do jeito mais fácil. Guia do Usuário Mídias Sociais do jeito mais fácil Guia do Usuário Índice 3. Buscas 4. Funcionalidades 5. Monitor 6. Relacionamento 7. Publicação 8. Estatísticas 9. Tutorial Cadastrando uma busca Classificando o conteúdo

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

CLIPPING. Thiago A. S. Pardo

CLIPPING. Thiago A. S. Pardo CLIPPING Thiago A. S. Pardo 19/10/2012 DEFINIÇÕES DEFINIÇÃO Verbo clip, do inglês cortar/recortar Seleção de notícias e artigos retirados de jornais, revistas, sites e demais veículos de imprensa, como

Leia mais

Luiz Henrique Marino Cerqueira Faculdade de Engenharia de Computação CEATEC luiz.hmc@puccamp.edu.br

Luiz Henrique Marino Cerqueira Faculdade de Engenharia de Computação CEATEC luiz.hmc@puccamp.edu.br AVALIAÇÃO COMPARATIVA DE ALGORITMOS PARA SISTEMAS DE RECOMENDAÇÃO EM MÚLTIPLOS DOMÍNOS: PREVISÃO DO DESEMPENHO DE ESTUDANTES A PARTIR DE SUA INTERAÇÃO COM UM SISTEMA TUTOR. Luiz Henrique Marino Cerqueira

Leia mais

Elementos que influenciam a escolha da medida de eficácia ideal, revocação ou precisão em um Sistema de Recuperação de Informação

Elementos que influenciam a escolha da medida de eficácia ideal, revocação ou precisão em um Sistema de Recuperação de Informação Elementos que influenciam a escolha da medida de eficácia ideal, revocação ou precisão em um Sistema de Recuperação de Informação Disciplina: Fundamentos da Organização da Informação Profª: Lilian Alvares

Leia mais

TripTag: Ferramenta de planejamento de viagens baseada em experiências de usuários de redes sociais

TripTag: Ferramenta de planejamento de viagens baseada em experiências de usuários de redes sociais TripTag: Ferramenta de planejamento de viagens baseada em experiências de usuários de redes sociais Antônio H. G. Leite, Fabrício Benevenuto, Mirella M. Moro 1 1 Departamento de Ciência da Computação Universidade

Leia mais

Sistema de mineração de dados para descobertas de regras e padrões em dados médicos

Sistema de mineração de dados para descobertas de regras e padrões em dados médicos Sistema de mineração de dados para descobertas de regras e padrões em dados médicos Pollyanna Carolina BARBOSA¹; Thiago MAGELA² 1Aluna do Curso Superior Tecnólogo em Análise e Desenvolvimento de Sistemas

Leia mais

Desenvolvimento de um sistema de pergunta e resposta baseado em corpus

Desenvolvimento de um sistema de pergunta e resposta baseado em corpus Desenvolvimento de um sistema de pergunta e resposta baseado em corpus Adriano Jorge Soares Arrigo e-mail: arrigo.adriano@gmail.com Elvio Gilberto Silva e-mail: elvio.silva@usc.br Henrique Pachioni Martins

Leia mais

Requisitos de Ferramentas Especializadas de Gestão de Configuração de Software

Requisitos de Ferramentas Especializadas de Gestão de Configuração de Software Requisitos de Ferramentas Especializadas de Gestão de Configuração de Software Ricardo Terra 1 1 Departamento de Ciência da Computação Universidade Federal de Minas Gerais (UFMG) Campus da Pampulha 31.270-010

Leia mais

Resultados Experimentais

Resultados Experimentais Capítulo 6 Resultados Experimentais Este capítulo é dedicado às avaliações experimentais do sistema CBIR. Os experimentos aqui realizados têm três objetivos principais: comparar os nossos resultados com

Leia mais

RECUPERANDO INFORMAÇÃO SOBRE TEXTOS PUBLICADOS NO TWITTER

RECUPERANDO INFORMAÇÃO SOBRE TEXTOS PUBLICADOS NO TWITTER RECUPERANDO INFORMAÇÃO SOBRE TEXTOS PUBLICADOS NO TWITTER Autores: Miguel Airton FRANTZ 1 ;; Angelo Augusto FROZZA 2, Reginaldo Rubens da SILVA 2. Identificação autores: 1 Bolsista de Iniciação Científica

Leia mais

Estudo de um Sistema de Gêneros em um Curso Universitário

Estudo de um Sistema de Gêneros em um Curso Universitário Departamento de Letras Estudo de um Sistema de Gêneros em um Curso Universitário Aluna: Esther Ruth Oliveira da Silva Orientadora: Profª. Bárbara Jane Wilcox Hemais Introdução O presente projeto se insere

Leia mais

O USO INTELIGENTE DO COMPUTADOR NA EDUCAÇÃO José A. Valente NIED - UNICAMP

O USO INTELIGENTE DO COMPUTADOR NA EDUCAÇÃO José A. Valente NIED - UNICAMP O USO INTELIGENTE DO COMPUTADOR NA EDUCAÇÃO José A. Valente NIED - UNICAMP INTRODUÇÃO O que seria a utilização do computador na educação de maneira inteligente? Seria fazer aquilo que o professor faz tradicionalmente

Leia mais

Como usar o monitoramento de mídias sociais numa campanha política

Como usar o monitoramento de mídias sociais numa campanha política Como usar o monitoramento de mídias sociais numa campanha política No Brasil, há poucas experiências conhecidas de uso de ferramentas de monitoramento de mídias sociais em campanhas políticas. Uma delas

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ UFPR Bacharelado em Ciência da Computação

UNIVERSIDADE FEDERAL DO PARANÁ UFPR Bacharelado em Ciência da Computação SOFT DISCIPLINA: Engenharia de software AULA NÚMERO: 08 DATA: / / PROFESSOR: Andrey APRESENTAÇÃO O objetivo desta aula é apresentar e discutir conceitos relacionados a modelos e especificações. Nesta aula

Leia mais

Redes Sociais como Fonte de Informação para Cidades Inteligentes

Redes Sociais como Fonte de Informação para Cidades Inteligentes Redes Sociais como Fonte de Informação para Cidades Inteligentes Mickael R. C. Figueredo 1, Nélio Cacho 2, Carlos A. Prolo 2 1 Escola de Ciência e Tecnologia Universidade Federal do Rio Grande do Norte

Leia mais

Uso de Informações Lingüísticas na etapa de pré-processamento em Mineração de Textos

Uso de Informações Lingüísticas na etapa de pré-processamento em Mineração de Textos Uso de Informações Lingüísticas na etapa de pré-processamento em Mineração de Textos Cassiana Fagundes da Silva, Fernando Santos Osório, Renata Vieira 1 1 PIPCA Universidade do Vale do Rio dos Sinos (UNISINOS)

Leia mais

Se observarmos nos diferentes livros. Planejamento de Testes a partir de Casos de Uso

Se observarmos nos diferentes livros. Planejamento de Testes a partir de Casos de Uso Planejamento de Testes a partir de Casos de Uso Arilo Cláudio Dias Neto ariloclaudio@gmail.com É Bacharel em Ciência da Computação formado na Universidade Federal do Amazonas, Mestre em Engenharia de Sistemas

Leia mais

Padronização de Processos: BI e KDD

Padronização de Processos: BI e KDD 47 Padronização de Processos: BI e KDD Nara Martini Bigolin Departamento da Tecnologia da Informação -Universidade Federal de Santa Maria 98400-000 Frederico Westphalen RS Brazil nara.bigolin@ufsm.br Abstract:

Leia mais

Web Data mining com R: aprendizagem de máquina

Web Data mining com R: aprendizagem de máquina Web Data mining com R: aprendizagem de máquina Fabrício Jailson Barth Faculdade BandTec e VAGAS Tecnologia Junho de 2013 Sumário O que é Aprendizagem de Máquina? Hierarquia de aprendizado. Exemplos de

Leia mais

Observatório da Web: Uma Plataforma para Monitoramento de Eventos em Tempo Real. Gisele L. Pappa glpappa@dcc.ufmg.br Outubro/2013

Observatório da Web: Uma Plataforma para Monitoramento de Eventos em Tempo Real. Gisele L. Pappa glpappa@dcc.ufmg.br Outubro/2013 Observatório da Web: Uma Plataforma para Monitoramento de Eventos em Tempo Real Gisele L. Pappa glpappa@dcc.ufmg.br Outubro/2013 Observatório da Web Transforma, em tempo real, grandes volumes de dados

Leia mais

Hierarquia de modelos e Aprendizagem de Máquina

Hierarquia de modelos e Aprendizagem de Máquina Hierarquia de modelos e Aprendizagem de Máquina Fabrício Jailson Barth BandTec Maio de 2015 Sumário Introdução: hierarquia de modelos e aprendizagem de máquina. O que é Aprendizagem de Máquina? Hierarquia

Leia mais

Investimento Directo Estrangeiro e Salários em Portugal Pedro Silva Martins*

Investimento Directo Estrangeiro e Salários em Portugal Pedro Silva Martins* Investimento Directo Estrangeiro e Salários em Portugal Pedro Silva Martins* Os fluxos de Investimento Directo Estrangeiro (IDE) para Portugal tornaram-se uma componente importante da economia portuguesa

Leia mais

Predição de Novas Coautorias na Rede Social Acadêmica dos Programas Brasileiros de Pós-Graduação em Ciência da

Predição de Novas Coautorias na Rede Social Acadêmica dos Programas Brasileiros de Pós-Graduação em Ciência da Predição de Novas Coautorias na Rede Social Acadêmica dos Programas Brasileiros de Pós-Graduação em Ciência da Computação Luciano A. Digiampietri 1, William T. Maruyama 1 1 Escola de Artes, Ciências e

Leia mais

Um processo para construção de software mais transparente

Um processo para construção de software mais transparente Um processo para construção de software mais transparente Eduardo Almentero 1, and Julio Cesar Sampaio do Prado Leite 1 1 Pontifícia Universidade Católica do Rio de Janeiro, PUC - Rio, Brasil {ealmentero,

Leia mais

Paralelização do algoritmo SPRINT usando MyGrid

Paralelização do algoritmo SPRINT usando MyGrid Paralelização do algoritmo SPRINT usando MyGrid Juliana Carvalho, Ricardo Rebouças e Vasco Furtado Universidade de Fortaleza UNIFOR juliana@edu.unifor.br ricardo@sspds.ce.gov.br vasco@unifor.br 1. Introdução

Leia mais

MESTRADO EM PESQUISA DE MERCADOS 2006 2007

MESTRADO EM PESQUISA DE MERCADOS 2006 2007 MESTRADO EM PESQUISA DE MERCADOS 2006 2007 PROGRAMA DAS DISCIPLINAS 1 1º trimestre PESQUISA DE MERCADOS Objectivos Pretende-se que os alunos: (a) adquiram os conceitos e semântica próprios do tema, (b)

Leia mais

tipos de métodos, técnicas de inteligência artificial e técnicas de otimização. Por fim, concluise com as considerações finais.

tipos de métodos, técnicas de inteligência artificial e técnicas de otimização. Por fim, concluise com as considerações finais. 1. Introdução A previsão de vendas é fundamental para as organizações uma vez que permite melhorar o planejamento e a tomada de decisão sobre o futuro da empresa. Contudo toda previsão carrega consigo

Leia mais

Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade

Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade Carlos Eduardo R. de Mello, Geraldo Zimbrão da Silva, Jano M. de Souza Programa de Engenharia de Sistemas e Computação Universidade

Leia mais

Avaliação de técnicas de seleção de quadros-chave na recuperação de informação por conteúdo visual

Avaliação de técnicas de seleção de quadros-chave na recuperação de informação por conteúdo visual Avaliação de técnicas de seleção de quadros-chave na recuperação de informação por conteúdo visual Shênia Salvador de Pinho, Kleber J. F. Souza Instituto de Ciências Exatas e Informática PUC Minas Guanhães,

Leia mais

SEGMENTAÇÃO DE IMAGENS EM PLACAS AUTOMOTIVAS

SEGMENTAÇÃO DE IMAGENS EM PLACAS AUTOMOTIVAS SEGMENTAÇÃO DE IMAGENS EM PLACAS AUTOMOTIVAS André Zuconelli 1 ; Manassés Ribeiro 2 1. Aluno do Curso Técnico em Informática, turma 2010, Instituto Federal Catarinense, Câmpus Videira, andre_zuconelli@hotmail.com

Leia mais

Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining

Pós-Graduação Lato Sensu Especialização em Análise de Dados e Data Mining Pós-Graduação "Lato Sensu" Especialização em Análise de Dados e Data Mining Inscrições Abertas Início das Aulas: 24/03/2015 Dias e horários das aulas: Terça-Feira 19h00 às 22h45 Semanal Quinta-Feira 19h00

Leia mais

25/05/2015. Relevance Feedback. Expansão de Consulta. Relevance Feedback

25/05/2015. Relevance Feedback. Expansão de Consulta. Relevance Feedback Relevance Feedback Expansão de Consulta Relevance Feedback 1 Relevance Feedback Baeza-Yates; Ribeiro-Neto, (2011, cap 5) distinguem dois métodos: Explicit Relevance Feedback a informação para a reformulação

Leia mais

Otimização de Recuperação de Informação usando Algoritmos Genéticos

Otimização de Recuperação de Informação usando Algoritmos Genéticos Otimização de Recuperação de Informação usando Algoritmos Genéticos Neide de Oliveira Gomes, M. Sc., nog@inpi.gov.br Prof. Marco Aurélio C. Pacheco, PhD Programa de Doutorado na área de Métodos de Apoio

Leia mais

ANÁLISE DA CONSERVAÇÃO PÓS-COLHEITA DA ALFACE (Lactuca Sativa, L) UTILIZANDO O SISTEMA DE APOIO À TOMADA DE DECISÃO BKD

ANÁLISE DA CONSERVAÇÃO PÓS-COLHEITA DA ALFACE (Lactuca Sativa, L) UTILIZANDO O SISTEMA DE APOIO À TOMADA DE DECISÃO BKD ANÁLISE DA CONSERVAÇÃO PÓS-COLHEITA DA ALFACE (Lactuca Sativa, L) UTILIZANDO O SISTEMA DE APOIO À TOMADA DE DECISÃO BKD RESUMO Thereza P. P. Padilha Fabiano Fagundes Conceição Previero Laboratório de Solos

Leia mais

Plusoft Rua Nebraska, 443, 5º Andar, Brooklin São Paulo (SP) F.: 55 11 5091-2777 www.plusoft.com.br - @Plusoft -

Plusoft Rua Nebraska, 443, 5º Andar, Brooklin São Paulo (SP) F.: 55 11 5091-2777 www.plusoft.com.br - @Plusoft - Potencializando resultados com o SOCIAL CRM O NOVO MOMENTO DO RELACIONAMENTO COM CLIENTE A mídia social revolucionou os meios e o modelo de comunicação. Entre muitas transformações, as redes sociais são

Leia mais

CÁLCULO DO TAMANHO DA AMOSTRA PARA UMA PESQUISA ELEITORAL. Raquel Oliveira dos Santos, Luis Felipe Dias Lopes

CÁLCULO DO TAMANHO DA AMOSTRA PARA UMA PESQUISA ELEITORAL. Raquel Oliveira dos Santos, Luis Felipe Dias Lopes CÁLCULO DO TAMANHO DA AMOSTRA PARA UMA PESQUISA ELEITORAL Raquel Oliveira dos Santos, Luis Felipe Dias Lopes Programa de Pós-Graduação em Estatística e Modelagem Quantitativa CCNE UFSM, Santa Maria RS

Leia mais

Perfil de Produção Bibliográfica dos Programas Brasileiros de Pós-Graduação em Ciência da Computação

Perfil de Produção Bibliográfica dos Programas Brasileiros de Pós-Graduação em Ciência da Computação Perfil de Produção Bibliográfica dos Programas Brasileiros de Pós-Graduação em Ciência da Computação Jesús P. Mena-Chalco 1, Luciano A. Digiampietri 2, Leonardo B. Oliveira 3 1 Centro de Matemática, Computação

Leia mais

Monitoramento de Marcas no Twitter: Instituições de Ensino Superior Privadas de Salvador. Monitoramento de Marcas no Twitter: Inst.

Monitoramento de Marcas no Twitter: Instituições de Ensino Superior Privadas de Salvador. Monitoramento de Marcas no Twitter: Inst. Monitoramento de Marcas no Twitter: Instituições de Ensino Superior Privadas de Salvador Introdução A web contemporânea nos revela aspectos importantes no comportamento de seus usuários: produção e compartilhamento

Leia mais

Monitoramento de Posts Sobre Empresas de E-Commerce em Redes Sociais Utilizando Análise de Sentimentos

Monitoramento de Posts Sobre Empresas de E-Commerce em Redes Sociais Utilizando Análise de Sentimentos Monitoramento de Posts Sobre Empresas de E-Commerce em Redes Sociais Utilizando Análise de Sentimentos Thales R. Evangelista 1, Thereza P. Pereira Padilha 1 1 Curso de Ciência da Computação Universidade

Leia mais

Data mining na descoberta de padrões de sintomas com foco no auxílio ao diagnóstico médico

Data mining na descoberta de padrões de sintomas com foco no auxílio ao diagnóstico médico Data mining na descoberta de padrões de sintomas com foco no auxílio ao diagnóstico médico Alexander Rivas de Melo Junior 1, Márcio Palheta Piedade 1 1 Ciência da Computação Centro de Ensino Superior FUCAPI

Leia mais

FERRAMENTA PARA CRIAÇÃO DE BASES DE CONHECIMENTO NA FORMA DE ONTOLOGIA OWL A PARTIR DE DADOS NÃO ESTRUTURADOS

FERRAMENTA PARA CRIAÇÃO DE BASES DE CONHECIMENTO NA FORMA DE ONTOLOGIA OWL A PARTIR DE DADOS NÃO ESTRUTURADOS FERRAMENTA PARA CRIAÇÃO DE BASES DE CONHECIMENTO NA FORMA DE ONTOLOGIA OWL A PARTIR DE DADOS NÃO ESTRUTURADOS Aluno: Allan Renato Sabino Orientador: Roberto Heinzle Roteiro Introdução; Objetivos; Fundamentação

Leia mais

Extração de Requisitos

Extração de Requisitos Extração de Requisitos Extração de requisitos é o processo de transformação das idéias que estão na mente dos usuários (a entrada) em um documento formal (saída). Pode se entender também como o processo

Leia mais

Técnicas de Seleção de Atributos utilizando Paradigmas de Algoritmos Disciplina de Projeto e Análise de Algoritmos

Técnicas de Seleção de Atributos utilizando Paradigmas de Algoritmos Disciplina de Projeto e Análise de Algoritmos Técnicas de Seleção de Atributos utilizando Paradigmas de Algoritmos Disciplina de Projeto e Análise de Algoritmos Theo Silva Lins, Luiz Henrique de Campos Merschmann PPGCC - Programa de Pós-Graduação

Leia mais

35 Reports úteis. para Monitoramento de. Redes Sociais

35 Reports úteis. para Monitoramento de. Redes Sociais 35 Reports úteis para Monitoramento de Redes Sociais Fevereiro/2014 1 35 Reports Úteis O principal desafio da E.Life ao lançar o Buzzmonitor era criar uma solução de Business Intelligence e não apenas

Leia mais

GARANTIA DA QUALIDADE DE SOFTWARE

GARANTIA DA QUALIDADE DE SOFTWARE GARANTIA DA QUALIDADE DE SOFTWARE Fonte: http://www.testexpert.com.br/?q=node/669 1 GARANTIA DA QUALIDADE DE SOFTWARE Segundo a NBR ISO 9000:2005, qualidade é o grau no qual um conjunto de características

Leia mais

Criando Campanhas de E-mail Marketing com o Apoio do Opinion Mining

Criando Campanhas de E-mail Marketing com o Apoio do Opinion Mining Criando Campanhas de E-mail Marketing com o Apoio do Opinion Mining Marcelo Drudi Miranda mdrudi@gmail.com UNINOVE Renato José Sassi sassi@uninove.br UNINOVE Resumo:Empresas de vários ramos de negócio,

Leia mais

19 Congresso de Iniciação Científica DESENVOLVIMENTO DE UM MECANISMO EFICIENTE DE CAPTURA E ANÁLISE DE COMENTÁRIOS NA WEB

19 Congresso de Iniciação Científica DESENVOLVIMENTO DE UM MECANISMO EFICIENTE DE CAPTURA E ANÁLISE DE COMENTÁRIOS NA WEB 19 Congresso de Iniciação Científica DESENVOLVIMENTO DE UM MECANISMO EFICIENTE DE CAPTURA E ANÁLISE DE COMENTÁRIOS NA WEB Autor(es) JEFFERSON DIAS DOS SANTOS Orientador(es) PLÍNIO ROBERTO SOUZA VILELA

Leia mais

TÉCNICAS DE COMPUTAÇÃO PARALELA PARA MELHORAR O TEMPO DA MINERAÇÃO DE DADOS: Uma análise de Tipos de Coberturas Florestais

TÉCNICAS DE COMPUTAÇÃO PARALELA PARA MELHORAR O TEMPO DA MINERAÇÃO DE DADOS: Uma análise de Tipos de Coberturas Florestais UNIVERSIDADE ESTADUAL DE PONTA GROSSA PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO APLICADA CRISTIAN COSMOSKI RANGEL DE ABREU TÉCNICAS DE COMPUTAÇÃO PARALELA PARA MELHORAR

Leia mais

PROJETO RUMOS DA INDÚSTRIA PAULISTA

PROJETO RUMOS DA INDÚSTRIA PAULISTA PROJETO RUMOS DA INDÚSTRIA PAULISTA SEGURANÇA CIBERNÉTICA Fevereiro/2015 SOBRE A PESQUISA Esta pesquisa tem como objetivo entender o nível de maturidade em que as indústrias paulistas se encontram em relação

Leia mais

OPINION MINING APLICADO AO E- MAIL MARKETING: CRIANDO CAMPANHAS BASEADAS NA OPINIÃO DOS CONSUMIDORES DE UMA EMPRESA DE CLASSIFICADOS ON- LINE

OPINION MINING APLICADO AO E- MAIL MARKETING: CRIANDO CAMPANHAS BASEADAS NA OPINIÃO DOS CONSUMIDORES DE UMA EMPRESA DE CLASSIFICADOS ON- LINE OPINION MINING APLICADO AO E- MAIL MARKETING: CRIANDO CAMPANHAS BASEADAS NA OPINIÃO DOS CONSUMIDORES DE UMA EMPRESA DE CLASSIFICADOS ON- LINE Marcelo Drudi Miranda (Uninove) mdrudi@gmail.com Renato Jose

Leia mais

ADM041 / EPR806 Sistemas de Informação

ADM041 / EPR806 Sistemas de Informação ADM041 / EPR806 Sistemas de Informação UNIFEI Universidade Federal de Itajubá Prof. Dr. Alexandre Ferreira de Pinho 1 Sistemas de Apoio à Decisão (SAD) Tipos de SAD Orientados por modelos: Criação de diferentes

Leia mais

Palavras-chave: On-line Analytical Processing, Data Warehouse, Web mining.

Palavras-chave: On-line Analytical Processing, Data Warehouse, Web mining. BUSINESS INTELLIGENCE COM DADOS EXTRAÍDOS DO FACEBOOK UTILIZANDO A SUÍTE PENTAHO Francy H. Silva de Almeida 1 ; Maycon Henrique Trindade 2 ; Everton Castelão Tetila 3 UFGD/FACET Caixa Postal 364, 79.804-970

Leia mais

PROPAGAÇÃO DE INFLUÊNCIA EM REDES SOCIAIS

PROPAGAÇÃO DE INFLUÊNCIA EM REDES SOCIAIS PROPAGAÇÃO DE INFLUÊNCIA EM REDES SOCIAIS Júlia Coelho Furlani Faculdade de Engenharia de Computação / CEATEC juliacfurlani@gmail.com Juan Manuel Adán Coello Grupo de Pesquisa em Sistemas Inteligentes

Leia mais

Fundamentos de Teste de Software

Fundamentos de Teste de Software Núcleo de Excelência em Testes de Sistemas Fundamentos de Teste de Software Módulo 3 Planejamento e Aula 8 do Projeto Aula 08 do Projeto SUMÁRIO INTRODUÇÃO... 3 ACOMPANHAMENTO DO PROJETO... 3 1. do Progresso...

Leia mais