Considerações sobre o Teorema de Zermelo sobre a determinância de jogos assemelhados ao Xadrez

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Considerações sobre o Teorema de Zermelo sobre a determinância de jogos assemelhados ao Xadrez"

Transcrição

1 Considerações sobre o Teorema de Zermelo sobre a determinância de jogos assemelhados ao Xadrez

2 O Jogo de Xadrez é Determinado No jogo de Xadrez, ou as brancas podem forçar uma vitória, ou as pretas podem forçar uma vitória, ou ambas forçam um empate Todo jogo (finito) de informação perfeita tem um equilíbrio (puro). Este equilíbrio é encontrado via indução para trás (Kuhn 1953) Folclore

3 Um Pouco da História sobre Teoria dos Jogos e Xadrez 1 Zermelo 1913 Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels 5o Congresso de Matemáticos (Cambridge). König 1927 Über eine Schulussweise aus dem Endlichen ins Unendliche. Acta Sci. Math. Kalmár 1928 Zur Theorie der abstrakten Spiele. Acta Sci Math. Utiliza indução transfinita Caracterizam o conceito de posição ganhadora Von Neumann 1928 Zur Theorie der Gesellschaftsspiele. Mathematische Annalen Caracteriza a interação entre as estratégias dos jogadores 1- Jogo de Informação Perfeita

4 Teorema de Zermelo Em um jogo de Xadrez, dado que um jogador está em uma posição vencedora quantos movimentos levará para que ele ganhe?? ==> Não mais que o número de posições do jogo (estados do tabuleiro). O que é uma posição vencedora?? q U r (q) = U r (q) U r (q) = q1 q2 q3 r U pode forçar uma vitória em no máximo r movimentos se e somente se U r (q)

5 Observações: 1- Se r r então U r (q) U r (q) 2- U*(q) = U r (q) tal que r tem valor mínimo ρ q. 3- Para todo q, ρ q < τ s, onde s+1 é o número de posições (estados do tabuleiro) diferentes. Teorema de Zermelo: U*(q) é condição suficiente e necessária para que q seja posição vencedora Prova: [U*(q) ] Seja (q,q1,.,qn) um resultado em U*(q) com n > s [U*(q)= ] Existem V w (q), conjuntos de sequências de movimentos, onde U não perde antes de s movimentos, e, todas as alternativas de movimentos para V estão Representadas.

6 Observações : 1- Se w > w então V w (q) V w (q) 2- Existem infinitos w tais que V w (q) ou estes estão limitados a σ τ s, pois se V puder ganhar pode forçar a vitória em τ s passos. 3- Fazendo V(q) = V τ+1 (q), sabe-se que U pode forçar o empate se e somente se V τ+1 (q) U não perde em nenhuma das continuações antes de w passos q V w (q) = q1 q2 q3 w U r (q) V s (q) Se U r (q)= então q não é posição vencedora

7 König estende o teorema de Zermelo Lema: Toda árvore infinita finitamente gerada possui um ramo infinito. => Se não há limite (número de passos) para uma posição vencedora então esta não é vencedora, pois em cada posição só há um número finito de movimentos para o adversário. Kalmár e a determinância de jogos assemelhados ao Xadrez Satz III: Em qualquer jogo J potencialmente infinito assemelhado ao Xadrez, se O jogador A não pode forçar a vitória então o jogador B garante pelo menos o empate Corolário: No Xadrez infinito ou as brancas tem uma estratégia vencedora, ou as pretas tem uma estratégia vencedora ou ambas podem garantir o empate. O jogo tem valor, é determinado.

8 Teorema: Xadrez finito é determinado se e somente se Xadrez infinito é determinado Prova: No Xadrez finito o empate é declarado se uma posição (estado do tabuleiro) é alcançada pelo menos três vezes a partir do movimento de um dos jogadores Constrói-se uma estratégia vencedora a partir do fim do jogo e em cada passo verifica-se se é possível alcançar todos os subjogos com estratégia vencedora já definida.

9 Kuhn 1953 Teorema: Todo jogo finito com informação perfeita, de n jogadores, tem um ponto de equilíbrio. Prova: Por indução todo jogo com menos que m nós possui um ponto de equilíbrio m nós r Se r é um nó chance, então combine todos pontos de equilíbrio dos subjogos Γ i ; Senão o ponto de equilíbrio para r é maximizar os pontos de equilíbrio de cada um dos jogadores com relação ao subjogos Γ i Γ 1 Γ i Γ k Prog. Din., MinMax

10 Exemplo de uso da Backwards Induction Prop. O jogo Centipede possui estratégia vencedora

Big Points: Uma Análise Baseada na Teoria dos Jogos

Big Points: Uma Análise Baseada na Teoria dos Jogos Universidade de Brasília - UnB Faculdade UnB Gama - FGA Engenharia de Software Big Points: Uma Análise Baseada na Teoria dos Jogos Autor: Mateus Medeiros Furquim Mendonça Orientador: Prof. Dr. Edson Alves

Leia mais

HEITOR AUGUSTO S. FERREIRA MARIANA SILVA INÁCIO THAIS SEIDEL TEORIA DOS JOGOS

HEITOR AUGUSTO S. FERREIRA MARIANA SILVA INÁCIO THAIS SEIDEL TEORIA DOS JOGOS HEITOR AUGUSTO S. FERREIRA MARIANA SILVA INÁCIO THAIS SEIDEL TEORIA DOS JOGOS Trabalho apresentado à disciplina de Teoria das Relações Internacionais. Curso de Graduação em Relações Internacionais, turma

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 1.3 Jogos na Forma Extensiva informação num jogo

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 1.3 Jogos na Forma Extensiva informação num jogo Microeconomia II Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 1.3 Jogos na Forma Extensiva informação num jogo Isabel Mendes 2007-2008 Na aula 1.1 falou-se ainda dos jogos sequenciais

Leia mais

Roteiro da aula: Jogos dinâmicos com informação incompleta. Mas-Collel e Green capítulo 9 Refinamentos do conceito de Equilíbrio de Nash

Roteiro da aula: Jogos dinâmicos com informação incompleta. Mas-Collel e Green capítulo 9 Refinamentos do conceito de Equilíbrio de Nash Roteiro da aula: Jogos dinâmicos com informação incompleta Mas-Collel e Green capítulo 9 Refinamentos do conceito de quilíbrio de Nash Racionalidade seqüencial quilíbrio Bayesiano perfeito quilíbrio bayesiano

Leia mais

Alternativamente pode ser pensado como uma forma de maximizar o minimo ganho possível.

Alternativamente pode ser pensado como uma forma de maximizar o minimo ganho possível. Inteligência Artificial Algoritmo i com cortes Alfa-Beta Ana Saraiva 050509087 Ana Barbosa 050509089 Marco Cunha 050509048 Tiago Fernandes 050509081 FEUP - MIEIC 3ºAno/ºSemestre 1 Introdução O algoritmo

Leia mais

Fundamentos de Teoria dos jogos

Fundamentos de Teoria dos jogos Fundamentos de Teoria dos jogos A Teoria dos Jogos é um ramo da matemática aplicada que estuda situações estratégicas em que jogadores escolhem diferentes ações na tentativa de melhorar seu retorno. Na

Leia mais

Jogos de soma zero com dois jogadores

Jogos de soma zero com dois jogadores Jogos de soma zero com dois jogadores Problema: Dada uma matriz A m n, encontrar um equilíbrio de Nash (de estratégias mistas). Jogador 1 quer encontrar p que maximize v sujeito a i p i = 1 sujeito a (pa)

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Série/Ano/Turma: 7º ano e 8º ano do Ensino Fundamental. 1.2 Turno: manhã. 1.3 Data: outubro/2015 1.4 Tempo da aula: 2 horas. 1.5 Tema da aula: Teoria de

Leia mais

Tópicos Especiais em Redes: Introdução a Teoria dos Jogos com Aplicações a Redes de Computadores

Tópicos Especiais em Redes: Introdução a Teoria dos Jogos com Aplicações a Redes de Computadores Tópicos Especiais em Redes: Introdução a Teoria dos Jogos com Aplicações a Redes de Computadores Aula passada: iscussão das listas de exercícios Aula de hoje: iscussão dos tópicos para apresentação Jogos

Leia mais

Introdução à Inteligência Artificial. Procura em contextos competitivos jogos (cont.)

Introdução à Inteligência Artificial. Procura em contextos competitivos jogos (cont.) Introdução à Inteligência Artificial Procura em contextos competitivos jogos (cont.) Sumário n Vimos Jogos de 2 jogadores n Determinísticos, soma nula, informação perfeita Estratégia óptima minimax Algoritmos

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 12A Teoria dos Jogos Maurício Bugarin

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 12A Teoria dos Jogos Maurício Bugarin Teoria dos Jogos Prof. Maurício Bugarin Eco/UnB 2014-I Roteiro Jogos Jogos Repetidos Desenvolver o modelo de jogo repetido Provar o teorema popular Aplicar para conluio ao dilema dos prisioneiros e aos

Leia mais

8 Experimentos. de pelo menos uma solução. 2 Na verdade, poderíamos definir uma função que retorna o conjunto de equilíbrios de

8 Experimentos. de pelo menos uma solução. 2 Na verdade, poderíamos definir uma função que retorna o conjunto de equilíbrios de 8 Experimentos Neste capítulo tratamos da utilização do verificador de modelos na prática, e realizamos algumas comparações entre outros algoritmos existentes. Os experimentos foram executados em uma máquina

Leia mais

Algoritmos de retrocesso

Algoritmos de retrocesso Algoritmos de retrocesso Algoritmos em que se geram escolhas que vão sendo testadas e eventualmente refeitas Problemas para os quais não existem algoritmos eficientes: retrocesso é melhor que pesquisa

Leia mais

Algoritmo MiniMax. Minimax

Algoritmo MiniMax. Minimax Algoritmo MiniMax Luís Carlos Calado 050509043 João Carlos Sousa 050509027 José Carlos Campos 060509007 Rodolfo Sousa Silva 050509069 1 Minimax Minimax (ou minmax) é um método usado na Teoria da Decisão,

Leia mais

12 = JL (DE UMA A TRÊS CASAS EM QUALQUER DIREÇÃO, INCLUSIVE R1 PARA OS PEÕES)

12 = JL (DE UMA A TRÊS CASAS EM QUALQUER DIREÇÃO, INCLUSIVE R1 PARA OS PEÕES) XADREZ DA SORTE MATERIAL UM TABULEIRO COMUM DE 64 CASAS. DOIS DADOS COMUNS. AS 32 PEÇAS DO JOGO DE XADREZ. PONTUAÇÃO DOS DADOS A PONTUAÇÃO PARA MOVIMENTAÇÃO É A SEGUINTE: 2 = R1 (RETORNA UMA CASA) 3 =

Leia mais

Os torneios disputar-se-ão, em sistema de campeonato, ao longo de cada. As inscrições deverão ser efetuadas online no site do colégio

Os torneios disputar-se-ão, em sistema de campeonato, ao longo de cada. As inscrições deverão ser efetuadas online no site do colégio Informações Gerais Os torneios disputar-se-ão, em sistema de campeonato, ao longo de cada período letivo. De acordo com o número de equipas participantes, poderá haver uma fase final em sistema de playoffs.

Leia mais

Unidade 1 Conceitos Preliminares e Importância do Estudo da Teoria dos Jogos

Unidade 1 Conceitos Preliminares e Importância do Estudo da Teoria dos Jogos MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE GOIÁS FACULDADE DE ADMINISTRAÇÃO, CIÊNCIAS CONTÁBEIS E CIÊNCIAS ECONÔMICAS CURSO DE CIÊNCIAS ECONÔMICAS PLANO DE ENSINO Disciplina: Teoria dos Jogos CHS:

Leia mais

Árvore de Jogos Minimax e Poda Alfa-Beta

Árvore de Jogos Minimax e Poda Alfa-Beta Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Árvore de Jogos Minimax e Poda Alfa-Beta Inteligência Artificial Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

Aprendendo a jogar Xadrez

Aprendendo a jogar Xadrez O núcleo de xadrez da nossa Escola continua particularmente activo, e dando continuidade ao material produzido para o número anterior da nossa revista, onde detalhou a forma como se procede à anotação

Leia mais

Gatos & Cães Simon Norton, 1970s

Gatos & Cães Simon Norton, 1970s Gatos & Cães Simon Norton, 970s Um tabuleiro quadrado 8 por 8. 8 peças gato e 8 peças cão (representadas respectivamente por peças negras e brancas). Ganha o jogador que realizar a última jogada. zona

Leia mais

2 n. 1 Sim, está faltando aqui um sinal. Se quem começa ganha, dizemos que G 0 (lê-se: G é confuso com 0). Jogos confusos com zero aparecerão

2 n. 1 Sim, está faltando aqui um sinal. Se quem começa ganha, dizemos que G 0 (lê-se: G é confuso com 0). Jogos confusos com zero aparecerão 1. D - S 1.1. REGRA NORMAL. Lembre-se que toda a nossa análise é baseada na importantíssima regra normal: quem não tem movimento válido, perdeu. 1.. SINAL DE UM JOGO G. Supondo que ambos os jogadores L

Leia mais

Matemática Discreta. Aula nº 22 Francisco Restivo

Matemática Discreta. Aula nº 22 Francisco Restivo Matemática Discreta Aula nº 22 Francisco Restivo 2006-05-26 Definição: Um grafo cujos vértices são pontos no plano e cujos lados são linhas no plano que só se encontram nos vértices do grafo são grafos

Leia mais

Busca competitiva. Inteligência Artificial. Profª. Solange O. Rezende

Busca competitiva. Inteligência Artificial. Profª. Solange O. Rezende Profª. Solange O. Rezende 1 O que vimos até agora... Busca não informada Baseada somente na organização de estados e a sucessão entre eles Busca informada Utiliza, também, informações a respeito do domínio

Leia mais

Unidade III ESTRATÉGIA COMPETITIVA. Profa. Lérida Malagueta

Unidade III ESTRATÉGIA COMPETITIVA. Profa. Lérida Malagueta Unidade III ESTRATÉGIA COMPETITIVA Profa. Lérida Malagueta Taxonomias dos jogos Os jogos são classificados de acordo com as características do cenário que se apresenta (jogadores, regras e pay-offs). Essas

Leia mais

BCC204 - Teoria dos Grafos

BCC204 - Teoria dos Grafos BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal

Leia mais

JOGOS LIVRO REGRAS M AT E M Á T I CO S. 11.º Campeonato Nacional

JOGOS LIVRO REGRAS M AT E M Á T I CO S. 11.º Campeonato Nacional Vila Real JOGOS M AT E M Á T I CO S.º Campeonato Nacional LIVRO DE REGRAS Semáforo Autor: Alan Parr Material Um tabuleiro retangular por. 8 peças verdes, 8 amarelas e 8 vermelhas partilhadas pelos jogadores.

Leia mais

ATIVIDADES PRÁTICAS SUPERVISIONADAS

ATIVIDADES PRÁTICAS SUPERVISIONADAS ATIVIDADES PRÁTICAS SUPERVISIONADAS 7ª Série Linguagens Formais e Autômatos Ciência da Computação A atividade prática supervisionada (ATPS) é um método de ensino-aprendizagem desenvolvido por meio de um

Leia mais

Outros Jogos de Opções Reais Nessa parte serão analisados dois jogos numa mesma aplicação:

Outros Jogos de Opções Reais Nessa parte serão analisados dois jogos numa mesma aplicação: ELE 2005: Análise Estratégica de Investimentos e de Decisões com Teoria dos Jogos e Jogos de Opções Reais Parte 7: Outros Jogos de Opções Reais. Marco Antonio Guimarães Dias, E-mail: marcoagd@pobox.com

Leia mais

CLÁSSICOS OUTLET JOGOS. PUZZLE DO RUCA Constituído por 9 blocos, de 4 x 4 cm. Os blocos dão a possibilidade de fazer 6 puzzles diferentes.

CLÁSSICOS OUTLET JOGOS. PUZZLE DO RUCA Constituído por 9 blocos, de 4 x 4 cm. Os blocos dão a possibilidade de fazer 6 puzzles diferentes. JOGOS PUZZLE DO RUCA Constituído por 9 blocos, de 4 x 4 cm. Os blocos dão a possibilidade de fazer 6 puzzles diferentes. JOGOS PUZZLE WINX De 24 peças, para meninas. PUZZLE HELLO KITTY Ensina as primeiras

Leia mais

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br IA: Busca Competitiva Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br Sumário Introdução Árvores de Jogos Minimax Antecipação Limitada Poda Alfa-beta Introdução Jogos têm sido continuamente uma importante

Leia mais

Teoria dos Jogos: As origens e os fundamentos da Teoria dos Jogos. Sinopse: A teoria dos jogos é a aplicação da lógica matemática no processo de

Teoria dos Jogos: As origens e os fundamentos da Teoria dos Jogos. Sinopse: A teoria dos jogos é a aplicação da lógica matemática no processo de Teoria dos Jogos: As origens e os fundamentos da Teoria dos Jogos Alecsandra Neri de Almeida UNIMESP - Centro Universitário Metropolitano de São Paulo Novembro/2006 Sinopse: A teoria dos jogos é a aplicação

Leia mais

A JORNADA DE TRABALHO NA PERSPECTIVA DA TEORIA DOS JOGOS

A JORNADA DE TRABALHO NA PERSPECTIVA DA TEORIA DOS JOGOS A JORNADA DE TRABALHO NA PERSPECTIV ERSPECTIVA DA T EORIA DOS JOGOS SIMONE BARBOSA DE MARTINS MELLO Analista Judiciária do Tribunal Regional da 2ª Região. Professora Convidada do MBA em Direito e Processo

Leia mais

Ciência da Computação Engenharia de Computação Mestrado em Informática. Teoria dos Grafos. Maria Claudia Silva Boeres.

Ciência da Computação Engenharia de Computação Mestrado em Informática. Teoria dos Grafos. Maria Claudia Silva Boeres. Ciência da Computação Engenharia de Computação Mestrado em Informática Maria Claudia Silva Boeres boeres@inf.ufes.br Programa 1.Conceitos Básicos 2.Grafos Eulerianos e Hamiltonianos 3.Caminhos, Ciclos

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão Microeconomia II Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 3.1 Introdução à Teoria das Probabilidades e da Preferência pelo Risco Isabel Mendes 2007-2008 18-03-2008 Isabel Mendes/MICRO

Leia mais

Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9.

Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9. Pós-Graduação em Ciência da Computação DCC/ICEx/UFMG Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9. Observações: Pontos

Leia mais

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Def.: Um experimento é dito aleatório quando o seu resultado não for previsível antes de sua realização, ou seja,

Leia mais

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina

Leia mais

Jogos Repetidos Infinitas Vezes Nash Folk Folk Perfeito Jogos Repetidos Finitas Vezes. Jogos Repetidos. Prof. Leandro Chaves Rêgo

Jogos Repetidos Infinitas Vezes Nash Folk Folk Perfeito Jogos Repetidos Finitas Vezes. Jogos Repetidos. Prof. Leandro Chaves Rêgo Jogos Repetidos Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Estatística - UFPE Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 21 de Outubro de 2014 Jogos Repetidos Introdução

Leia mais

Busca com informação e exploração. Inteligência Artificial. Revisão da aula passada: Heurística Admissível. Revisão da aula passada: Busca A *

Busca com informação e exploração. Inteligência Artificial. Revisão da aula passada: Heurística Admissível. Revisão da aula passada: Busca A * Inteligência Artificial Aula 6 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia Busca com informação e exploração Capítulo 4 Russell & Norvig Seção 4.2 e 4.3 Revisão da aula passada: Busca A * Idéia:

Leia mais

3 o TORNEIO DE XADREZ ÀS CEGAS DA REGIÃO DO MATO GRANDE

3 o TORNEIO DE XADREZ ÀS CEGAS DA REGIÃO DO MATO GRANDE 3 o TORNEIO DE XADREZ ÀS CEGAS DA REGIÃO DO MATO GRANDE REGULAMENTO 1 DADOS DO TORNEIO O torneio acontecerá no dia 02/02/2013 pela manhã e pela tarde nas dependências do IFRN - Campus João Câmara. As equipes

Leia mais

Jogos: Cê Manja ou Nim?

Jogos: Cê Manja ou Nim? Jogos: Cê Manja ou Nim? Davi Lopes Semana Olímpica 2017 1. Introdução O jogo do Nim é um jogo bem simples e divertido, que foi criado muito antigamente. Existem inclusive relatos de que na China da Idade

Leia mais

Aula 9: Máquinas de Turing

Aula 9: Máquinas de Turing Teoria da Computação Aula 9: Máquinas de Turing DAINF-UTFPR Prof. Ricardo Dutra da Silva Uma máquina de Turing é uma máquina de estados finitos que pode mover o cabeçote em qualquer direção, ler e manipular

Leia mais

1ª Colocação 10 pontos. 2ª Colocação 08 pontos. 3ª Colocação 06 pontos

1ª Colocação 10 pontos. 2ª Colocação 08 pontos. 3ª Colocação 06 pontos Regras: Jogo do Xadrez 1. Sorteio: Os confrontos serão definido através de sorteio e relacionados no chaveamento da competição; A ordem de disputa será de acordo com a ordem de retira no sorteio. PS: 2

Leia mais

Carla Amor Divino Moreira Delgado Mario R. F. Benevides COPPE Sistemas, UFRJ

Carla Amor Divino Moreira Delgado Mario R. F. Benevides COPPE Sistemas, UFRJ LÓGICAS MODAIS E JOGOS Carla Amor Divino Moreira Delgado Mario R. F. Benevides COPPE Sistemas, UFRJ A lógica modal é considerada uma ferramenta adequada para o tratamento de sistemas compostos por agentes

Leia mais

Quais são os quatro sinais que os jogadores fazem em uma banca de cassino quando estão jogando?

Quais são os quatro sinais que os jogadores fazem em uma banca de cassino quando estão jogando? Qual é a frase dita pelo ator principal quando ganha cada jogada? Quais são os quatro sinais que os jogadores fazem em uma banca de cassino quando estão jogando? RESP: ganhador, ganhador, galinha para

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

REGRAS TRUCO GAUDÉRIO

REGRAS TRUCO GAUDÉRIO REGRAS TRUCO GAUDÉRIO Link: http://www.jogatina.com/regras-como-jogar-truco-gauderio.html O truco gaudério tem muitos praticantes no sul do Brasil. À primeira vista, parece um jogo complicado, mas não

Leia mais

ABC DO XADREZ GUIA DE APRENDIZAGEM

ABC DO XADREZ GUIA DE APRENDIZAGEM AGRUPAMENTO VERTICAL DE ESCOLAS DE ARCOZELO ABC DO XADREZ GUIA DE APRENDIZAGEM A Coordenadora: Prof. Fernanda Marinho Regras Básicas A posição do Tabuleiro deve ser colocada de uma forma que o jogador

Leia mais

Introdução à Inteligência Artificial 2007/08

Introdução à Inteligência Artificial 2007/08 Introdução à Inteligência rtificial 2007/08 Procura em contextos competitivos jogos Contexto Um agente vs multiagente mbiente cooperativo vs competitivo Teoria dos jogos (ramo da Economia) Sistema multiagente

Leia mais

Teoria dos Jogos Repetidos

Teoria dos Jogos Repetidos Teoria dos Jogos Repetidos Os processos de interação estratégica nos quais os jogadores decidem sem conhecer as decisões dos demais podem ser tratados como jogos simultâneos. Já os processos de interação

Leia mais

Jogando no limite. Sílvia Cavadas, Maria Carvalho

Jogando no limite. Sílvia Cavadas, Maria Carvalho Jogando no limite Sílvia Cavadas, Maria Carvalho Departamento de Matemática & Centro de Matemática Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, 687, 4169-007 Porto e-mails: up09030515@alunos.fc.up.pt;

Leia mais

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas 1 Agente solucionador de problemas (guiado por objetivo) O agente reativo Escolhe suas ações com base apenas nas percepções

Leia mais

Quais são os possíveis resultados do jogo?

Quais são os possíveis resultados do jogo? O PROBLEMA DAS TRÊS PORTAS VIA TEORIA DOS JOGOS Melissa de CARVALHO 1 Lucas Monteiro CHAVES 2 RESUMO: O problema das três portas é interessante pois coloca em questão as noções intuitivas que se tem a

Leia mais

Cursos Profissionais de Nível Secundário

Cursos Profissionais de Nível Secundário Cursos Profissionais de Nível Secundário Técnico de Apoio à infância e Técnico de Turismo Ano Letivo: 2014/2015 Matemática (100 horas) 10º Ano PLANIFICAÇÃO A LONGO PRAZO A1 Geometria Resolução de problemas

Leia mais

Jogos seqüenciais Teoria Microeconômica II Economia Matutino - Marcelo Ranieri Cardoso

Jogos seqüenciais Teoria Microeconômica II Economia Matutino - Marcelo Ranieri Cardoso Jogos seqüenciais Jogos seqüenciais são aqueles nos quais os jogadores não fazem os movimentos simultaneamente, mas seqüencialmente. Jogos repetitivos são um caso específico de jogos seqüenciais. Empresa

Leia mais

AABB - JOGOS DE VERÃO 2016

AABB - JOGOS DE VERÃO 2016 AABB - JOGOS DE VERÃO 2016 Com o intuito de proporcionar a prática de atividades esportivas, a AABB convida a todos seus associados e dependentes a participar dos Jogos de Verão 2016. Não devemos considerar

Leia mais

II Bienal da SBM. Atividades da Oficina 1. Problemas elementares divertidos e desafiadores

II Bienal da SBM. Atividades da Oficina 1. Problemas elementares divertidos e desafiadores II Bienal da SBM 5 a 9 de outubro de 004 Salvador Universidade Federal da Bahia Atividades da Oficina 1 Problemas elementares divertidos e desafiadores Luís Lopes (5 e 6 de outubro) Resumo O propósito

Leia mais

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos)

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) 1 ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) Objetivos Introduzir o conceito de números inteiros negativos; Desenvolvimento O professor confeccionará o jogo com os alunos ou distribuirá os jogos

Leia mais

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada.

Teoria dos Grafos. Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada. Teoria dos Grafos Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada antunes@ibilce.unesp.br, socorro@ibilce.unesp.br Grafos Eulerianos Preparado a partir do texto: Rangel, Socorro.

Leia mais

Aritmética. Somas de Quadrados

Aritmética. Somas de Quadrados Aritmética Somas de Quadrados Carlos Humberto Soares Júnior PROFMAT - SBM Objetivo Determinar quais números naturais são soma de dois quadrados. PROFMAT - SBM Aritmética, Somas de Quadrados slide 2/14

Leia mais

Nelma Moreira. Departamento de Ciência de Computadores da FCUP. Aula 2. Nelma Moreira (DCC-FC) Fundamentos de Linguagens de Programação Aula 2 2 / 12

Nelma Moreira. Departamento de Ciência de Computadores da FCUP. Aula 2. Nelma Moreira (DCC-FC) Fundamentos de Linguagens de Programação Aula 2 2 / 12 Fundamentos de Linguagens de Programação Nelma Moreira Departamento de Ciência de Computadores da FCUP Fundamentos de Linguagens de Programação Aula 2 Nelma Moreira (DCC-FC) Fundamentos de Linguagens de

Leia mais

O valor esperado de uma quantidade aleatória Paulo Cezar Pinto Carvalho IMPA e EMAp/FGV

O valor esperado de uma quantidade aleatória Paulo Cezar Pinto Carvalho IMPA e EMAp/FGV O valor esperado de uma quantidade aleatória Paulo Cezar Pinto Carvalho IMPA e EMAp/FGV Um conceito simples e útil mas que não é normalmente explorado no Ensino Fundamental no Brasil é o de valor esperado

Leia mais

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO

Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Reforço escolar M ate mática Números irracionais Dinâmica 3 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Numérico Aritmético Números Irracionais Aluno Primeira Etapa

Leia mais

JOGOS COM GEOPLANO QUADRANGULAR

JOGOS COM GEOPLANO QUADRANGULAR JOGOS COM GEOPLANO QUADRANGULAR 1. CAMINHOS CAMINHOS NÚMERO DE JOGADORES: 1,2 ou mais. OBJETIVO: Formar um caminho cujo percurso passa por todos os pontos do geoplano desde o canto superior esquerdo até

Leia mais

Oferta de Serviços. Grafo Planar. Notas. Teoria dos Grafos - BCC204, Planaridade. Notas

Oferta de Serviços. Grafo Planar. Notas. Teoria dos Grafos - BCC204, Planaridade. Notas Teoria dos Grafos - BCC204 Planaridade Haroldo Gambini Santos Universidade Federal de Ouro Preto - UFOP 29 de maio de 2011 1 / 23 Oferta de Serviços Gás Luz Água Podemos oferecer os demais serviços para

Leia mais

Euler e as Origens da Teoria dos Grafos

Euler e as Origens da Teoria dos Grafos Euler e as Origens da Teoria dos Grafos Yoshiko Wakabayashi Universidade de São Paulo - USP Instituto de Matemática e Estatística Departamento de Ciência da Computação 5 de dezembro de 2007 Euler 2007

Leia mais

HEX CONEXÕES EXTREMAS EM LADRILHOS HEXAGONAIS

HEX CONEXÕES EXTREMAS EM LADRILHOS HEXAGONAIS HEX CONEXÕES EXTREMAS EM LADRILHOS HEXAGONAIS Izabelly Marya Lucena da Silva Universidade Federal de Pernambuco izabellymarya@ig.com.br Gésica Peixoto Campos Universidade Federal de Pernambuco gesica.pcampo@bol.com.br

Leia mais

4 Teoria dos Jogos e Jogos de Opções Reais

4 Teoria dos Jogos e Jogos de Opções Reais 4 Teoria dos Jogos e Jogos de Opções Reais 4.1. Teoria dos Jogos Tradicional 4.1.1. Introdução e Conceitos de Equilíbrio Esse capítulo analisa a interação estratégica entre firmas de uma forma endógena,

Leia mais

4. Corpos finitos. Aula 22 - Álgebra II. [Conclusão da aula anterior: exemplos de polinómios resolúveis e polinómios não resolúveis]

4. Corpos finitos. Aula 22 - Álgebra II. [Conclusão da aula anterior: exemplos de polinómios resolúveis e polinómios não resolúveis] [Conclusão da aula anterior: exemplos de polinómios resolúveis e polinómios não resolúveis] Corpos finitos Neste capítulo final vamos estudar as propriedades fundamentais dos corpos finitos e descrever

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 1.1 Descrição de Jogos não-cooperativos (forma normal)

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 1.1 Descrição de Jogos não-cooperativos (forma normal) Microeconomia II Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 1.1 Descrição de Jogos não-cooperativos (forma normal) Isabel Mendes 2007-2008 1. Teoria dos Jogos: definição e contexto

Leia mais

5ª Lista de Exercícios de Programação I

5ª Lista de Exercícios de Programação I 5ª Lista de Exercícios de Programação I Instrução As questões devem ser implementadas em C. Questões que envolvam leitura de matrizes, a construção dessas matrizes pode ser realizada através da geração

Leia mais

Desafios não manuseáveis

Desafios não manuseáveis Desafios não manuseáveis 1) No tabuleiro representado na figura estão registradas as jogadas de dois adversários em um dado momento. Observe que uma das peças tem formato de círculo e a outra tem a forma

Leia mais

História. Entendendo o jogo. Os movimentos das peças. Movimentos especiais. Como Jogar. Capturas, xeque e xeque mate.

História. Entendendo o jogo. Os movimentos das peças. Movimentos especiais. Como Jogar. Capturas, xeque e xeque mate. História O xadrez descende de jogos desenvolvidos na Índia, dos quais o mais antigo conhecido é o chaturanga, do século VI EC. O jogo logo foi levado para Pérsia, onde se tornou uma atividade da nobreza

Leia mais

REGULAMENTO Jogos Escolares de Massaranduba - JEMA Xadrez

REGULAMENTO Jogos Escolares de Massaranduba - JEMA Xadrez REGULAMENTO Jogos Escolares de Massaranduba - JEMA Xadrez - 2014 DISPOSIÇÕES INICIAIS O presente Regulamento tem por objetivo normalizar as regras de participação e ações referentes aos Jogos Escolares

Leia mais

PMR Computação para Mecatrônica

PMR Computação para Mecatrônica PMR3201 - Computação para Mecatrônica Prof. Thiago de Castro Martins Prof. Newton Maruyama Prof. Marcos de S.G. Tsuzuki Monitor: Pietro Teruya Domingues Exercício Programa 2 - Versão 2017 Resolvendo o

Leia mais

NÚMEROS DE FERMAT. (Pedro H. O. Pantoja, Universidade de Lisboa, Portugal)

NÚMEROS DE FERMAT. (Pedro H. O. Pantoja, Universidade de Lisboa, Portugal) NÚMEROS DE FERMAT (Pedro H. O. Pantoja, Universidade de Lisboa, Portugal) Intrudução: O matemático francês Pierre de fermat (1601-1665) é famoso pelo seu extensivo trabalho em teoria dos números. Suas

Leia mais

PCC104 - Projeto e Análise de Algoritmos

PCC104 - Projeto e Análise de Algoritmos PCC104 - Projeto e Análise de Algoritmos Marco Antonio M. Carvalho Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal de Ouro Preto 7 de outubro de 2016 Marco Antonio

Leia mais

Enunciados dos Exercícios Cap. 2 Russell & Norvig

Enunciados dos Exercícios Cap. 2 Russell & Norvig Enunciados dos Exercícios Cap. 2 Russell & Norvig 1. (2.2) Tanto a medida de desempenho quanto a função de utilidade medem o quanto um agente está desempenhando bem suas atividades. Explique a diferença

Leia mais

Boletim Final XADREZ LIVRE

Boletim Final XADREZ LIVRE Boletim Final XADREZ LIVRE Blumenau 2015 Comprometimento Orgulho de representar a empresa Motivação Espírito de equipe Respeito EMPRESAS PARTICIPANTES DO XADREZ LIVRE EMPRESA Nº DE ATLETAS ALTENBURG 01

Leia mais

Então (τ x, ) é um conjunto dirigido e se tomarmos x U U, para cada U vizinhança de x, então (x U ) U I é uma rede em X.

Então (τ x, ) é um conjunto dirigido e se tomarmos x U U, para cada U vizinhança de x, então (x U ) U I é uma rede em X. 1. Redes Quando trabalhamos no R n, podemos testar várias propriedades de um conjunto A usando seqüências. Por exemplo: se A = A, se A é compacto, ou se a função f : R n R m é contínua. Mas, em espaços

Leia mais

Teoria dos Jogos e Estratégia Competitiva

Teoria dos Jogos e Estratégia Competitiva Teoria dos Jogos e Estratégia Competitiva 1. Jogos e Decisões Estratégicas 2. Estratégias Dominantes 3. O Equilíbrio de Nash Revisitado 4. Jogos Repetitivos 5. Jogos Sequenciais 6. Desencorajamento à entrada

Leia mais

a) Defina em Prolog iguais/1, um predicado que recebe um estado do jogo e que verifica que todas as pilhas têm o mesmo número de peças.

a) Defina em Prolog iguais/1, um predicado que recebe um estado do jogo e que verifica que todas as pilhas têm o mesmo número de peças. Introdução à Inteligência Artificial 2ª Época 29 Janeiro 2015 Nº Aluno: Nome Completo: Exame com consulta. Responda às perguntas nesta própria folha, nos espaços indicados. (I) O jogo do Nim (também chamado

Leia mais

O PROBLEMA DAS TRÊS PORTAS E UMA VARIAÇÃO DO PROBLEMA DA SECRETÁRIA VIA TEORIA DOS JOGOS MELISSA DE CARVALHO

O PROBLEMA DAS TRÊS PORTAS E UMA VARIAÇÃO DO PROBLEMA DA SECRETÁRIA VIA TEORIA DOS JOGOS MELISSA DE CARVALHO O PROBLEMA DAS TRÊS PORTAS E UMA VARIAÇÃO DO PROBLEMA DA SECRETÁRIA VIA TEORIA DOS JOGOS MELISSA DE CARVALHO 2007 Ficha Catalográfica Preparada pela Divisão de Processos Técnicos da Biblioteca Central

Leia mais

O guia da Mega Sena da Virada

O guia da Mega Sena da Virada O guia da Mega Sena da Virada Ganhar na Mega Sena é um desafio que assanha a alma! Se existe uma fórmula para ganhar na Mega Sena ela nunca foi, e nem será revelada. O Jogo foi criado matematicamente para

Leia mais

Prova Final. Programa de Pós-Graduação em Economia. Microeconomia IV Prof.: Rogério Mazali. 30 de abril de 2016

Prova Final. Programa de Pós-Graduação em Economia. Microeconomia IV Prof.: Rogério Mazali. 30 de abril de 2016 Programa de Pós-Graduação em Economia Microeconomia IV Prof.: Rogério Mazali Prova Final 30 de abril de 2016 Instruções: Você tem 120 minutos para completar a prova. Seja preciso em suas respostas. Pontos

Leia mais

Princípios de Modelagem Matemática Aula 10

Princípios de Modelagem Matemática Aula 10 Princípios de Modelagem Matemática Aula 10 Prof. José Geraldo DFM CEFET/MG 19 de maio de 2014 1 Alguns resultados importantes em estatística A distribuição normal tem importante papel em estatística pois

Leia mais

Teoria dos Jogos Parte 1

Teoria dos Jogos Parte 1 Teoria dos Jogos Parte 1 GST0190 - MÉTODOS QUANTITATIVOS PARA TOMADA DE DECISÃO 3 de novembro de 2016 Slide 1 de 20 Teoria dos Jogos - Definição é o estudo de decisões interativas, no sentido de que os

Leia mais

Análise de Decisão, Jogos & Negociação. Cesaltina Pires

Análise de Decisão, Jogos & Negociação. Cesaltina Pires Análise de Decisão, Jogos & Negociação Cesaltina Pires Fevereiro 2007 ii Conteúdo 1 Introdução (incompleto) 1 1.1 Decisão várias abordagens........................... 1 1.1.1 Decisões individuais versus

Leia mais

1/ 36. Computação 1 - Python Aula 1 - Teórica: Introdução

1/ 36. Computação 1 - Python Aula 1 - Teórica: Introdução 1/ 36 Computação 1 - Python Aula 1 - Teórica: Introdução Conhecendo a turma Experiência com programação e uso do computador Quantos já programaram antes? Quais linguagens? Quantos tem computador em casa

Leia mais

Jogos. Série Matemática na Escola. Objetivos. Apresentar conceitos e classificação básicos da Teoria dos Jogos.

Jogos. Série Matemática na Escola. Objetivos. Apresentar conceitos e classificação básicos da Teoria dos Jogos. Jogos Série Matemática na Escola Objetivos Apresentar conceitos e classificação básicos da Teoria dos Jogos. Jogos Série Matemática na Escola Conteúdos Teoria dos jogos Duração Aprox. 10 minutos. Objetivos

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial INF 1771 Inteligência Artificial Aula 01 Resolução de problemas por meio de Busca Edirlei Soares de Lima Introdução Agentes Autônomos: Entidades autônomas capazes de observar o ambiente

Leia mais

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação)

Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação) Álgebra Linear e Geometria Analítica Bacharelados e Engenharias Parte II Matrizes (continuação) Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 Importante Material desenvolvido a partir

Leia mais

Jogos Educativos. Joceline Mausolff Grübel. Marta Rosecler Bez. Centro Universitário Feevale

Jogos Educativos. Joceline Mausolff Grübel. Marta Rosecler Bez.  Centro Universitário Feevale Jogos Educativos Joceline Mausolff Grübel joceline.grubel@gmail.com Marta Rosecler Bez martabez@feevale.br Centro Universitário Feevale Novo Hamburgo, novembro de 2006. Roteiro Introdução A importância

Leia mais

Observação: Responda no mínimo 70% das questões. (**) responda no mínimo duas questões com essa marcação

Observação: Responda no mínimo 70% das questões. (**) responda no mínimo duas questões com essa marcação UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL - UFRGS FACULDADE DE CIÊNCIAS ECONÔMICAS PROGRAMA DE PÓS-GRADUAÇÃO EM ECONOMIA CURSO DE ESPECIALIZAÇÃO MBE- MASTER OF BUSINESS ECONOMICS DISCIPLINA: Comportamento

Leia mais

Aprendizado por Árvores de Decisão

Aprendizado por Árvores de Decisão Universidade Federal de Santa Maria Departamento de Eletrônica e Computação Prof. Cesar Tadeu Pozzer Disciplina de Programação de Jogos 3D E-mail: pozzer@inf.ufsm.br Período: 2006/01 Aprendizado por Árvores

Leia mais

Unidade IV ESTRATÉGIA APLICADA. Profª. Lérida Malagueta

Unidade IV ESTRATÉGIA APLICADA. Profª. Lérida Malagueta Unidade IV ESTRATÉGIA APLICADA TEORIA DOS JOGOS Profª. Lérida Malagueta Estratégia estritamente dominada Representa estrategicamente a fraqueza algébrica da escolha. Os jogadores têm uma ou mais opções

Leia mais

O Problema das Três Portas via Teoria dos Jogos. Three Door Game Show Problem via Game Theory

O Problema das Três Portas via Teoria dos Jogos. Three Door Game Show Problem via Game Theory O Problema das Três Portas via Teoria dos Jogos Melissa de Carvalho Henares Resumo O problema das três portas é bastante interessante pois coloca em questão as noções intuitivas que se tem a respeito do

Leia mais

Técnicas para Implementação de Jogos

Técnicas para Implementação de Jogos Técnicas para Implementação de Jogos Solange O. Rezende Thiago A. S. Pardo Considerações gerais Aplicações atrativas para métodos de IA Formulação simples do problema (ações bem definidas) Ambiente acessível

Leia mais

Introdução a teoria dos jogos

Introdução a teoria dos jogos Introdução a teoria dos jogos Sabino da Silva Porto Junior Sportojr@gmail.com Fevereiro de 2008 1 Fevereiro de 2008 2 [PPGE/UFRGS] 1 James Waldegrave: primeiro a apresentar o conceito de solução de um

Leia mais

Jogos Cooperativos. Prof. Leandro Chaves Rêgo

Jogos Cooperativos. Prof. Leandro Chaves Rêgo Jogos Cooperativos Prof. Leandro Chaves Rêgo Programa de Pós-Graduação em Estatística - UFPE Programa de Pós-Graduação em Engenharia de Produção - UFPE Recife, 31 de Outubro de 2014 Jogos Cooperativos

Leia mais