ANÁLISE DE COMPONENTES PRINCIPAIS, ANÁLISE FATORIAL: Exemplos em STATA. Prof. Dr. Evandro Marcos Saidel Ribeiro RESUMO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ANÁLISE DE COMPONENTES PRINCIPAIS, ANÁLISE FATORIAL: Exemplos em STATA. Prof. Dr. Evandro Marcos Saidel Ribeiro RESUMO"

Transcrição

1 UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ADMINISTRAÇÃO ANÁLISE DE COMPONENTES PRINCIPAIS, ANÁLISE FATORIAL: Eemplos em STATA. Prof. Dr. Evandro Marcos Sadel Rbero RESUMO A Análse de Componentes Prncpas Atualmente, pesqusadores defrontam-se com dezenas ou centenas de varáves dferentes em suas análses. É frequente haver redundânca entre dversas dmensões, levando a problemas de multcolneardade. A análse de componentes prncpas é um método que eplora a nterdependênca em dados multvarados. Se houver redundânca substancal no conjunto de dados, pode ser possível eplcar a maor parte das nformações num conjunto menor de dmensões. A. Covarânca e Correlação Matrz de Covarânca Organze os dados na forma de matrz, por eemplo, na coluna lste as 5 observações da varável e na coluna lste as 5 observações da varável : 9 8 X = 7 5. () 3 4 Calcule as médas das varáves: = 5 = 4. () Utlze a matrz obtda em () e, para cada coluna subtraa a méda, obtendo a matrz de desvos X desv: X desv = =. (3) A matrz de covarânca, S, é obtda pela epressão: S = X desvxdesv (4) n - n é o número de observações, que no nosso eemplo é gual a 5; - X desv é a matrz transposta da matrz obtda em (3). Então, para o eemplo dado a matrz S é: S =, que leva a: S =, ou seja ,50 7,5 S =. (5) 7,5 7,50 Note que para duas varáves a matrz de covarânca será : S S S =. (6) S S Matrz de correlação A matrz de correlação é escrta na forma: r K r k = r K r k R. (7) M M O M rk rk K O cálculo de cada elemento desta matrz pode ser obtdo da matrz S por: Sj r j =. (8) S S jj A matrz R também é smétrca, ou seja, r = r. Para matrzes : j j

2 S S S R =. (9) S S S No eemplo, consderando () e (5), a matrz de correlação será: 0,90805 R =. (0) 0,90805 A. Autovalores e Autovetores º passo: Determnar autovalores. Para a matrz de covarânca S os autovalores são: ( s + s ) ( s + s ) 4( s s ) λ = ± () No caso específco da matrz S obtda em (5), os autovalores são: λ = 5,67 λ = 0, () Os autovalores da matrz de correlação R são: λ = ± r. (3) No caso específco da matrz R obtda em (0), os autovalores são: λ =,90805 λ 0, (4) s = º Passo: Determnar os autovetores da matrz de covarânca. No caso de uma matrz deve-se resolver o sstema: S S v v = λ (5) S S v v para cada autovalor. Para resolver o sstema podemos consderar v =. Consderando o prmero autovalor λ : v =, (6-a) então v é obtda pela epressão: s + s λ v =. (6-b) λ s s o resultado é: v = (6-c) v 0,9334 Consderando o segundo autovalor λ : v =, (7-a) então v é obtda pela epressão: λ s s v =. (7-b) s + s λ o resultado é: v 0,9334 = v (7-c) 3º Passo: Normalzar os autovetores e: Dvda cada componente dos autovetores obtdos pelo seu módulo. No caso, o módulo dos dos vetores obtdos é guala a, O resultado obtdo é: e 0,7307 = (8-a) e 0,68348 e - 0,68348 = (8-b) e 0,7307 Os vetores normalzados apresentados nas epressões (8-a) e (8-b) acma são autovetores da matrz de covarânca. A.3 Componentes Prncpas Componentes Prncpas são escrtos em termos das varáves orgnas através de ponderações, dadas pelas componentes dos autovetores e. Se tvermos duas varáves orgnas teremos dos componentes prncpas: CP = e X e e e e Sendo, e = ou seja e = e e. e e Assm, CP e = CP e CP = e CP = e + e + e e e e então:. (9) No eemplo específco, utlzando os resultados obtdos para os autovetores, temos: CP = 0, ,68348 (0) CP = 0, ,7307 A.4 Varânca eplcada O Percentual da varação eplcada é dado por CP = λ 00. () λ No eemplo em questão, consderando os autovalores (), obtemos: Varação eplcada por CP = 95,4 %, Varação eplcada por CP = 4,58 %. (-a) (-b)

3 A.5 PCA: Eemplo no STATA Após nserr os dados do eemplo (Equação ) no Stata, para obter gráfcos de dspersão, consdere o lnk: Graphcs Scatterplot Matr. O resultado é presentado na Fgura. Fgura. Scatterplot Matr para varáves X e X, obtdo no STATA. Observe que os valores apresentados para a matrz de covarânca (correlate, covarance na Fgura ) e os valores apresentados para a matrz de correlação (correlate, na Fgura ) são os mesmos apresentados nas epressões (5) e (0), respectvamente. Componentes Prncpas Comando no STATA Statstcs Multvarate analyss Factor and prncpal componentes analyss Prncpal componentes analyss (PCA) Nas Fguras 3 e 4 a segur são apresentados os resultados da PCA consderando a matrz de correlação (Fgura 3) e a matrz de covarânca (Fgura 4). Fgura 3. Resultado PCA, matrz de correlação. Neste eemplo observa-se uma correlação lnear postva entre as varáves X e X. Covarânca e Correlação Comando no STATA: Statstcs Summares, tables and tests Summary and descrptve statstcs Correlaton and Covarances Os resultados de covarânca e de correlação são apresentados na Fgura a segur. Fgura. Covarânca e Correlação calculados no STATA. Fgura 4. Resultado PCA, matrz de covarânca. 3

4 Observe que o resultado PCA calculado para matrz de covarânca (Fgura 4) é equvalente ao resultado obtdo em (0). Gráfco Scree plot: Statstcs Multvarate analyss Factor and prncpal componentes analyss Postestmaton Respostas, A.E: Com a base gsp.raw:. pca col col col3 col4 col5 col6 col7 col8 col9 col0 col col col3 Tabela. Autovalores da matrz de correlação para os dados gsp_raw Fgura 5. Gráfco Scree plot para PCA calculada pela matrz de correlação (STATA) Tabela. Autovalores da matrz de correlação para os dados gsp.share. A.E Eercícos de Componentes Prncpas A.E Produto Estadual Bruto, nos estados amercanos. (Gross State Product GSP). Dados sobre produto estadual bruto estão dsponíves em dos arquvos: gsp_raw (epresso em mlhões de dólares) e gsp_share (epresso como uma proporção do total do GSP para cada estado). Cada arquvo consste em 50 lnhas (uma para cada estado) e 4 colunas (a prmera é a dentdade do estado e as 3 restantes correspondendo às dferentes áreas de atvdade econômca). A.E.a Usando os dados do gsp_share faça uma análse de componentes prncpas. A.E.b O que acontecerá se você remover as observações correspondentes ao Alasca e Wyomng? Repta a análse e esquematze os scores para os prmeros dos componentes prncpas. Como você nterpreta os resultados? Nas Tabelas e são pode-se ver a dferença entre o cálculo com os dados do arquvo gsp_raw (formado com valores absolutos do produto estadual bruto) e o cálculo com os dados do arquvo gsp_share (formado com os dados proporconas para cada estado. As Fguras 6 e 7 apresentam os gráfcos Scree plot para os cálculos comas bases gsp_raw e gsp_share. Após 4

5 o cálculo, dgte.screeplot para obter o gráfco ScreePlot. Fgura 6. Gráfco Scree plot para PCA calculada pela matrz de correlação gsp_raw. A u to va l o re s d a m a tr z d e c o rre l a çã o Fgura 7. Gráfco Scree plot para PCA calculada pela matrz de correlação gsp_share. A u to va l o re s M a tr z d e C o rre l a ç ã o 0 3 Scree plot of egenvalues after pca Componente Scree plot of egenvalues after pca Componente Para obter os scores como novas varáves devemos utlzar o comando predct e depos o nome das componentes. Por eemplo para crar as prmeras duas componentes e gravá-las como novas varáves podemos dgtar: predct pc pc, score A.E Opnão Polítca. Um pesqusador coletou nformações sobre 00 respondentes acerca de ses varáves de opnão polítca apresentadas a segur: O governo devera nvestr mas dnhero em escolas O governo devera nvestr mas dnhero para reduzr o desemprego 3 O governo devera controlar os grandes negócos 4 O governo devera acelerar o fm da dscrmnação racal através de transporte escolar 5 O governo devera zelar para que as mnoras obtenham suas respectvas quotas de emprego 6 O governo devera epandr o programa Head Start (www.acf.hhs.gov/programs/ohs) A matrz de correlação para esses dados é apresentada na Tabela Tabela. Matrz de correlação para os dados de opnão polítca A.E.a Analse esses dados usando a análse de componentes prncpas. Quanta varação é eplcada pelos dos prmeros componentes prncpas? Como você nterpretara os dos componentes? Respostas, A.E: Transformando os dados em matrz no STATA: mkmat , matr(matrzop) Obtendo a matrz completa: matr Opnon = MatrzOp + MatrzOp' - I(6) Nomes das lnhas e colunas da matrz: matr rownames MatrzOp = matr colnames MatrzOp = Observando os valores da matrz: matr lst MatrzOp Componentes Prncpas: pcamat Opnon, n(6) Resultados: 5

6 Fgura 8. Resultado da pca a partr da matrz de correlação pelo comando pcamat. O Scree Plot obtdo é apresentado na Fgura 9 a segur. Fgura 9. Scree Plot para A.E.a. Scree plot of egenvalues after pca E g e n v a l u e s Number Pelo resultado observa-se que a varânca eplcada pelos dos prmeros componentes é 64,33%, ou seja: ( )/6 =

7 A Análse Fatoral A. Característcas geras O objetvo é descrever um conjunto de k varáves orgnas (,,... k) através da cração de um número menor de varáves (fatores). Cada varável é descrta em termos de fatores: = a F + a F +... a F (3) j + a são cargas fatoras. A soma das cargas ao quadrado, para uma determnada varável é gual a comunaldade da varável: n h = a j j= n n (4) Uma regra útl para consderar uma varável na análse é que a comunaldade deve ser maor do que 0,7. A medda de uncdade (unqueness) é dada por um menos a comunaldade, ou seja: u = h (5) Se a soma das cargas fatoras (3) ao quadrado, for feta para um índce relaconado a um fator, então obtemos o autovalor correspondente ao fator em questão, ou seja k j = a j = λ (6) Como resultado, cada Fator pode ser escrto em termos das varáves sendo possível assm obter uma função para o Score Fatoral j: Fj b j z + b jz = b z (7) Para obter o cálculo correto do Score Fatoral as varáves devem ser padronzadas. Assm, em (7) z = ( ) / s é o Score-z. A. Eemplo Completo no STATA Como eemplo é consderado o Eemplo Completo apresentado no lvro Análse Multvarada para cursos de Admnstração, Cêncas Contábes e Economa (Corrar, Paulo e Das Flho). jk k A base de dados está dsponível no arquvo Eemplo_CAP0_CORRAR.dta Os passos para a Análse Fatoral são os seguntes: factor ICOM-ILGE, pcf. Este comando eecuta a análse fatoral a partr de componentes prncpas. Utlza todas as varáves, desde ICOM até ILGE. screeplot, yttle(autovalor) ttle(fator). Com este comando obtemos o screeplot. Fgura 0. Scree plot obtdo no eemplo completo com 5 varáves. Autovalor Scree plot of egenvalues after factor Fator estat kmo. Um comando postestmaton mportante é o estat kmo. Com este comando podemos analsar a Medda de Adequação da Amostra (MSA Measure of Samplng Adequacy) de Kaser-Meyer-Olkn. Os valores varam de zero a um. Valores baos podem ndcar que a varável em questão não contrbu para a análse e deve ser removda do modelo. Em geral, valores abao de 0,5 são consderados nacetáves. Tabela. Meddas KMO para o Eemplo Completo com 5 varáves contnua... 7

8 ... contnuação da Tabela : predct f f f3. Com este comando são obtdos os seguntes resultados: a) Os coefcentes dos scores fatoras. Ou seja, os valores de b j da epressão (7); b) Os scores fatoras, f, f e f3, calculados para cada caso. Os scores resultantes são dsponblzados como novas varáves na base de dados Tabela 5. Coefcentes dos Scores Fatoras rotate. Este comando proporcona a rotação (tendo como padrão o método varma). A rotação permte observar um padrão mas claro das cargas fatoras. Tabela 3. Cargas fatoras rotaconadas para o resultado da análse fatoral do eemplo completo, com 9 varáves. loadngplot, factors(3) combned lne(0) ylne(0) aspect(). Este comando apresenta gráfcos das cargas fatoras. Fgura. Loadngplot. Gráfco com cargas fatoras. Factor loadngs Os valores de comunaldade devem ser analsados a partr da medda de uncdade (5), que fca na coluna à dreta das cargas fatoras Tabela 4. Uncdade Factor Factor IALI IEND PRPL ILCO ILGE ICAP IDAD ICOM ILPG Factor ICAP ILGE ILCO IDAD ICOM ILPG IALI PRPL IEND Factor Factor IALI ILCO ILGE PRPL IEND ICAP IDAD ICOM ILPG Factor Rotaton: orthogonal varma Method: prncpal-component factors scoreplot, factors(3) combned. Este comando apresenta gráfcos dos cores fatoras f, f e f3 obtdos pelo comando predct. 8

9 Fgura. Scoreplot. Gráfco com scores fatoras Scores for factor Score varables (factor) Scores for factor É testada então esta noção préva para determnar se ela é consstente com o padrão de correlação nos dados Scores for factor Scores for factor Scores for factor Scores for factor Rotaton: orthogonal varma Method: prncpal-component factors A.3 Análse Fatoral Eploratóra vs Análse Fatoral Confrmatóra Na forma como realzada nas seções anterores a Análse Fatoral é consderada uma Análse Fatoral Eploratóra. Nesta seção são fetas consderações sobre os dos tpos de análses Evandro Marcos Sadel Rbero E-mal: A.3. Análse Fatoral Eploratóra Na Análse Fatoral Eploratóra deamos que cada varável tenha uma determnada carga em cada fator e utlzamos a rotação para dentfcar estruturas. Ou seja, obtemos uma solução nterpretável a partr de rotações. A meta é nferr a estrutura fatoral a partr do padrão de correlação nos dados. Este tpo de análse fo descrto na seção anteror quando, a partr de 5 ndcadores nvestgamos o padrão de correlações e levantamos a estrutura de fatores. Ou seja, quas ndcadores deveram fazer parte da modelagem, quas deveram ser retrados do modelo. A.3. Análse Fatoral Confrmatóra Neste caso começamos a análse com uma forte noção préva da estrutura do modelo fatoral. Neste caso já partmos do pressuposto que este uma solução únca para o modelo, ou seja, não há necessdade de solução rotaconada. Bblografa: J. Lattn, J.D. Carroll, P.E. Green. Análse de dados Multvarados, Cengage Learnng, 0. L.P. Fávero, P. Belfore, F.L. da Slva, B.L. Chan, Análse de Dados: Modelagem Multvarada para tomada de decsões, Elsever, 009. L.J. Corrar, E. Paulo, J.M. Das Flho, Análse Multvarada para cursos de Admnstração, Cêncas Contábes e Economa, Atlas, 007. R.A. Johnson, Appled Multvarate Statstcal Analyss, Prentce Hall, 99 9

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Análise Fatorial F 1 F 2

Análise Fatorial F 1 F 2 Análse Fatoral Análse Fatoral: A Análse Fatoral tem como prncpal objetvo descrever um conjunto de varáves orgnas através da cração de um número menor de varáves (fatores). Os fatores são varáves hpotétcas

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Variável discreta: X = número de divórcios por indivíduo

Variável discreta: X = número de divórcios por indivíduo 5. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

NOTAS DE AULA DA DISCIPLINA CE076

NOTAS DE AULA DA DISCIPLINA CE076 5. COMPONENTES PRINCIPAIS 5. Introdução A análse de Comonentes Prncas está relaconada com a exlcação da estrutura de covarânca or meo de oucas combnações lneares das varáves orgnas em estudo, ou sea, rocura

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

MÉTODOS MULTIVARIADOS. Rodrigo A. Scarpel

MÉTODOS MULTIVARIADOS. Rodrigo A. Scarpel MÉTODOS MULTIVARIADOS Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo INTRODUÇÃO Semana Conteúdo Introdução aos métodos multvarados 1 Análse de componentes prncpas Aplcações de análse de componentes

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais.

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais. 1 1Imagem Dgtal: Estatístcas INTRODUÇÃO Neste capítulo abordam-se os prncpas concetos relaconados com os cálculos de estatístcas, hstogramas e correlação entre magens dgtas. 4.1. VALOR MÉDIO, VARIÂNCIA,

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Revsta Matz Onlne ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Valera Ap. Martns Ferrera Vvane Carla Fortulan Valéra Aparecda Martns. Mestre em Cêncas pela Unversdade de São Paulo- USP.

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

REGRESSÃO LINEAR ANÁLISE DE REGRESSÃO LINEAR MÚLTIPLA REGRESSÃO CURVILÍNEA FUNÇÃO QUADRÁTICA VERIFICAÇÃO DO AJUSTE A UMA RETA PELO COEFICIENTE 3 X 3

REGRESSÃO LINEAR ANÁLISE DE REGRESSÃO LINEAR MÚLTIPLA REGRESSÃO CURVILÍNEA FUNÇÃO QUADRÁTICA VERIFICAÇÃO DO AJUSTE A UMA RETA PELO COEFICIENTE 3 X 3 ANÁLISE DE REGRESSÃO LINEAR MÚLTIPLA REGRESSÃO LINEAR Verfcado, pelo valor de r, que ocorre uma sgnfcante correlação lnear entre duas varáves há necessdade de quantfcar tal relação, o que é feto pela análse

Leia mais

Identidade dos parâmetros de modelos segmentados

Identidade dos parâmetros de modelos segmentados Identdade dos parâmetros de modelos segmentados Dana Campos de Olvera Antono Polcarpo Souza Carnero Joel Augusto Munz Fabyano Fonseca e Slva 4 Introdução No Brasl, dentre os anmas de médo porte, os ovnos

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

Programa de Certificação de Medidas de um laboratório

Programa de Certificação de Medidas de um laboratório Programa de Certfcação de Meddas de um laboratóro Tratamento de dados Elmnação de dervas Programa de calbração entre laboratóros Programa nterno de calbração justes de meddas a curvas Tratamento dos resultados

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter:

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter: Fenômenos de Transporte, Calor e Massa - FTCM - Rotero Epermental - Relatóro Prof.: Dr. Cláudo S. Sartor - EXPERIMETO Dlatação Térmca ITRODUÇÃO: Forma Geral dos Relatóros É muto desejável que seja um caderno

Leia mais

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES 4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES Para o Curso de Físca da Polução do Ar FAP346, º Semestre/006 Prof. Amérco Sansgolo Kerr Montora: Mara Emíla Rehder aver 4. INTRODUÇÃO No modelamento

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

Modelo de Alocação de Vagas Docentes

Modelo de Alocação de Vagas Docentes Reunão Comssão de Estudos de Alocação de Vagas Docentes da UFV Portara 0400/2016 de 04/05/2016 20 de mao de 2016 Comssão de Estudos das Planlhas de Alocação de Vagas e Recursos Ato nº 009/2006/PPO 19/05/2006

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter:

Referências: No mínimo, para cada experimento o Caderno de Laboratório deve sempre conter: Sstemas Mecâncos III - EXPERIMETO - Dlatação Térmca Prof.: Dr. Cláudo S. Sartor Técnco: Fernando ITRODUÇÃO: Forma Geral dos Relatóros É muto desejável que seja um caderno grande (formato A) pautada com

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado letromagnetsmo Aplcado Undade 5 Propagação de Ondas letromagnétcas em Meos Ilmtados e Polaração Prof. Marcos V. T. Heckler Propagação de Ondas letromagnétcas e Polaração 1 Conteúdo Defnções e parâmetros

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Caderno de Fórmulas em Implementação. SWAP Alterações na curva Libor

Caderno de Fórmulas em Implementação. SWAP Alterações na curva Libor Caderno de Fórmulas em Implementação SWAP Alterações na curva Lbor Atualzado em: 15/12/217 Comuncado: 12/217 DN Homologação: - Versão: Mar/218 Índce 1 Atualzações... 2 2 Caderno de Fórmulas - SWAP... 3

Leia mais

Análise de Regressão Linear Múltipla VII

Análise de Regressão Linear Múltipla VII Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

Avaliação de processos produtivos multivariados através das menores componentes principais

Avaliação de processos produtivos multivariados através das menores componentes principais XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, a 4 de out de 3 Avalação de processos produtvos multvarados através das menores componentes prncpas Adrano Mendonça Souza (UFSM) amsouza@ccne.ufsm.br

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Tânia Lucia Hojo (UFMG) Sueli Aparecida Mingoti (UFMG)

Tânia Lucia Hojo (UFMG) Sueli Aparecida Mingoti (UFMG) Modelos de equações estruturas: uma avalação dos métodos de máxma verossmlhança, mínmos quadrados ordnáros e mínmos quadrados parcas usados na estmação de parâmetros do modelo. Tâna Luca Hojo (UFMG) hojo@est.mest.ufmg.br

Leia mais

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO Alne de Paula Sanches 1 ; Adrana Betâna de Paula Molgora 1 Estudante do Curso de Cênca da Computação da UEMS, Undade Unverstára de Dourados;

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Análise de Regressão Linear Múltipla IV

Análise de Regressão Linear Múltipla IV Análse de Regressão Lnear Múltpla IV Aula 7 Guarat e Porter, 11 Capítulos 7 e 8 He et al., 4 Capítulo 3 Exemplo Tomando por base o modelo salaro 1educ anosemp exp prev log 3 a senhorta Jole, gerente do

Leia mais

Associação entre duas variáveis quantitativas

Associação entre duas variáveis quantitativas Exemplo O departamento de RH de uma empresa deseja avalar a efcáca dos testes aplcados para a seleção de funconáros. Para tanto, fo sorteada uma amostra aleatóra de 50 funconáros que fazem parte da empresa

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

Breve Introdução aos Modelos Pontuais de Distribuição em Visão por Computador

Breve Introdução aos Modelos Pontuais de Distribuição em Visão por Computador Relatóro Interno Breve Introdução aos Modelos Pontuas de Dstrbução em Vsão por Computador Mara João Vasconcelos Aluna de Mestrado em Estatístca Aplcada e Modelação Unversdade do Porto, Faculdade de Engenhara

Leia mais

3 Subtração de Fundo Segmentação por Subtração de Fundo

3 Subtração de Fundo Segmentação por Subtração de Fundo 3 Subtração de Fundo Este capítulo apresenta um estudo sobre algortmos para a detecção de objetos em movmento em uma cena com fundo estátco. Normalmente, estas cenas estão sob a nfluênca de mudanças na

Leia mais

METODOLOGIA DO ÍNDICE CARBONO EFICIENTE (ICO2)

METODOLOGIA DO ÍNDICE CARBONO EFICIENTE (ICO2) METODOLOGIA DO ÍNDICE CARBONO Abrl/2015 [data] METODOLOGIA DO ÍNDICE CARBONO O ICO2 é o resultado de uma cartera teórca de atvos, elaborada de acordo com os crtéros estabelecdos nesta metodologa. Os índces

Leia mais

Netuno 4. Manual do Usuário. Universidade Federal de Santa Catarina UFSC. Departamento de Engenharia Civil

Netuno 4. Manual do Usuário. Universidade Federal de Santa Catarina UFSC. Departamento de Engenharia Civil Unversdade Federal de Santa Catarna UFSC Departamento de Engenhara Cvl Laboratóro de Efcênca Energétca em Edfcações - LabEEE Netuno 4 Manual do Usuáro Enedr Ghs Marcelo Marcel Cordova Floranópols, Junho

Leia mais

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

(B) Considere X = antes e Y = depois e realize um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados. INF 6 Notas de aula sujeto a correções Prof. Luz Alexandre Peternell (B) Consdere X antes e Y depos e realze um teste t para dados pareados e um teste da ANOVA de um DBC com 5 blocos. Compare os resultados.

Leia mais

Resistores. antes de estudar o capítulo PARTE I

Resistores. antes de estudar o capítulo PARTE I PARTE I Undade B 6 capítulo Resstores seções: 61 Consderações ncas 62 Resstênca elétrca Le de Ohm 63 Le de Joule 64 Resstvdade antes de estudar o capítulo Veja nesta tabela os temas prncpas do capítulo

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores.

Palavras-Chave: Métodos Interativos da Potência e Inverso, Sistemas Lineares, Autovetores e Autovalores. MSc leandre Estáco Féo ssocação Educaconal Dom Bosco - Faculdade de Engenhara de Resende Caa Postal 8.698/87 - CEP 75-97 - Resende - RJ Brasl Professor e Doutorando de Engenhara aefeo@yahoo.com.br Resumo

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

Reconhecimento Estatístico de Padrões

Reconhecimento Estatístico de Padrões Reconhecmento Estatístco de Padrões X 3 O paradgma pode ser sumarzado da segunte forma: Cada padrão é representado por um vector de característcas x = x1 x2 x N (,,, ) x x1 x... x d 2 = X 1 X 2 Espaço

Leia mais

Regressão múltipla linear

Regressão múltipla linear Regressão múltpla lnear (Análse de superfíces de tendênca) Coefcente de correlação lnear produto momento, segundo Pearson (r) SPXY = -( ) / n; SQX = - () / n; SQY = - () / n r cov(, ) var( )var( ) r SPXY

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria Agregação Dnâmca de Modelos de urbnas e Reguladores de elocdade: eora. Introdução O objetvo da agregação dnâmca de turbnas e reguladores de velocdade é a obtenção dos parâmetros do modelo equvalente, dados

Leia mais

FAAP APRESENTAÇÃO (1)

FAAP APRESENTAÇÃO (1) ARESENTAÇÃO A Estatístca é uma cênca que organza, resume e smplfca nformações, além de analsá-las e nterpretá-las. odemos dvdr a Estatístca em três grandes campos:. Estatístca Descrtva- organza, resume,

Leia mais

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8 Resposta da questão 1: [C] Calculando:,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 8, 8,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 5, x = 9,9 Moda = 8 8+ 8 Medana = = 8,5 + 10 + 8 + 9,4 + 8 +,4 + 7,4 Méda das outras

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

Equações Simultâneas

Equações Simultâneas Equações Smultâneas Caracterzação. Os modelos de equações smultâneasenvolvem mas de uma varável dependente, ou endógena, sendo necessáras tantas equações quanto for o número de varáves endógenas 2. Uma

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

Mestrado em Estatística Aplicada e Modelação. Seminário. Modelos Pontuais de Distribuição em Visão por Computador

Mestrado em Estatística Aplicada e Modelação. Seminário. Modelos Pontuais de Distribuição em Visão por Computador Mestrado em Estatístca Aplcada e Modelação Semnáro Modelos Pontuas de Dstrbução em Vsão por Computador Realzado por: Mara João Vasconcelos Orentador: João Manuel R. S. Tavares Prof. Auxlar do Departamento

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva

Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

COEFICIENTE DE GINI: uma medida de distribuição de renda

COEFICIENTE DE GINI: uma medida de distribuição de renda UNIVERSIDADE DO ESTADO DE SANTA CATARINA ESCOLA SUPERIOR DE ADMINISTRAÇÃO E GERÊNCIA DEPARTAMENTO DE CIÊNCIAS ECONÔMICAS COEFICIENTE DE GINI: uma medda de dstrbução de renda Autor: Prof. Lsandro Fn Nsh

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Expermentas em Cêncas Mecâncas Professor Jorge Luz A. Ferrera Sumáro.. Dagrama de Dspersão. Coefcente de Correlação Lnear de Pearson. Flosofa assocada a medda da Estatstca. este de Hpótese 3. Exemplos.

Leia mais

Estudo e Previsão da Demanda de Energia Elétrica. Parte II

Estudo e Previsão da Demanda de Energia Elétrica. Parte II Unversdade Federal de Paraná Setor de Tecnologa Departamento de Engenhara Elétrca Estudo e Prevsão da Demanda de Energa Elétrca Parte II Prof: Clodomro Unshuay-Vla Etapas de um Modelo de Prevsão Objetvo

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS Dnz, L.S. Santos, C.A.C. Lma, J.A. Unversdade Federal da Paraíba Laboratóro de Energa Solar LES/DTM/CT/UFPB 5859-9 - João Pessoa - PB, Brasl e-mal: cabral@les.ufpb.br

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais

Análise de influência

Análise de influência Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...).

Leia mais

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 =

Prof. Cláudio Serra, Esp. 1. Produção de Leite x índice Pluviométrico y = 0.8x R 2 = Análse de Regressão Cap.. Introdução Análse de regressão é uma técnca de modelagem utlzada para analsar a relação entre uma varável dependente () e uma ou mas varáves ndependentes,, 3,..., n. O ojetvo

Leia mais

Medidas de Tendência Central. Prof.: Ademilson Teixeira

Medidas de Tendência Central. Prof.: Ademilson Teixeira Meddas de Tendênca Central Prof.: Ademlson Texera ademlson.texera@fsc.edu.br 1 Servem para descrever característcas báscas de um estudo com dados quanttatvos e comparar resultados. Meddas de Tendênca Central

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Centfca Curso Matemátca Engenhara Electrotécnca º Semestre º 00/0 Fcha nº 9. Um artgo da revsta Wear (99) apresenta dados relatvos à vscosdade do óleo e ao desgaste do aço maco. A relação entre estas

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

2ª PARTE Estudo do choque elástico e inelástico.

2ª PARTE Estudo do choque elástico e inelástico. 2ª PARTE Estudo do choque elástco e nelástco. Introdução Consderemos dos corpos de massas m 1 e m 2, anmados de velocdades v 1 e v 2, respectvamente, movmentando-se em rota de colsão. Na colsão, os corpos

Leia mais

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP, NO PÓLO GESSEIRO DO ARARIPE Jáder da Slva Jale Joselme Fernandes Gouvea Alne Santos de Melo Denns Marnho O R Souza Kléber Napoleão Nunes de

Leia mais

CAPÍTULO 3 CALIBRAÇÃO DE FASE INTERFEROMÉTRICA

CAPÍTULO 3 CALIBRAÇÃO DE FASE INTERFEROMÉTRICA CAPÍTULO 3 CALIBRAÇÃO DE FASE INTERFEROMÉTRICA 3. Método Utlzando Ponto de Controle O uso de pontos de controle é o meo mas exato para a determnação do offset da fase nterferométrca. Normalmente utlza-se

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

Medidas e resultados em um experimento.

Medidas e resultados em um experimento. Meddas e resultados em um expermento. I- Introdução O estudo de um fenômeno natural do ponto de vsta expermental envolve algumas etapas que, mutas vezes, necesstam de uma elaboração préva de uma seqüênca

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais