2. Resolva as inequações e apresente seus resultados usando a notação de intervalos. (f) x2 4x+3 x 2 4x (g) jx+4jj2x 6j. 6 5x 3+x 1 2 (i) jxj+ 1 x <0

Tamanho: px
Começar a partir da página:

Download "2. Resolva as inequações e apresente seus resultados usando a notação de intervalos. (f) x2 4x+3 x 2 4x (g) jx+4jj2x 6j. 6 5x 3+x 1 2 (i) jxj+ 1 x <0"

Transcrição

1 . Determine o domínio e construa o grá co das seguintes funções. A seguir identi- que como estão relacionados os grá cos das funções do mesmo tipo. (a) f()=4 (b) g()= 4+ (c) h()=4 ( ) (d) p()=6 ( ) (e) f()= 3 (f) g()=(+) 3 (g) h()=(+) 3 + (h) p()= 3 4 (i) q()= 3 (j) f()= p (k) g()= p + (l) h()= p + (m) f()=log (n) g()=log( ) (o) h()=log (p) p()=ln (q) f()= (r) g()= (s) h()= (t) p()= + (u) q()=e (v) f()= (w) h()= () p()= (y) f()=sin() (z) h()=sin. Resolva as inequações e apresente seus resultados usando a notação de intervalos. (a) +7 > (b) + (c) > p (d) < (e) 0< < (f) 4+3 >0 4 (g) j+4jj 6j (h) (i) jj+ <0 (j) 5<j4 j< jj (k) > jj (l) jj+ p < (m) j+jj+3j 5 3. Sejaf()= +4 Determineosvaloresindicadossendoaumnúmeroreal. (a) f(=a) (b) =f(a) (c) f(a ) (d) [f(a)] (e) f( p a) (f) p f(a) f(a+h) f(a) (g) ;comh6=0 h 4. Determinequaisdasfunçõesabaio,deRemR;sãoinjetorasequaissãosobrejetoras. Justi que suas respostas. (a) y=+ (b) y= 5+6 (c) y= 4

2 ( y= ( ; se6=0 0; se=0 5. Sejaf()= + determinealeidasseguintesfunçõeseoseudomínio. (a) g()=f (b) h()=(ff)() + 6. Sejam f() = ln e g() = 3 determine a lei das seguintes funções e o seu domínio. (a) h()=(fg)() (b) u()=(gf)() 7. Useade niçãodemóduloparareescreverasfunçõesabaioeaseguiresboceseu grá co. (a) f()=jj+j j+j j (b) f()=j9 j 8. Sejamf egduasfunçõesderemrassimde nidas f()= +; se0 +; se<0 e g()=3 Determinefg e gf 9. Sendof R!Rde nidapor f()= +; se0 ; se>0 Determineff 0. Determine quais das funções abaio são pares ou ímpares. (a) f()=5 3 (b) f()= ++ (c) f()=jj (d) f()= a +a (e) f()=ln(+ p + ) + (f) f()=ln. Mostre que se f e g são funções ímpares, então (f +g) e (f g) também são funções ímpares.. Mostrequesef egsãofunçõesímpares,entãofge f g sãofunçõespares. 3. Mostre que a função [f()+f( )] é par e que a função [f() f( )] é ímpar. 4. Provequequalquerfunçãof R!Rpodeserepressacomoasomadeuma função par com uma função ímpar. 5. Sef()= ;mostrequef(+3) f( )= 5 f() 6. Sef()=e ;veri quequef()f(y)=f(+y) 4

3 f()=ln;veri queque (a) f()+f(y)=f(y) (b) f( )=f() (c) f( u v )+f(v u )=0 8. Determine o domínio das seguintes funções. s (a) f()=e + (f) f()= cosh 3+5 j 5j + s 3p 3+5 (g) f()= sinh( (b) f()= ( e j 5j ) )(+) r s jj (c) f()= (h) f()= ln +jj + p (d) f()= p ln( ) (i) f()= e j3 j (e) f()=e p sinh( ) ln(sin) (j) f()= arcsin ln( ) 9. Nositensabaiodetermineafunçãoinversaeconstruaográ codef ef (a) f()= p ; (b) f()= + (c) f()= + ; 0. Determineafunçãof()deprimeirograuquesatisfazf()= e f( )= 7. Sejaf()=cos e g()= p +Classi queafunçãoh()=g ()(gf)() como função par ou ímpar.. Sejamf egasfunçõesde nidasporf()= 3 3 (a) Veri queseafunçãoh()=(gf)()éparouímpar. e g()= 3 (b) Determine todos os valores reais de que satisfazem a inequação j+g()j f() 3 3. Sejag afunçãode nidaporg()=ln( p )Determineainversadafunção g()eodomínioeimagemdesta. 8 < 3; se > 4. Considereafunçãode nidaporf()= ; se = ; se < (a) Construaográ codef() (b) f R!Rébijetora? Justi que. 43

4 f ();restringindodomínioecontradomíniosenecessário,econstrua o seu grá co. 5. Considereafunçãode nidaporf()= ln(+); se 0 e ; se<0 (a) Construaográ codef() (b) f R!Rébijetora? Justi que. (c) Determinef ();restringindodomínioecontradomíniosenecessário,econstrua o seu grá co. 6. Sejaf()=cos()Determine (a) operíododef() (b) f ()comrestriçãodedomínioeimagem. (c) ográ codef() e f () 7. Sejaf()=sin()Determine (a) operíododef() (b) f ()comrestriçãodedomínioeimagem. (c) ográ codef() e f () 8. Considereasfunçõesf e fg de nidasporf()=ln( 3 ) e (fg)()= p +Determineasfunçõesg e g Aseguirdetermineodomínioeaimagem deg 9. Sejaf()= e e (a) Provequesef(a)=f(b);entãoa=b (b) ProvequedadoyReisteRtalquef()=y (c) DetermineD(f ); Im(f ) ealeidef 44

5 R!". Respostas em grupo. (a)-(d) Df =R (e)-(i) #$% & #'%) Df =Dg=[0;+);Dh=[ ;+) De(m)-(p) Df =Dg=Dp=(0;+); Dh=( ;+) #*% & #+%) Df =Dg=Dq=Dp=Dh=R (v)-() Df =Dh=R ;Dp=(0;+) 4,

6 -./ 0 -/3 Df =Dg=Dh=R 56 6 (a) S=( ; 8)[( 7; +) (b) S=( ; )[(0; +) (c) S=[; +) (d) S=(0; ) (e) S=( ; )[(; +) 3 (f) S=( ; 0)[(;3)[(4; +) (g) S=( ; ][[0; +) 3 (h) S=[ 9; 5 ] a (a) +4a (b) a +4 (c) a 4 +4 (d) (a +4) (e) a+4 (i) S=( ; 0) (j) S=( 4; 3][(3; 4) (k) S=(; +) (l) S=[0; 3 p 5 ) (m) S=( ; +) f 3; g (f) (g) p a +4 a+h [(a+h) +4](a +4) (a) Bijetora (b) Nem -, nem sobrejetora (c) - (d) Bijetora 5.. (a) g()= + e D g=r f ; g (b) h()= e D h =R f g 6.. (a) h()=3ln e D h =R + (b) u()=ln 3 e D u =R >< (a) f()= > 4+; se<0 +; se0< ; se < 4 ; se (b) f()= 9 ; se[ 3;3] 9; se( ; 3)[(3;+) 46

7 87 8 >< 9. (ff)()= > 3 ; se (fg)()= 3 3+3; se< 3 3+; se0 (gf)()= 3+; se<0 +; se ; se <0 +4; se0<< ; se 0. FunçãoPar (c)e(d);funçãoímpar (a)e(f). Use a de nição.. Use a de nição. 3. Use a de nição. 4. Useoeercício (a) D f =R (b) D f =R f ; 0g (c) D f =( ; +) (d) D f =R [ ;] (e) D f =(0; ] (f) D f =R f5g (g) D f =f0g[[; +) f5g (h) D f =( ; )[[ p ; +) (i) D f =[; +) (j) D f =(; ) 9.. (a) f [0;+)![;+)de nidaporf ()= + 47

8 9; f Rnfg!Rnfgde nidaporf ()= (+) 9<; f [ ;+)!( ; ]de nidaporf ()= p + =>? f()=4 3. héumafunçãopar.. (a) héumafunçãoímpar. (b) S=(0; +) f3g 3. g ()= e ; D g =R e Im(g )=( ; ) 4. Temos que f é injetora, porém não é sobrejetora(justi que!), 8 p < +3; se > f ()= ; se = +; se <0 48

9 @AB CDEFG HID f é injetora, porém não é sobrejetora(justi que!), f e ()= ; se 0 ln( ); se <<0 JKLIMN OP 6. T =; f [ ; ]![0; ]dadaporf ()=arccos 7. T =; f [ ; ]! ; 4 4 dadaporf ()= arcsin() p g()=e 3 ; g ()=(3ln() ) ; g [e 3;+)![ ;+) JKLIMN WP JKLIMN VP 9. f R!R e f ()=ln(+ p +) 49

(j) f(x) = (w) h(x) = x. (y) f(x) = sin(2x) (z) h(x) = 2 sin x. > 0 x 2 4x (g) x + 4 2x 6 (h)

(j) f(x) = (w) h(x) = x. (y) f(x) = sin(2x) (z) h(x) = 2 sin x. > 0 x 2 4x (g) x + 4 2x 6 (h) Professora: Elisandra Bär de Figueiredo Lista : Funções - Cálculo Diferencial e Integral I. Determine o domínio e construa o gráco das seguintes funções. A seguir identique como estão relacionados os grácos

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaio. (a) f () = 3 (b) g () = (c) h () = (d) f () = 1 3 + 5 1 3 (e) g () 2 (f) g () = jj 8 8

Leia mais

Capítulo 6 - Integral Inde nida

Capítulo 6 - Integral Inde nida Caítulo - Integral Inde nida. Calcule as integrais inde nidas abaio usando integração imediata ou o método da substituição. e d (j) e d d e ( ) (k) d d arctan (l) ( ) d d sec tg (m) d ln d e (n) ( e )

Leia mais

2. Tipos de funções. Funções pares e ímpares Uma função f é par se é simétrica em relação ao eixo y, isto é, f( x) = f(x).

2. Tipos de funções. Funções pares e ímpares Uma função f é par se é simétrica em relação ao eixo y, isto é, f( x) = f(x). 1. Algumas funções básicas 2. Tipos de funções Funções pares e ímpares Uma função f é par se é simétrica em relação ao eio y, isto é, f( ) = f(). Eemplos: A função f() = n onde n inteiro positivo é par?

Leia mais

Apostila de. Centro de Ciências Técnológicas - CCT Departamento de Matemática - DMAT

Apostila de. Centro de Ciências Técnológicas - CCT Departamento de Matemática - DMAT Centro de Ciências Técnológicas - CCT Departamento de Matemática - DMAT Apostila de Home page: http://www.joinville.udesc.br/portal/professores/eliane/ Apostila editada pela Profa. Eliane Bihuna de Azevedo,

Leia mais

Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA RESOLUÇÃO: f(x) = f(x) = x f(x) = x ) a 2. 2) a função g: * 1.

Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA RESOLUÇÃO: f(x) = f(x) = x f(x) = x ) a 2. 2) a função g: * 1. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 4 Funções II. (OPM) Seja f uma função de domínio dada por + f() =. Determine o conjunto-imagem + + da função. O conjunto-imagem da

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Universidade do Estado de Santa Catarina Centro de Ciências Técnológicas - CCT Departamento de Matemática - DMAT Apostila de Cálculo Diferencial e Integral I t = f ( ) Q s = f ( ) = f ( ) 0 0 P 0 Home

Leia mais

VERSÃO A. A ausência desta indicação implica a anulação de todas as questões da escolha múltipla.

VERSÃO A. A ausência desta indicação implica a anulação de todas as questões da escolha múltipla. VERSÃO A Na sua folha de respostas escreva VERSÃO A. A ausência desta indicação implica a anulação de todas as questões da escolha múltipla. Identi que claramente os grupos e as questões a que responde.

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Universidade do Estado de Santa Catarina Centro de Ciências Técnológicas - CCT Departamento de Matemática - DMAT Apostila de Cálculo Diferencial e Integral I t = f ( ) Q s = f ( ) = f ( ) 0 0 P 0 Home

Leia mais

Capítulo 1 Números Reais, Intervalos e Funções

Capítulo 1 Números Reais, Intervalos e Funções Capítulo Números Reais, Intervalos e Funções Objetivos Identi car os conjuntos numéricos; Conhecer e aplicar as propriedades relativas à adição e multiplicação de números reais; Utilizar as propriedades

Leia mais

Matemática A Semi-Extensivo V. 3

Matemática A Semi-Extensivo V. 3 Matemática A Semi-Etensivo V. Eercícios 0) 0 f: R R f() = c) f: R R f() = 0. Falsa alsa. CD = R, mas Im(f) = [, ). 0. Falsa alsa. Im(f) = [, ). 0. Falsa alsa. Já não é sobrejetora. 08. Verdadeira f( 5

Leia mais

Exercícios Complementares 3.4

Exercícios Complementares 3.4 Eercícios Complementares 3.4 3.4A Falso ou Verdadeiro? Justi que. (a) se jc n j é convergente, então c n n é absolutamente convergente no intervalo [ ; ] ; (b) se uma série de potências é absolutamente

Leia mais

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 1. Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jx 1j x, se x 2

Leia mais

1.1 Domínios & Regiões

1.1 Domínios & Regiões 1. CAMPOS ESCALARES CÁLCULO 2-2018.2 1.1 Domínios & Regiões 1. Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a)

Leia mais

VERSÃO A. A ausência desta indicação implica a anulação de todas as questões da escolha múltipla.

VERSÃO A. A ausência desta indicação implica a anulação de todas as questões da escolha múltipla. VERSÃO A Na sua folha de respostas escreva "VERSÃO A". A ausência desta indicação implica a anulação de todas as questões da escolha múltipla. Identi que claramente os grupos e as questões que responde.

Leia mais

Especialização em Matemática - Estruturas Algébricas

Especialização em Matemática - Estruturas Algébricas 1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática - Estruturas Algébricas Prof a.: Elisangela Farias e Sérgio Motta FUNÇÕES Sejam X e Y conjuntos.

Leia mais

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 41. Funções II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 41 Funções II 1. (OPM) Seja f uma função de domínio dada por x x + 1 f(x) =. Determine o conjunto-imagem x + x + 1 da função.. Considere

Leia mais

Matemática A Superintensivo

Matemática A Superintensivo Matemática A Superintensivo Eercícios 0) a) é elemento de A A. b) não é elemento de B B. c) 0 não é elemento de C 0 C. d) Todo elemento de B é elemento de A B A. e) B e C B C. f) O conjunto A contém os

Leia mais

Teste de Matemática 2017/I

Teste de Matemática 2017/I Universidade Federal de Viçosa Departamento de Matemática Teste de Matemática 017/I 1. Os ovos de galinha são mais baratos do que os de perua. Não tenho dinheiro suficiente para comprar duas dúzias de

Leia mais

1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2

1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f(x) = x b) f(x) = - 3x + 2 1º) Esboce o gráfico das funções, calcule e marque os interceptos: a) f() = b) f() = - 3 + 2 (0,0) (0,2) no eio (,0) no eio c) f() = + 3 d) f() = 2-3 (0,3) no (0,-3) no (-3,0) no (1,5;0) no 2º) Determine

Leia mais

LISTA DE PRÉ-CÁLCULO

LISTA DE PRÉ-CÁLCULO LISTA DE PRÉ-CÁLCULO Instituto de Matemática - UFRJ Prof. Nei Rocha Rio de Janeiro 2018-2 Eercício 1 Resolva: (a) 1 = + 1 (b) 6 3 1 = 3 (1 + 2 2 ) (c) 8 < 3 4 (d) 2 2 + 10 12 < 0 (e) 1 2 + 2 3 4 (f) +

Leia mais

Aula 9 Aula 10. Ana Carolina Boero. Página:

Aula 9 Aula 10. Ana Carolina Boero.   Página: E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções Sejam A e B conjuntos. Uma função f : A B (leia f de A em B ) é uma regra

Leia mais

Lista de Exercícios de Funções

Lista de Exercícios de Funções Lista de Eercícios de Funções ) Seja a R, 0< a < e f a função real de variável real definida por : f() = ( a a ) cos( π) + 4cos( π) + 3 Sobre o domínio A desta função podemos afirmar que : a) (], [ Z)

Leia mais

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir

Leia mais

Prova Escrita de MATEMÁTICA

Prova Escrita de MATEMÁTICA Prova Escrita de MATEMÁTICA Identi que claramente os grupos e as questões a que responde. As funções trigonométricas estão escritas no idioma anglo saxónico. Utilize apenas caneta ou esferográ ca de tinta

Leia mais

Notas sobre primitivas

Notas sobre primitivas Matemática - 8/9 - Notas sobre primitivas 57 Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

Funções. Capítulo Introdução

Funções. Capítulo Introdução Capítulo 5 Funções 5.1 Introdução De nição: Dados dois conjuntos A e B e uma relação f de A em B, dizemosqueféumafunçãoouaplicaçãose,esomentese,paratodoelementox deaexiste,emcorrespondência,umúnicoelementoydebtalqueopar(x,y)

Leia mais

MÓDULO 33. Funções I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 33. Funções I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA C9_ITA_Mod_33_36_prof /0/0 09:5 Page I Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 33 Funções I. (OPM Seja f uma função dada por: f( = 7 e n f(n =, para n natural, maior que.

Leia mais

7.1 Mudança de Variável (método de substituição)

7.1 Mudança de Variável (método de substituição) 7. Mudança de Variável (método de substituição) 0. 0. 0. 05. 07. 08. 0... e 5 (res. e 5 =5 + C) sen a (res. a cos a + C; a 6= 0) sen () 7 (res. cotg + C) (res. jln 7j + C) tan (res. ln jcos j + C) cot

Leia mais

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1.

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1. QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL QUESTÃO Se ( ) a, e a, eamine as seguintes afirmações: () A função é crescente () A função d/d é crescente () lim ( ) () lim ( ) ( ) ( y) y Se, y, então (4) QUESTÃO

Leia mais

- Cálculo 1: Lista de exercícios 1 -

- Cálculo 1: Lista de exercícios 1 - - Cálculo : Lista de exercícios - UFOP - Professora Jussara Moreira. Resolver as inequações: (a) x(x ) > 0 {x R/x < 0 ou x > }; (b) (x )(x + ) < 0 {x R/ < x < }; (c) x x {x R/x ou x }; x (x ) 0 {x R/x

Leia mais

1.1 Propriedades Básicas

1.1 Propriedades Básicas 1.1 Propriedades Básicas 1. Classi que as a rmações em verdadeiras ou falsas, justi cando cada resposta. (a) Se x < 2, então x 2 < 4: (b) Se x 2 < 4, então x < 2: (c) Se 0 x 2, então x 2 4: (d) Se x

Leia mais

A. PAR ORDENADO 01. Determine a e b de modo que: (a) (a + 3, b + 1) = (3a 5, 4) (b) (a 2, 3b + 4) = (2a + 3, b + 2) (c) ( a 2 5 a,b 2 ) = ( 6, 2b 1) (d) (a, 2a) = (b + 4, 7 b) 02. Represente num mesmo

Leia mais

Universidade Federal de Viçosa

Universidade Federal de Viçosa Universidade Federal de Viçosa Ciências Eatas e Tecnológicas Departamento de Matemática MAT 4 - Lista - 07/. Determine o domínio a imagem as raízes e o estudo de sinal das funções a seguir: (a) f() = 4

Leia mais

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto 1 Algumas definições sobre funções Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto A B = {(a, b) : a A, b B}. Dados dois conjuntos A, B, uma função de A em B é uma lei que associa

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = (d) f (x) = 1 3 x + 5 1 3 (e) g (x) 2x (f) g (x) = jj 8 8 < x, se x 2

Leia mais

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO

Representação no Plano Cartesiano INTRODUÇÃO A FUNÇÃO INTRODUÇÃO A FUNÇÃO Def: Dado dois conjuntos que tenham uma relação, chama-se função quando todo elemento do primeiro tiver associado um único elemento do segundo conjunto. Ou seja, f é função de A em

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

FUNÇÕES. 1.Definição e Conceitos Básicos

FUNÇÕES. 1.Definição e Conceitos Básicos FUNÇÕES 1.Definição e Conceitos Básicos 1.1. Definição: uma função f: A B consta de três partes: um conjunto A, chamado Domínio de f, D(f); um conjunto B, chamado Contradomínio de f, CD(f); e uma regra

Leia mais

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto

Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto 1 Algumas definições sobre funções Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto A B = {(a, b) : a A, b B}. Dados dois conjuntos A, B, uma função de A em B é uma lei que associa

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação 12/01/2013 FILA A Aluno (a): Matrícula: Turma:

UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação 12/01/2013 FILA A Aluno (a): Matrícula: Turma: UFJF ICE Departamento de Matemática Cálculo I Primeira Avaliação /0/03 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: - A prova pode ser feita a lápis, exceto o quadro de respostas das questões

Leia mais

f(x + h) f(x) 6. Determine as coordenadas dos pontos da curva f (x) = x 3 x 2 + 2x em que a reta tangente é paralela ao eixo x.

f(x + h) f(x) 6. Determine as coordenadas dos pontos da curva f (x) = x 3 x 2 + 2x em que a reta tangente é paralela ao eixo x. Professora: Elisandra Bär de Figueiredo Lista 4: Derivadas - Cálculo Diferencial e Integral I f( + h) f() 1. Para as funções dadas abaio calcule lim. h 0 h( (a) f() ) (b) f() (e) f() cos (c) f() 1 (f)

Leia mais

Introdução às Funções

Introdução às Funções Introdução às Funções Guilherme Prado Curso Pré-vestibular Unicentro Plano cartesiano O plano cartesiano é um sistema ortogonal de coordenadas utilizado para demonstrar a localização de pontos no espaço

Leia mais

LICENCIATURA EM ENGENHARIA CIVIL FOLHA 2

LICENCIATURA EM ENGENHARIA CIVIL FOLHA 2 UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL REGIME DIURNO/NOCTURNO - o SEMESTRE - o ANO - 009/00 DISCIPLINA DE ANÁLISE MATEMÁTICA FOLHA. Das figuras abaio esboçadas

Leia mais

7.1 Regras Básicas de Derivação. 7.2 Principais Notações. 01. regra da soma: [f (x) + g (x)] 0 = f 0 (x) + g 0 (x)

7.1 Regras Básicas de Derivação. 7.2 Principais Notações. 01. regra da soma: [f (x) + g (x)] 0 = f 0 (x) + g 0 (x) 7. Regras Básicas e Derivação 0. regra a soma: [f () + g ()] 0 = f 0 () + g 0 () 0. regra a iferença [f () g ()] 0 = f 0 () g 0 () 0. regra o routo [f () :g ()] 0 = f () g 0 () + f 0 () g () 04. regra

Leia mais

MAT 104 Cálculo 1 Prof. Paolo Piccione. Prova

MAT 104 Cálculo 1 Prof. Paolo Piccione. Prova MAT 104 Cálculo 1 Prof. Paolo Piccione Prova 1 26.04.2010 2010122 Nome: RG: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as alternativas corretas na folha de respostas

Leia mais

MAT 104 Cálculo 1 Prof. Paolo Piccione. Prova

MAT 104 Cálculo 1 Prof. Paolo Piccione. Prova MAT 104 Cálculo 1 Prof. Paolo Piccione Prova 1 26.04.2010 2010122 Nome: RG: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as alternativas corretas na folha de respostas

Leia mais

Notas sobre primitivas

Notas sobre primitivas Análise Matemática I - Engenharia Topográ ca - 9/- Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo

Leia mais

NOTAS DE AULAS DE CÁLCULO I

NOTAS DE AULAS DE CÁLCULO I UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE EDUCAÇÃO E SAÚDE UNIDADE ACADÊMICA DE EDUCAÇÃO PERÍODO 2012.1 TURNO: DATA: PROFESSORA: CÉLIA MARIA RUFINO FRANCO Aluno (a): NOTAS DE AULAS DE CÁLCULO I

Leia mais

Matemática Discreta - Exercícios de Grafos

Matemática Discreta - Exercícios de Grafos UALG - 0/0 1. Seja G o grafo cuja matriz de adjacência é: 1 8 9 1 8 9 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, com a > 0 e a, chamamos função eponencial de base a a função f de R R que associa a cada real o número a. Podemos escrever, também: f: R R a Eemplos

Leia mais

4.-1 Funções Deriváveis

4.-1 Funções Deriváveis 4.- Funções Deriváveis 4.A Em cada caso, encontre a derivada da função y = f (), usando a de nição. (a) y = + (b) y = 3 (c) y = 5 (d) y = 3 (e) y = +

Leia mais

Complementos de Cálculo Diferencial

Complementos de Cálculo Diferencial Matemática - 009/0 - Comlementos de Cálculo Diferencial 47 Comlementos de Cálculo Diferencial A noção de derivada foi introduzida no ensino secundário. Neste teto retende-se relembrar algumas de nições

Leia mais

4.1 Funções Deriváveis

4.1 Funções Deriváveis 4. Funções Deriváveis 4.A Em cada caso, encontre a derivada da função y = f (), usando a de nição. (a) y = + (b) y = 3 (c) y = 5 (d) y = 3 (e) y = +

Leia mais

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição

Funções monótonas. Pré-Cálculo. Atividade. Funções crescentes. Parte 3. Definição Pré-Cálculo Departamento de Matemática Aplicada Universidade Federal Fluminense Funções monótonas Parte 3 Funções crescentes Pré-Cálculo 1 Atividade Pré-Cálculo 2 Dizemos que uma função f : D C é crescente

Leia mais

Instituto Superior Técnico - 1 o Semestre 2006/2007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

Instituto Superior Técnico - 1 o Semestre 2006/2007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec Instituto Superior Técnico - o Semestre 006/007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec a Ficha de eercícios para as aulas práticas 3-4 Novembro de 006. Determine os

Leia mais

Matemática A Extensivo v. 5

Matemática A Extensivo v. 5 Matemática A Etensivo v. Eercícios ) D f() ( ) f(). Portanto, f() é ímpar. Demonstrar que a função f() é bijetora, isto é, injetora e sobrejetora. Pode ser um tanto "difícil". Para resolução da questão,

Leia mais

APLICAÇÕES IMAGEM DIRETA - IMAGEM INVERSA. Professora: Elisandra Bär de Figueiredo

APLICAÇÕES IMAGEM DIRETA - IMAGEM INVERSA. Professora: Elisandra Bär de Figueiredo Professora: Elisandra Bär de Figueiredo APLICAÇÕES DEFINIÇÃO 1 Seja f uma relação de E em F. Dizemos que f é uma aplicação de E em F se (i) D(f) = E; (ii) dado a D(f), existe um único b F tal que (a, b)

Leia mais

Derivadas. Capítulo O problema da reta tangente

Derivadas. Capítulo O problema da reta tangente Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este conceito relaciona-se com o problema de determinar a reta tangente

Leia mais

Capítulo 5 Derivadas

Capítulo 5 Derivadas Departamento de Matemática - ICE - UFJF Disciplina MAT54 - Cálculo Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este

Leia mais

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que

CÁLCULO I. Efetuar transformações no gráco de uma função. Aplicando esse teste às seguintes funções, notamos que CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 03: Funções Inversas e Compostas.Transformações no Gráco de uma Função. Objetivos da Aula Denir função bijetora e função

Leia mais

Notas sobre primitivas

Notas sobre primitivas MTDI I - 007/08 - Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada

Leia mais

Prova Escrita de Conhecimentos Específicos de MATEMÁTICA

Prova Escrita de Conhecimentos Específicos de MATEMÁTICA Provas Especialmente Adequadas Destinadas a Avaliar a Capacidade para a Frequência dos Cursos Superiores do Instituto Politécnico de Leiria dos Maiores de 23 Anos Prova Escrita de Conhecimentos Específicos

Leia mais

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM3100 - Pré-cálculo Gabarito parcial da 11 a lista de eercícios 1. Crescente em [ 1, 1]. Crescente

Leia mais

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2}

FUNÇÃO. Exemplo: Dado os conjuntos A = { -2, -1, 0, 1, 2} e B = {0, 1, 2, 3, 4, 5} São funções de A em B as relações a) R 1 = {(x,y) AXB/ y = x + 2} Sistemas de Informação e Tecnologia em Proc. de Dados Matemática Ms. Carlos Roberto da Silva/ Ms. Lourival Pereira Martins FUNÇÃO Definição: Dados dois conjuntos e define-se como função de em a toda relação

Leia mais

Teste de Matemática Elementar 2017/II

Teste de Matemática Elementar 2017/II Universidade Federal de Viçosa Departamento de Matemática Teste de Matemática Elementar 07/II. A frase: Se João joga futebol, então Maria toca violão é equivalente a: João joga futebol se, e somente se,

Leia mais

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) = 54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula no 05: Funções Logarítmica, Exponencial e Hiperbólicas. Objetivos da Aula De nir as funções trigonométricas, trigonométricas

Leia mais

Aula 04 Funções. Professor Marcel Merlin dos Santos Página 1

Aula 04 Funções. Professor Marcel Merlin dos Santos Página 1 PARIDADE Define-se como paridade o estudo das características do que é igual ou semelhante, ou seja, é uma comparação para provar que uma coisa pode ser igual ou semelhante à outra. Função Par Define-se

Leia mais

EXERCÍCIOS DE ÁLGEBRA LINEAR

EXERCÍCIOS DE ÁLGEBRA LINEAR IST - 1 o Semestre de 016/17 MEBiol, MEAmbi EXERCÍCIOS DE ÁLGEBRA LINEAR FICHA - Vectores e valores próprios 1 1 Vectores e valores próprios de transformações lineares Dada uma transformação linear T V!

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 1 a FICHA DE EXERCÍCIOS 1 [

CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT 1 o SEM. 2014/15 1 a FICHA DE EXERCÍCIOS 1 [ Instituto Superior Técnico Departamento de Matemática CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBIOM, MEFT o SEM. 04/5 a FICHA DE EXERCÍCIOS 0. Desigualdades e Módulos. Mostre que:.. R : + < =, 7, +.. R

Leia mais

Limite e Continuidade

Limite e Continuidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de

Leia mais

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) = 54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

Regras Básicas de Derivação

Regras Básicas de Derivação Regras Básicas e Derivação. regra a soma: (u + kv) = u + kv, k constante 2. regra a iferença: (u + v) = u + v 3. regra o prouto: (u v) = u v + u v u u v u v 4. regra o quociente: = v v 2 5. regra a caeia:

Leia mais

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1

CÁLCULO I. Figura 1: Círculo unitário x2 + y 2 = 1 CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Prof. Emerson Veiga Prof. Tiago Coelho Aula no 04: Funções Trigonométricas, Logarítmica, Exponencial e Hiperbólicas. Objetivos

Leia mais

Exercícios de Álgebra Linear 2 o Semestre 2008/2009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC

Exercícios de Álgebra Linear 2 o Semestre 2008/2009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC Exercícios de Álgebra Linear o Semestre 008/009 LEIC, LEGM, LMAC, MEFT, MEBiom e MEC João Ferreira Alves/Ricardo Coutinho Sistemas de Equações Lineares e Matrizes Exercício Resolva por eliminação de Gauss

Leia mais

Matemática A Intensivo V. 1

Matemática A Intensivo V. 1 Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Neste caso temos {a} como subconjunto de {a, b} logo a relação correta seria a} {a, b} c) Falso

Leia mais

Mais funções e limites

Mais funções e limites Capítulo 3 Mais funções e ites Nesse capítulo, abordaremos as funções invertíveis, além de algumas classes especiais de funções: trignométricas, exponenciais, logarítmicas e hiperbólicas. 3.1 Funções Inversas

Leia mais

3.1 Limite & Continuidade

3.1 Limite & Continuidade 3. FUNÇÕES CONTÍNUAS ANÁLISE NO CORPO R - 2018.1 3.1 Limite & Continuidade 1. Mostre que a função valor absoluto f (x) = jxj é contínua em qualquer ponto x 2 R: 2. A função de Dirichlet ' : R! R é de nida

Leia mais

02. No intervalo [0, 1], a variação de f é maior que a variação de h.

02. No intervalo [0, 1], a variação de f é maior que a variação de h. LISTA DE EXERCÍCIOS FUNÇÕES: CONCEITOS INICIAIS PROFESSOR: Claudio Saldan CONTATO: saldanmat@gmailcom 0 - (UEPG PR) Sobre o gráfico abaio, que representa uma função = f() definida em R, assinale o que

Leia mais

Cálculo Diferencial e Integral 1 Notas para estudantes dos cursos de Engenharia e Bacharelado

Cálculo Diferencial e Integral 1 Notas para estudantes dos cursos de Engenharia e Bacharelado Cálculo Diferencial e Integral Notas para estudantes dos cursos de Engenharia e Bacharelado Thiago G. do Prado, Jéssica P. M. Lopes e José G. Netto 06/07/05 Contents Preface i Continuidade e Limites. Continuidade............................

Leia mais

MATEMÁTICA MÓDULO 9 FUNÇÃO MODULAR 1. DEFINIÇÃO OBSERVAÇÃO 2. PROPRIEDADES 3. EQUAÇÕES E INEQUAÇÕES MODULARES. x,se x 0 x,se x 0

MATEMÁTICA MÓDULO 9 FUNÇÃO MODULAR 1. DEFINIÇÃO OBSERVAÇÃO 2. PROPRIEDADES 3. EQUAÇÕES E INEQUAÇÕES MODULARES. x,se x 0 x,se x 0 FUNÇÃO MODULAR 1. DEFINIÇÃO A função modular (ou valor absoluto) é tal que f,se 0,se 0.A notação utilizada é f. OBSERVAÇÃO Veja que f 0 para todo real.. PROPRIEDADES I) II) III) IV) (Esta propriedade é

Leia mais

Aula 2 Função_Uma Ideia Fundamental

Aula 2 Função_Uma Ideia Fundamental 1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados

Leia mais

Instituto Superior Técnico - Álgebra Linear - 1 o Semestre 2016/2017 LEIC-A 5 a Ficha de exercícios para as aulas de problemas

Instituto Superior Técnico - Álgebra Linear - 1 o Semestre 2016/2017 LEIC-A 5 a Ficha de exercícios para as aulas de problemas Instituto Superior Técnico - Álgebra Linear - o Semestre 0/0 LEIC-A a Ficha de exercícios para as aulas de problemas Classi que quanto à paridade as seguintes permutações de números de a : () () () (iv)

Leia mais

Cálculo II Exame de 2 a Época, 28 de Junho de 2000

Cálculo II Exame de 2 a Época, 28 de Junho de 2000 Faculdade de Economia Universidade Nova de Lisboa Cálculo II Exame de a Época, 8 de Junho de 000 O exame é constítuido por cinco perguntas. Responda a cada questão em folhas separadas. Não se esqueça de

Leia mais

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2

{ } { } { } { } { } Professor: Erivaldo. Função Composta SUPERSEMI. 01)(Aman 2013) Sejam as funções reais ( ) 2 Centro de Estudos Matemáticos Florianópolis Professor: Erivaldo Santa Catarina Função Composta SUPERSEMI 01)(Aman 013) Sejam as funções reais ( ) f x = x + 4x e gx ( ) = x 1. O domínio da função f(g(x))

Leia mais

Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS

Matemática. Professor Adriano Diniz 26/02/2013. Aluno (a): EXERCÍCIOS PROPOSTOS Matemática Professor Adriano Diniz 0 Aluno (a): 6/0/01 EXERCÍCIOS PROPOSTOS 01. (MACKENZIE) Se, na figura abaixo, temos o esboço do gráfico da função y = f(x), o gráfico que melhor representa y = f(x 1)

Leia mais

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA

Universidade Federal de Pelotas. Instituto de Física e Matemática Pró-reitoria de Ensino. Módulo de Funções. Aula 01. Projeto GAMA Universidade Federal de Pelotas Instituto de Física e Matemática Pró-reitoria de Ensino Atividades de Reforço em Cálculo Módulo de Funções Aula 0 08/ Projeto GAMA Grupo de Apoio em Matemática Definição

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais

Capítulo 1. Funções e grácos

Capítulo 1. Funções e grácos Capítulo 1 Funções e grácos Denição 1. Sejam X e Y dois subconjuntos não vazios do conjunto dos números reais. Uma função de X em Y ou simplesmente uma função é uma regra, lei ou convenção que associa

Leia mais

Lista Função - Ita Carlos Peixoto

Lista Função - Ita Carlos Peixoto Lista Função - Ita Carlos Peixoto. (Ita 07) Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: I. Existe uma bijeção f : X Y. II. Existe uma função injetora g: Y X. III.

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

x 5 Df (( x))= ]0; 5[ ]5; + [

x 5 Df (( x))= ]0; 5[ ]5; + [ Resoluções das atividades adicionais Capítulo Grupo A x. a) f( x) x + 7 x + 7 0 x 7 Df (( x)) R { 7} x b) f( x) x x 0 e x 0 x 0e x. Df (( x)) ]0; [ ]; + [. a) O ponto onde o gráfico de f corta o eixo O

Leia mais

FUNÇÃO. Regra. Lei de Formação. Propriedade

FUNÇÃO. Regra. Lei de Formação. Propriedade FUNÇÃO Regra Lei de Formação Propriedade Definição: Uma relação f é chamada função desde que (a,b) f e (a,c) f impliquem b=c. A definição acima equivale a dizer que : uma relação f não é uma função se

Leia mais

MATEMÁTICA CADERNO 1 SEMIEXTENSIVO E FRENTE 1 ÁLGEBRA. n Módulo 1 Equações do 1 ọ Grau e

MATEMÁTICA CADERNO 1 SEMIEXTENSIVO E FRENTE 1 ÁLGEBRA. n Módulo 1 Equações do 1 ọ Grau e MATEMÁTICA CADERNO SEMIEXTENSIVO E FRENTE ÁLGEBRA n Módulo Equações do ọ Grau e do ọ Grau ) [ ( )] = [ + ] = + = + = + = = Resposta: V = { } 9) Na equação 6 = 0, tem-se a = 6, b = e c =, então: I) Δ =

Leia mais

Cálculo Diferencial e Integral 1

Cálculo Diferencial e Integral 1 NOTAS DE AULA Cálculo Dierencial e Integral Funções Proessor: Luiz Fernando Nunes, Dr 09/Sem_0 Cálculo ii Índice Funções Intervalos Deinição de unção Classiicação de unções 6 4 Função composta 8 5 Função

Leia mais