8.18 EXERCÍCIOS pg. 407

Tamanho: px
Começar a partir da página:

Download "8.18 EXERCÍCIOS pg. 407"

Transcrição

1 . EXERCÍCIOS pg.. Encontrar a assa total e o centro de assa de ua barra de c de copriento, se a densidade linear da barra nu ponto P, que dista c da kg b ρ a etreidade esquerda, é ( ) c ( ) d ( ) d.. kg ( ) d ρ. Encontrar a assa total e o centro de assa de ua barra de copriento, se a densidade linear da barra nu ponto situado a do etreo esquerdo é ( ) kg ( ). ( ) kg d

2 b a ρ ( ) 9., d ( ) d ρ. Calcular a assa total e o centro de assa de ua barra de de copriento, sabendo que a densidade linear nu ponto é ua função do grau da distância total deste ponto ao etreo direito da barra. A densidade linear no etreo direito é kg e no eio da barra é kg ρ( ) k( ) k ρ( ) k (,),k k k, [, ( ) ] ( 6, ) (, ), kg d d d

3 (, ),, d. Ua barra horizontal esta localizada sobre o eio dos, coo ostra a figura.. Se a densidade lin ear nu ponto qualquer da barra é propo rcional à distância deste ponto até a o rige, deterinar o v alor da co nstante de proporcionalidade, de odo que a assa da barra seja b a u.. ρ ( ) k b a k d k k k b a k ( b a ) ( b a ) ( b a ) b a b a b a k b a b a. O copriento de ua barra é e a densidade linear no etreo direito é kg. A densidade linear nu ponto varia diretaente co a segunda potência da distância do ponto ao etreo esquerdo. Calcular a assa total e o centro de assa da barra. ρ ( ) k 6

4 ρ ( ) k. k kg d... d 6. Deterinar o oento de inércia de ua barra hoogênea de c de copriento, e relação a u eio perpendicular, que: a) passa no ponto édio da barra; b) passa por ua etreidade da barra. Considerar a densidade linear da barra igual a, kg I l b a d ( ) ρ( ) d I l k. (, ), k a) d ( ), (, ),.,, kg. ( k,). k d

5 b) d( ) ( ) I l k. 9 k ( ) ( ) 9.,, kg.. k d OBS.: no outro etreo teos ρ ρ ρ 9k k d, kg.. Ua barra horizontal ede de copriento. No seu ponto édio a densidade linear é, kg e cresce proporcionalente co o quadrado da distância até este ponto. Se nua das etreidades a densidade é 6, kg, deterinar a assa e o centro de assa da barra ( ), ( ) k ( ), ( ) 6 k, 6, k ( ),) ( ) 9, kg, d

6 9, [( ),] ( 6,) d 6,.96,,999 d. Deterinar o oento de inércia da barra do eercício e relação a u eio perpendicular que: a) passa no ponto édio da barra; b) passa por ua das etreidades da barra. a) I l,. (, ( ) )( ) (,( ) ( ) ) ( ) ( ),kg. d d b) I l (, ( ) )( ) (, 6)( 6 6 ) (,,, ),kg. d d d 9. Achar o oento de inércia da barra dos eercícios e para u eio perpendicular que: a) passa pelo etreo direito; b) passa pelo etreo esquerdo; c) passa pelo ponto édio da barra. 9

7 Eercício (a) ( ) ( ) ( ). 6 6 c kg d d I l (b) ( ). 9 9 c kg d I l (c) ( ) ( ) ( )( ) ( ) c kg d d d I l Eercício (a)

8 I l, [, ( ) ]( ) [, ( ) ( ) ] ( ) ( ), kg. d d (b) I l [, ( ) ] [ 6, ] (, ),, kg. d d d (c) I l (, ) [, ( ) ] [( 6, )( 6, ) ] [, 6, 6,], kg. d d 6,,, 6 d

9 . Ua barra localizada sobre o eio dos te etreos e. Se a densidade linear é dada por ρ ( ), deterinar a assa e o centro de assa da barra. d ln ln u.. d. ln ln ln ln ln ln ( ln ) d. Deterinar o oento de inércia da barra do eercício e relação a u eio perpendicular que passa no ponto I l ( ) ( ) d d. Deterinar a assa e o centro de assa de ua barra que esta localizada sobre o eio dos, co etreos nos pontos e. A densidade linear da barra é dada por ρ ( ) e e d e e u.

10 e d e e ( e e ) ( e e ). Deterinar o oento de inércia da barra do eercício e relação a u eio perpendicular que passa pela orige I e d ( e e e ) e e e e I. Ua barra hoogênea ede de copriento. Se o seu oento de inércia e relação a u eio perpendicular que passa por ua de suas etreidades é, kg., deterinar a densidade linear da barra. k 9k, k d k ρ ρ,kg / ( ). k k 9k, 9,. Ua ola te copriento natural de. Sob u peso de N, ela se distende : a) Deterinar o trabalho realizado para distender a ola de seu copriento natural até. b) Deterinar o trabalho realizado para distender a ola de a

11 f ( ) k k k f ( ) a) w b) w d,j d J 6. Ua força de N é necessária para copriir ua ola de u copriento natural de para u copriento de. Encontrar o trabalho realizado para copriir a ola de seu copriento natural para u copriento de f k; k. k w 6 d 6J k 6. Ua ola te copriento natural de. Para coprii-la de seu copriento natural até 9, usaos ua força de N. Deterinar o trabalho realizado ao copriir a ola de seu copriento natural até. f k; k w d J

12 . U balde pesa N e conté argila cujo peso é N. O balde está no etreo inferior de ua corrente de de copriento, que pesa N e está no fundo de u poço. Encontrar o trabalho necessário para suspender o balde até a borda do poço. peso balde peso argila N O peso de u etro da corrente é N. Quando o balde subiu, o peso correspondente da corrente é: ( )., f w ( ) ( )., ( ( ).,), J d. 9. U tanque cilíndrico circular reto, de raio, e altura está cheio de água, achar o trabalho efetuado para esvaziar o tanque, pela parte superior. w π 9,.. π (, ) 69,6 J (, ). ( )..9,. U tanque cilíndrico circular reto de de diâetro e de profundidade, está cheio de água e deve ser esvaziado pela parte superior. Deterinar o trabalho necessário para esvaziar o tanque: a) considerando que a água seja deslocada por u uro de u ebolo, partindo da base do tanque; b) por bobeaento.

13 a) w 9π..( ) 9 π, π J b) w 9π ( ) 9π,π J. U tanque te a fora de u cone circular reto, de altura e raio da base c. Se o tanque está cheio de água, encontrar o trabalho realizado para bobear a água pelo topo do tanque.,,, raio:, 6,66πJ (,) ( ) w 9 π 9 π.,6, π ( ) 6

14 . U reservatório cheio de água é da fora de u paralelepípedo retângulo de, de profundidade, de largura e de copriento. Encontrar o trabalho necessário para bobear a água do reservatório ao nível de acia da superfície., w , J (, ) 9.,,. Ua coporta vertical de ua represa te a fora de u retângulo de base e altura. O lado superior da coporta está a, abaio da superfície da água. Calcular a força total que essa coporta está sofrendo. F 9 (, ) 9, 6 N.. U tanque te a fora de u prisa quadrangular de altura. Se o tanque está cheio de água e o seu lado da base ede, deterinar a força decorrente da pressão da água sobre u lado do tanque F 9 9, N ( ) ( ) ( ) 9

15 . Ua chapa te a fora da região deliitada pelas curvas e. Se esta chapa é iersa verticalente na água, de tal fora que seu lado superior coincide co o nível d água, deterinar a força decorrente da pressão da água sobre u lado da chapa. F ( ) ( ) ( ) 6, N. 6. Ua chapa retangular de de altura e de largura é iersa verticalente nu liquido, sendo que sua base inferior esta a da superfície do liquido. Deterinar a força total eercida sobre u lado da chapa, se o liquido pesa N. F ( ) ( ). N Nos eercícios de a, teos ua coporta de ua represa, colocada verticalente, co a fora indicada. Calcular a força total contra a coporta.. U retângulo co de largura e de altura; nível d água: acia da base da coporta.

16 F 9 9. N ( ). U trapézio isósceles co de largura no topo, de largura na base e de altura; nível da água coincide co o topo da coporta. F 9 9 ( ) N.. ( 6 ) 9. U triângulo isósceles co 6 de altura no topo e de altura; nível da água coincide co o topo da coporta. F N ( ) ( ) ( ) U trapézio isósceles co de largura no topo, 9 na base e de altura; nível da água: acia da base da coporta. 9

17 F ( ) 9,6 N ( ), 9, 9,,. O topo de u tanque te de copriento e de largura. As etreidades são triângulos eqüiláteros verticais, co u vértice apontando para baio. Qual é a força total e ua etreidade do tanque, quando ele está cheio de u líquido que pesa N? F ( ). N. Ua chapa é liitada pela curva / e a reta, no plano, co o eio dos apontando para cia e suas escalas edidas e etros. A chapa está subersa e óleo, cujo peso é 96 N, co a reta sobre a superfície do óleo. Qual é a força do óleo e cada lado da chapa? F 96 ( ) 9 9, N.

18 . Ua lâina te a fora de u triângulo retângulo de lados, e. A lâina está iersa verticalente nu líquido de tal fora que a hipotenusa coincide co o nível do líquido. Deterinar a força eercida pelo líquido sobre u lado da lâina se o peso do líquido é 6 N h a b Cálculo de h: A área do triângulo pode ser epressa coo:. h Área: A 6 ou A. Portanto, h 6 h Cálculo de a: a a 9 Cálculo de b: b b 6

19 Equação da reta que passa por (, ) ( 9, ) Equação da reta que passa por (, ) ( 6, ) Assi teos: F 6 N ( ). A função deanda para u certo produto é dada por p 9 sendo p o preço unitário e reais e a quantidade deandada seanalente. Deterine o ecedente de consuo se o preço de ercado é estabelecido a R$, cada unidade do produto. A figura que segue ostra o gráfico da função deanda e a área que representa o ecedente de consuo. 9 6 CS CS Teos: ( 9 ) d, Resposta: R$,

20 . U fornecedor de produtos de lipeza estabelece que a quantidade de ercadoria a ser colocada no ercado está relacionada co o preço p, e reais, pela função p. Se o preço de ercado é igual a R$6,, encontrar o ecedente de produção. A figura que segue ostra a área a ser calculada. p 9 6 PS Teos: / / PS (6 Resposta: R$, ) d, 6. A quantidade deandada de u certo produto A está relacionada ao preço unitário p, e reais, por p e a quantidade (e unidades) que o fornecedor está disposto a colocar no ercado está relacionada ao preço unitário p por p. Se o preço de ercado é igual ao preço de equilíbrio, deterine o ecedente de consuo e o ecedente de produção. A figura que segue ilustra o problea

21 p 9 6 CS PS Teos: Ponto de equilíbrio: ( /,/ ) / ( CS ) d 6,6. / ( PS ) d,96. Estia-se que u investiento gerará renda à taa de R (t) igual a R$., por ano, pelos próios três anos. Deterine o valor presente deste investiento se a taa de juros é de 6% ao ano, copostos continuaente. VP. e,6t dt 9.9,6

Primeira lista de MPD-42

Primeira lista de MPD-42 Prieira lista de MPD-4 Resolução facultativa 1) Considere dois aortecedores do tipo viscoso co coeficientes c 1 e c. Calcule o coeficiente de aorteciento equivalente quando os dois aortecedores estão e

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º EM - PROF. CARLINHOS - BONS ESTUDOS! ASSUNTO: POLIEDROS

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º EM - PROF. CARLINHOS - BONS ESTUDOS! ASSUNTO: POLIEDROS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º EM - PROF. CARLINHOS - BONS ESTUDOS! ASSUNTO: POLIEDROS 1) Ache o núero de vértices de arestas e de faces dos

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º PP - PROF. CARLINHOS - BONS ESTUDOS!

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º PP - PROF. CARLINHOS - BONS ESTUDOS! ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º PP - PROF. CARLINHOS - BONS ESTUDOS! ASSUNTO: PRISMAS 1) Calcule a área total e o volue de u prisa hexagonal

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º PP - PROF. CARLINHOS - BONS ESTUDOS! ASSUNTO: POLIEDROS

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º PP - PROF. CARLINHOS - BONS ESTUDOS! ASSUNTO: POLIEDROS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º PP - PROF. CARLINHOS - BONS ESTUDOS! ASSUNTO: POLIEDROS 1) Ache o núero de vértices de arestas e de faces dos

Leia mais

1. Verifique se as seguintes igualdades são válidas, seja por integração ou por. + (a + b)x3 3 + abx2 2 + c. + c. + c

1. Verifique se as seguintes igualdades são válidas, seja por integração ou por. + (a + b)x3 3 + abx2 2 + c. + c. + c Universidade Federal de Viçosa Centro de Ciências Eatas Departamento de Matemática a Lista MAT - Cálculo I 7/II. Verifique se as seguintes igualdades são válidas, seja por integração ou por derivação:

Leia mais

Centro de gravidade e centro de massa

Centro de gravidade e centro de massa FÍSI - INÂMI - ENTO E GVIE E ENTO E MSS entro de gravidade e centro de assa entro de gravidade de u sistea é o ponto onde o oento resultante é nulo. M + M 0 P d - P d 0 P d P d P ( - ) P ( - ) P - P P

Leia mais

Capítulo 1 Introdução, propriedades e leis básicas dos fluidos.

Capítulo 1 Introdução, propriedades e leis básicas dos fluidos. Capítulo 1 Introdução, propriedades e leis básicas dos fluidos. 1.1. Introdução A expressão fenôenos de transporte refere-se ao estudo sisteático e unificado da transferência de quantidade de oviento,

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 0. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Valter B. Dantas. Geometria das massas

Valter B. Dantas. Geometria das massas Valter B. Dantas eoetria das assas 6.- Centro de assa s forças infinitesiais, resultantes da atracção da terra, dos eleentos infinitesiais,, 3, etc., são dirigidas para o centro da terra, as por siplificação

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidade Federal da Bahia Instituto de Matemática DISCIPLINA: MATA0 - CÁLCULO B UNIDADE I - LISTA DE EXERCÍCIOS Atualizada 00. Áreas de figuras planas em coordenadas cartesianas [] Determine a área

Leia mais

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2

Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Exatas e Tecnológicas 5ª Lista de Exercícios de MAT140 Cálculo /2 Universidade Federal de Viçosa Departamento de Matemática Centro de Ciências Eatas e Tecnológicas 5ª Lista de Eercícios de MAT Cálculo / ) Resolva as integrais definidas abaio a) ( + )d c) (5 ) d e) +

Leia mais

Exemplo E.3.1. Exemplo E.3.2.

Exemplo E.3.1. Exemplo E.3.2. Exeplo E.1.1. O bloco de 600 kn desliza sobre rodas nu plano horizontal e está ligado ao bloco de 100 kn por u cabo que passa no sistea de roldanas indicado na figura. O sistea parte do repouso e, depois

Leia mais

LISTA 2 - COMPLEMENTAR. Cinemática e dinâmica

LISTA 2 - COMPLEMENTAR. Cinemática e dinâmica UNIVERSIDADE DE SÃO PAULO INSTITUTO DE FÍSICA 4323101 - Física I LISTA 2 - COMPLEMENTAR Cineática e dinâica Observe os diferentes graus de dificuldade para as questões: (**, (*** 1. (** O aquinista de

Leia mais

PROVA DE FÍSICA II. Considere g = 10,0 m/s 2. O menor e o maior ângulo de lançamento que permitirão ao projétil atingir o alvo são, respectivamente,

PROVA DE FÍSICA II. Considere g = 10,0 m/s 2. O menor e o maior ângulo de lançamento que permitirão ao projétil atingir o alvo são, respectivamente, PROVA DE FÍSCA 01. O aratonista Zé de Pedreiras, no interior de Pernabuco, correu a ua velocidade édia de cerca de 5,0 léguas/h. A légua é ua antiga unidade de copriento, coo são o copriento do capo de

Leia mais

Complementação da primeira avaliação do curso

Complementação da primeira avaliação do curso Coleentação da rieira avaliação do curso 0/05/013 Prieiro horário Avaliação do rieiro horário. Mas co uita cala! Vaos nós! 1 a Questão: A figura ao lado ostra u reservatório de água na fora de u cilindro

Leia mais

MAT Cálculo para Ciências Biológicas - Farmácia Prof. Gláucio Terra. 3 a Lista de Exercícios

MAT Cálculo para Ciências Biológicas - Farmácia Prof. Gláucio Terra. 3 a Lista de Exercícios MAT0143 - Cálculo para Ciências Biológicas - Farmácia - 006 Prof. Gláucio Terra 3 a Lista de Eercícios 1-) Dois corredores iniciam uma corrida ao mesmo tempo e terminam empatados. Prove que em algum momento

Leia mais

( ) ( ) Gabarito 1 a Prova de Mecânica dos Fluidos II PME /04/2012 Nome: No. USP. x y x. y y. 1 ρ 2

( ) ( ) Gabarito 1 a Prova de Mecânica dos Fluidos II PME /04/2012 Nome: No. USP. x y x. y y. 1 ρ 2 Gabarito a Prova de Mecânica dos Fluidos II PME 330 09/04/0 Noe: No. USP ª Questão (3,0 pontos): E u escoaento plano, não viscoso e incopressível, u x, y = A, onde A é ua constante diensional. a) (0,5

Leia mais

HIDRODINÂMICA - ESPECIAL

HIDRODINÂMICA - ESPECIAL 1. (Uel 15) Obsere o aspersor de ipulso para jardi representado na figura a seguir. Esse aparelho possui u orifício circular de saída de de diâetro, e seu bico faz u ângulo de 3 co a horizontal. Esse aspersor,

Leia mais

FGV - 1 a Fase 21/10/2001

FGV - 1 a Fase 21/10/2001 FGV - a Fase /0/00 Mateática 0. dotando-se os valores log 0,0 e log 0,48, a raiz da equação 0 vale aproiadaente:,,8 4,4,7 log 0,0 log 0,48 0. log log 0 (.. ) log 0 log 0 0,0 + 0,48 + 0,0 log + log + log0

Leia mais

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2016/2017

MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2016/2017 MESTRDO INTEGRDO EM ENG. INFORMÁTIC E COMPUTÇÃO 2016/2017 EIC0010 FÍSIC I 1o NO, 2 o SEMESTRE 30 de junho de 2017 Noe: Duração 2 horas. Prova co consulta de forulário e uso de coputador. O forulário pode

Leia mais

x 3 x3 dx = 1 + x2 u = 1 + x 2 5u 1 (u + 1)(u 1) du = A x ln xdx = x2 2 (ln x)2 x2 x2

x 3 x3 dx = 1 + x2 u = 1 + x 2 5u 1 (u + 1)(u 1) du = A x ln xdx = x2 2 (ln x)2 x2 x2 Questão -A. (, pontos) Calcule a) arctg d = arctg() 1 d = 1 + arctg() 1 u 1 6 u du = u = arctg() du = 1 dv = d v = 1+ d u = 1 + du = d = arctg() 1 1 + [u ln u ] + k = arctg() + ln(1 + ) + k. 6 6 6 b) 5e

Leia mais

( ) ( ) 3 a Lista de Exercícios MAT CÁLCULO I. d x. d t. x d x

( ) ( ) 3 a Lista de Exercícios MAT CÁLCULO I. d x. d t. x d x a Lista de Eercícios MAT 0 - CÁLCULO I ) Utilizando o Teorema Fundamental do Cálculo, determine as seguintes integrais definidas: ) I = 7 0 d 6 + 9 ) I = d ) I = ) I = d t t + d ( 8 ) 6 0 5 ( ) 5) I =

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A - 009. A LISTA DE EXERCÍCIOS a Questão:. Para cada uma das funções seguintes, determine as derivadas indicadas: a) f(u) = u, u() =,

Leia mais

Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C

Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C Física Geral I 1º seestre - 2004/05 EXAME - ÉPOCA NORMAL 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTECNIA - FÍSICA APLICADA 26 de Janeiro 2005 Duração: 2 horas + 30 in tolerância Indique

Leia mais

MAT Cálculo I - POLI a Lista de Exercícios

MAT Cálculo I - POLI a Lista de Exercícios MAT 453 - Cálculo I - POLI - 003 a Lista de Eercícios. Calcule a derivada indicada em cada caso: a) y se y = ; b) y se y = ( ) d ; c) ; d + ( d) d d 3 + ); e) d500 3 d 500 (3 3 79 + 4).. Calcule dy por

Leia mais

Mecânica Newtoniana: Trabalho e Energia

Mecânica Newtoniana: Trabalho e Energia Mecânica Newtoniana: Trabalho e Energia 2018 Dr. Walter F. de Azevedo Jr. Prof. Dr. Walter F. de Azevedo Jr. E-ail: walter@azevedolab.net 1 Trabalho Realizado por Ua Força Constante Considereos o sistea

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º EM - PROF. CARLINHOS - BONS ESTUDOS! ASSUNTO: POLIEDROS

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º EM - PROF. CARLINHOS - BONS ESTUDOS! ASSUNTO: POLIEDROS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 2º EM - PROF. CARLINHOS - BONS ESTUDOS! ASSUNTO: POLIEDROS 1) Ache o núero de vértices de arestas e de faces dos

Leia mais

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a CILINDRO Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a outra no plano, denomina-se cilindro circular.

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

Lista 6 Gráficos: Pontos críticos, máximos e mínimos, partes crescentes e decrescentes. L Hôpital. Diferencial. Polinômio de Taylor

Lista 6 Gráficos: Pontos críticos, máximos e mínimos, partes crescentes e decrescentes. L Hôpital. Diferencial. Polinômio de Taylor Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 014 Lista 6 Gráficos: Pontos críticos, máimos e mínimos, partes crescentes e decrescentes. L Hôpital.

Leia mais

comprimento do fio: L; carga do fio: Q.

comprimento do fio: L; carga do fio: Q. www.fisicaexe.co.br Ua carga Q está distribuída uniforeente ao longo de u fio reto de copriento. Deterinar o vetor capo elétrico nos pontos situados sobre a reta perpendicular ao fio e que passa pelo eio

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER ALUNO(A): TURMA: Nº Caro aluno, Esta lista de exercícios tem como objetivo auxiliá-lo e orientá-lo no estudo para que possa melhorar seu desempenho na Prova Oficial. Resolva os exercícios com dedicação.

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x. INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função

Leia mais

(A) 331 J (B) 764 J. Resposta: 7. As equações de evolução de dois sistemas dinâmicos são:

(A) 331 J (B) 764 J. Resposta: 7. As equações de evolução de dois sistemas dinâmicos são: MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 018/019 EIC0010 FÍSICA I 1º ANO, º SEMESTRE 18 de junho de 019 Noe: Duração horas. Prova co consulta de forulário e uso de coputador. O forulário pode

Leia mais

Lista de Exercícios 3 1

Lista de Exercícios 3 1 Universidade Federal de Ouro Preto Departamento de Matemática MTM122 - CÁLCULO DIFERENCIAL E INTEGRAL I 1 Encontre os pontos críticos das funções a seguir: Lista de Eercícios 1 a f = + 7 2 5 b g = 7/ +

Leia mais

Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho

Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho Geometria Espacial Prismas e Cilindros Tarefa 2 Cursista: Maria Candida Pereira

Leia mais

7. f(x,y,z) = y + 25 x 2 y 2 z f(x,y,z) = f : D R 2 R (x,y) z = f(x,y) = x 2 + y 2

7. f(x,y,z) = y + 25 x 2 y 2 z f(x,y,z) = f : D R 2 R (x,y) z = f(x,y) = x 2 + y 2 Lista Cálculo II -B- 007- Universidade Federal Fluminense EGM - Instituto de Matemática GMA - Departamento de Matemática Aplicada LISTA - 007- Domínio, curva de nível e gráfico de função real de duas variáveis

Leia mais

Resposta: A Matemática B 2ª série 1º trimestre Prismas Tarefa 10

Resposta: A Matemática B 2ª série 1º trimestre Prismas Tarefa 10 2011 - Matemática B 2ª série 1º trimestre Prismas Tarefa 9 1) As dimensões de um paralelepípedo retângulo são 12 cm, 15 cm e 16 cm. A área total(em cm²) e a medida da diagonal (em cm) são iguais, respectivamente

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. Módulo Inicial

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. Módulo Inicial Escola Secundária co 3º ciclo D. Dinis 10º Ano de Mateática A Módulo Inicial Tarefa Interédia de Avaliação versão As questões 1 e são de escolha últipla Para cada ua delas são indicadas quatro alternativas,

Leia mais

13 28 Esboce a região delimitada pelas curvas indicadas e encontre sua. área. 21. y tg x, y 2 sen x, 28. y 1 4 x 2, y 2x 2, x y 3,

13 28 Esboce a região delimitada pelas curvas indicadas e encontre sua. área. 21. y tg x, y 2 sen x, 28. y 1 4 x 2, y 2x 2, x y 3, 6. Eercícios 4 Encontre a área da região sombreada... =5-3. 4. = - =_ = (4, 4) = = =e (_3, 3) = -4 =- 5 Esboce a região delimitada pelas curvas indicadas. Decida quando integrar em relação a ou. Desenhe

Leia mais

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01.

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01. Departamento de Computação é Matemática Cálculo I USP- FFCLRP Física Médica Rafael A. Rosales 9 de maio de 07 Sumário Diferencial Teorema do Valor Médio 3 Máimos e Mínimos. Gráficos 4 l Hôpital 3 5 Série

Leia mais

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura

Leia mais

Capítulo 15 Oscilações

Capítulo 15 Oscilações Capítulo 15 Oscilações Neste capítulo vaos abordar os seguintes tópicos: Velocidade de deslocaento e aceleração de u oscilador harônico siples Energia de u oscilador harônico siples Exeplos de osciladores

Leia mais

Qual é a posição do Centro de Massa de um corpo de material homogêneo que possui um eixo de simetria

Qual é a posição do Centro de Massa de um corpo de material homogêneo que possui um eixo de simetria Valter B. Dantas Imagem e texto protegida por direitos autorais. Copia proibida. Geometria das Massas Centro de Massa de um Sistema Contínuo de Partículas Qual é a posição do Centro de Massa de um corpo

Leia mais

m v M Usando a conservação da energia mecânica para a primeira etapa do movimento, 2gl = 3,74m/s.

m v M Usando a conservação da energia mecânica para a primeira etapa do movimento, 2gl = 3,74m/s. FÍSICA BÁSICA I - LISTA 4 1. U disco gira co velocidade angular 5 rad/s. Ua oeda de 5 g encontrase sobre o disco, a 10 c do centro. Calcule a força de atrito estático entre a oeda e o disco. O coeficiente

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2453 Cálculo Diferencial e Integral I Escola Politécnica) Segunda Lista de Eercícios - Professor: Equipe de Professores EXERCÍCIOS. Calcule

Leia mais

Matemática D Extensivo V. 5

Matemática D Extensivo V. 5 ateática D Extensivo V. 5 Exercícios 01 B I. Falso. Pois duas retas deterina u plano quando são concorrentes ou paralelas e distintas. II. Falso. Pois duas retas pode ser perpendiculares ou paralelas a

Leia mais

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que:

1 a LISTA DE EXERCÍCIOS DE MAT /02/2011 Professores: Rosane (Coordenadora), Allan e Cristiane. = 2x. , determine os valores de x tais que: MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 3657-000 - VIÇOSA - MG BRASIL. Resolva as equações: a) 3 7 + b) 5 3 a LISTA DE EXERCÍCIOS DE MAT 4 8/0/0 Professores: Rosane (Coordenadora),

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Universidade Tecnológica Federal do Paraná Campus Curitiba epartamento Acadêmico de Matemática Prof: Lauro César Galvão Cálculo II Entrega: junto com a a parcial ATA E ENTREGA: dia da a PROVA (em sala

Leia mais

ENG1200 Mecânica Geral Semestre Lista de Exercícios 6 Corpos Submersos

ENG1200 Mecânica Geral Semestre Lista de Exercícios 6 Corpos Submersos ENG1200 Mecânica Geral Semestre 2013.2 Lista de Exercícios 6 Corpos Submersos 1 Prova P3 2013.1 - O corpo submerso da figura abaixo tem 1m de comprimento perpendicularmente ao plano do papel e é formado

Leia mais

Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C

Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C Física Geral I 1º seestre - 2004/05 1 TESTE DE AVALIAÇÃO 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTÉCNIA - FÍSICA APLICADA 8 de Novebro, 2004 Duração: 2 horas + 30 in tolerância Indique

Leia mais

LIMITES FUNDAMENTAL. Jair Silvério dos Santos * sen x

LIMITES FUNDAMENTAL. Jair Silvério dos Santos * sen x MATEMATICA APLICADA A NEGÓCIOS 4,?? 200) Cálculo Cálculo Diferencial e Integral I TEOREMA DO SANDUICHE LIMITES FUNDAMENTAL Jair Silvério dos Santos * Teorea 0 Dadas f, g, h : A R funções e 0 ponto de acuulação

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

Cirlei Xavier Bacharel e Mestre em Física pela Universidade Federal da Bahia

Cirlei Xavier Bacharel e Mestre em Física pela Universidade Federal da Bahia HAIDAY & RESNICK SOUÇÃO GRAVITAÇÃO, ONDAS E TERMODINÂMICA Cirlei Xavier Bacharel e Mestre e Física pela Universidade Federal da Bahia Maracás Bahia Outubro de 015 Suário 1 Equilíbrio e Elasticidade 3 1.1

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

a 2 c = 3 a 36 a4 72 a II inv = a 8

a 2 c = 3 a 36 a4 72 a II inv = a 8 istaii_gabarito.c Mecânica os Sólios II ista II - 9. Gabarito ª Questão- ara a viga ostraa na figura, eterine as tensões aiais no engaste, nos pontos A, B e C a seção transversal e a posição a linha neutra.

Leia mais

Unidade II 2. Oscilações

Unidade II 2. Oscilações Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIERSIDDE DO ESDO DO RIO GRNDE DO NORE - UERN Pró-Reitoria de Ensino de Graduação PROEG Hoe Page: http://.uern.br

Leia mais

Quarta aula de FT 03/09/2013. Se a pressão for constante (uniforme ou média), temos: p

Quarta aula de FT 03/09/2013. Se a pressão for constante (uniforme ou média), temos: p Quta aula de FT 0/09/0. Conceito de pressão FN Se a pressão for constante (unifore ou édia), teos: p A dfn Se pensos e u ponto, teos: p da Iportante not que a pressão é diferente de força, pa deix clo

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia I. 1o. Semestre de a. Lista de Exercícios

MAT Cálculo Diferencial e Integral para Engenharia I. 1o. Semestre de a. Lista de Exercícios MAT2453 - Cálculo Diferencial e Integral para Engenharia I o. Semestre de 2008 - a. Lista de Eercícios I. Limites de Funções. Calcule os seguintes limites, caso eistam: 2 3 + 9 2 + 2 + 4 ) lim 2 3 2 2

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia I

MAT Cálculo Diferencial e Integral para Engenharia I MAT453 - Cálculo Diferencial e Integral para Engenharia I 1 o Semestre de 011 - a Lista de Eercícios 1. Calcule a área da região compreendida entre os gráficos de f () = 3 + 1 e g() = + 1, com 1 1.. Desenhe

Leia mais

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x

3. Esboce a região de integração e inverta a ordem nas seguintes integrais: 4., onde R é a região delimitada por y x +1, y x Universidade Salvador UNIFACS Cursos de Engenharia Cálculo Avançado / Métodos Matemáticos / Cálculo IV Profa: Ilka Freire ª Lista de Eercícios: Integrais Múltiplas 9., sendo:. Calcule f, da a) f, e ; =,

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-2453 Cálculo Diferencial e Integral I (Escola Politécnica) Segunda Lista de Eercícios - Professor: Equipe de Professores EXERCÍCIOS.

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Enem 15 semanas 1. Um quadrado de lados medindo 1 cm sofre uma rotação completa em torno de um eixo paralelo a um de seus lados. A distância

Leia mais

= 4 kg está em repouso suspenso por um fio a uma altura h do solo, conforme mostra a figura acima. Ao ser solto, choca-se com o corpo m 2

= 4 kg está em repouso suspenso por um fio a uma altura h do solo, conforme mostra a figura acima. Ao ser solto, choca-se com o corpo m 2 U varal de roupas foi construído utilizando ua haste rígida DB de assa desprezível, co a extreidade D apoiada no solo e a B e u ponto de u fio ABC co,0 de copriento, 100 g de assa e tensionado de 15 N,

Leia mais

1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine:

1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine: I) PRISMAS 1) Um prisma reto de base regular apresenta aresta da base igual a 20 cm e altura igual a 15 cm. Determine: a) a área da base, o apótema da base, a área lateral, área total e volume considerando

Leia mais

Problemas de Máximos e mínimos

Problemas de Máximos e mínimos roblemas de Máimos e mínimos rof. Me. Arton Barboni ) Obter dois números positivos cuja soma seja 60 e o produto o maior possível. * Supor, R + S = + = 60 (I) =. (II) De (I), segue que = 60 (III). Substituindo

Leia mais

1ºAula Cap. 09 Sistemas de partículas

1ºAula Cap. 09 Sistemas de partículas ºAula Cap. 09 Sisteas de partículas Introdução Deterinação do Centro de Massa, Centro de assa e sietrias, a Lei de Newton/sistea de partículas. Velocidade/Aceleração do centro de assa Referência: Halliday,

Leia mais

Um professor de Matemática escreve no quadro os n primeiros termos de uma progressão aritmética: 50, 46, 42,..., a n

Um professor de Matemática escreve no quadro os n primeiros termos de uma progressão aritmética: 50, 46, 42,..., a n Questão 0 U professor de Mateática escreve no quadro os n prieiros teros de ua progressão aritética: 50, 6,,, a n Se esse professor apagar o décio tero dessa seqüência, a édia aritética dos teros restantes

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

LISTA DE EXERCÍCIOS CÁLCULO II INTEGRAL DEFINIDA E SUAS APLICAÇÕES

LISTA DE EXERCÍCIOS CÁLCULO II INTEGRAL DEFINIDA E SUAS APLICAÇÕES 008 LISTA DE EXERCÍCIOS CÁLCULO II INTEGRAL DEFINIDA E SUAS APLICAÇÕES. Calcular a soma superior e inferir de f ( =. sen( no intervalo [0,] com divisões.,86 u.a. e,6 u.a.. Esboce o gráfico e aproime com

Leia mais

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r. EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5

Leia mais

3º tri PR2 -MATEMÁTICA Ens. Fundamental 9º ano Prof. Marcelo

3º tri PR2 -MATEMÁTICA Ens. Fundamental 9º ano Prof. Marcelo 3º tri PR2 -MTEMÁTI Ens. Fundamental 9º ano Prof. Marcelo LIS LIST DE ESTUDO REFORÇO 1 Trigonometria no Triângulo Retângulo Parte 1. No triângulo retângulo determine as medidas e indicadas. (Use: sen65º

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

Equação da circunferência e Geometria Espacial

Equação da circunferência e Geometria Espacial COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE COORDENADOR: DIEGO VIUG Equação da circunferência e Geometria Espacial Questão 01 No plano cartesiano,

Leia mais

FIS01183 Turma C/CC Prova da área 1 07/04/2010. Nome: Matrícula:

FIS01183 Turma C/CC Prova da área 1 07/04/2010. Nome: Matrícula: FIS1183 ura C/CC Prova da área 1 7/4/21 Noe: Matrícula: E todas as questões: Explicite seu raciocínio e os cálculos realizados e cada passo! BOA PROVA! Questão 1 (2,5 pontos) U teropar é forado por ua

Leia mais

Questão 1. C (ABCD) = AB. BC AB. 2 = 6 AB = 3cm (BCFE) = BC. BE

Questão 1. C (ABCD) = AB. BC AB. 2 = 6 AB = 3cm (BCFE) = BC. BE Resolução Ficha 13 Questão 1. C (ABCD) = AB. BC AB. = 6 AB = 3cm (BCFE) = BC. BE. BE = 10 BE = 5cm. Logo, aplicando o Teorema de Pitágoras no triângulo ABE, obtemos AE = 4cm. O resultado pedido é AB. AE.

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Eenta Noções Básicas sobre Erros Zeros Reais de Funções Reais Resolução de Sisteas Lineares Introdução à Resolução de Sisteas Não-Lineares Interpolação Ajuste de funções

Leia mais

Trabalho. 1.Introdução 2.Resolução de Exemplos

Trabalho. 1.Introdução 2.Resolução de Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Trabalho Prof.: Rogério

Leia mais

1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1. Figura 1: Exercício 1

1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1. Figura 1: Exercício 1 Lista 5: Derivada como taxa de variação e Diferencial - Cálculo Diferencial e Integral I Professora: Elisandra Bär de Figueiredo 1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que

Leia mais

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a CONE Cones Definição e elementos Um plano Um círculo C contido em Um ponto V que não pertence a Elementos do cone Base: é o círculo C, de centro O, situado no plano Vértice: é o ponto V Elementos do cone

Leia mais

Prof. José Wallace B. do Nascimento. Capítulo 4

Prof. José Wallace B. do Nascimento. Capítulo 4 Resistências dos Materiais Fleão Pura Fleão pura: Barras prisáticos subetido à ação de dois conjugados iguais e de sentido contrário, que atua e u eso plano longitudinal. Universidade Federal de Capina

Leia mais

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =. 1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)

Leia mais

1. Calcule o trabalho realizado pelas forças representadas nas figuras 1 e 2 (65 J; 56 J). F(N)

1. Calcule o trabalho realizado pelas forças representadas nas figuras 1 e 2 (65 J; 56 J). F(N) ÍSICA BÁSICA I - LISTA 3 1. Calcule o trabalho realizado pelas forças representadas nas figuras 1 e 2 (65 J; 56 J). () () 10 8 x() 0 5 10 15 ig. 1. roblea 1. 2 6 10 ig. 2. roblea 1. x() 2. U bloco de assa

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

FÍSICA II OSCILAÇÕES - MHS EVELINE FERNANDES

FÍSICA II OSCILAÇÕES - MHS EVELINE FERNANDES FÍSICA II OSCILAÇÕES - MHS EVELINE FERNANDES Suário Moviento Moviento Harônico Siples (MHS) Velocidade e Aceleração MHS Energia MHS Moviento Circular Moviento Quando o oviento varia apenas nas proxiidades

Leia mais

Módulo 3: Conteúdo programático Diâmetro Hidráulico

Módulo 3: Conteúdo programático Diâmetro Hidráulico Módulo 3: Conteúdo prograático Diâetro Hidráulico Bibliografia: Bunetti, F. Mecânica dos Fluidos, São aulo, rentice Hall, 2007. Na aioria das soluções dos probleas reais é necesário o cálculo da perda

Leia mais

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3 Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados

Leia mais

CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P

CAPÍTULO 7. Seja um corpo rígido C, de massa m e um elemento de massa dm num ponto qualquer deste corpo. v P 63 APÍTLO 7 DINÂMIA DO MOVIMENTO PLANO DE ORPOS RÍGIDOS - TRABALHO E ENERGIA Neste capítulo será analisada a lei de Newton apresentada na fora de ua integral sobre o deslocaento. Esta fora se baseia nos

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-0 Cálculo Diferencial e Integral I (Instituto de Física) Segunda Lista de Eercícios - Professor: Aleandre Lymberopoulos. Calcule a derivada

Leia mais

Matemática. Geometria plana

Matemática. Geometria plana Matemática Geometria plana 01.Os valores que podem representar os lados de um triângulo obtusângulo são a) 1 cm, 2 cm e 3 cm. b) 2 cm, 3 cm e 4 cm. c) 3 cm, 4 cm e 5 cm. d) 4 cm, 5 cm e 6 cm. e) 5 cm,

Leia mais

Cálculo I - Lista 1: Números reais. Desigualdades. Funções.

Cálculo I - Lista 1: Números reais. Desigualdades. Funções. Faculdade de Zootecnia e Engenharia de Alimentos Universidade de São Paulo Cálculo I - Lista : Números reais Desigualdades Funções Prof Responsável: Andrés Vercik Um inteiro positivo n é par se n k para

Leia mais

Segunda lista de exercícios

Segunda lista de exercícios Segunda lista de exercícios 1. E u sistea construído para deterinação de pressões no SI, ou seja e Pascal (Pa), no caso p A, p B e p C fora obtidas as equações: p p p c B B p p p A C A 0000 (Pa) 7000 (Pa)

Leia mais

Física a Lista de Exercícios

Física a Lista de Exercícios ísica - 9 a Lista de Exercícios 1. (Ex. 5 do Cap. 17 - ísica esnic, Halliday e Krane - 5 a Edição) E u areador elétrico a lâina se ove para frente e para trás co u curso de,. O oviento é harônico siples,

Leia mais

O PROBLEMA DO MOVIMENTO

O PROBLEMA DO MOVIMENTO O PROBLEMA DO MOVIMENTO O problea do oiento pode se resuir na deterinação da elocidade e da direção de u objeto óel, nu deterinado instante. Você já está acostuado a deterinar a elocidade édia de u objeto

Leia mais

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P.

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P. Roteiro de Estudos do º Trimestre ª Série Disciplina: Geometria Professor: Hugo P Conteúdos para Avaliação Trimestral: Pirâmides; Cones; Cilindros; Cálculos de área lateral; área total; volume Problemas

Leia mais