LINGUAGENS FORMAIS E AUTÔMATOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "LINGUAGENS FORMAIS E AUTÔMATOS"

Transcrição

1 LINGUGENS FORMIS E UTÔMTOS Introdução reve Histórico Em 1936, lan Turing (matemático) propôs a possibilidade de se construir um computador digital através da formalização de um procedimento em tempo finito. Turing estabeleceu um modelo formal de algoritmo. Ele reduziu os vários sistemas formais a um sistema básico, tornando possível o computador digital. Um sistema formal é como um jogo rigorosamente definido, onde regras para manipulação dos símbolos são especificadas. Neste é estabelecido a natureza dos símbolos, a situação inicial e uma lista de movimentos permitidos a uma dada posição. lan Turing criou uma máquina que executava operações sobre a teoria dos números por meio de regras de um sistema formal, embutidas na mesma. Isso gerou uma nova perspectiva para formalizar a matemática. Turing descobriu que os números são mais importantes como símbolos. o longo Church apresentou a Tese de Church qualquer procedimento pode ser descrito por uma máquina de Turing, ou seja, qualquer processo aceito por nós homens como um algoritmo é precisamente o que uma Máquina de Turing pode fazer. Em outras palavras, qualquer computação que pode ser descrita por uma máquina de Turing pode ser executada mecanicamente e vice-versa teoria das linguagens formais surgiu nas décadas de 1940 e Seu objetivo inicial era modelar a função do cérebro, desenvolvendo teorias relacionadas com as linguagens naturais. Em 1969, S. Cook estendeu o estudo de Turing do que podia e do que não podia ser calculado. Cook conseguiu separar os problemas que podem ser resolvidos de forma eficiente por computadores daqueles problemas que podem em principio ser resolvidos, mas que, na prática, levam tanto tempo que os computadores são inúteis para solucionar todas as instâncias do problema, exceto aquelas muito pequenas, Os problemas dessa última classe são chamados intratáveis ou NP-difíceis. J. E. Hopcroft Porque Estudar LF? presenta uma fundamentação matemática da computação (fornece provas). É pré-requisito essencial para a disciplina de compiladores Dá suporte à verificação da computabilidade de problemas (problemas reais têm solução computacional).

2 Para entender a complexidade de um problema. Um problema pode ser fácil ou difícil de se resolver. complexidade de algoritmos pode fazer esta classificação baseando-se na dificuldade computacional do problema. Para entender a teoria computacional. lguns problemas básicos não podem ser resolvidos. Ela classifica os problemas em solúveis e não solúveis Sintaxe e Semântica Linguagens Formais preocupa se com os problemas sintáticos das linguagens. ssim, inicialmente, é importante introduzir os conceitos de sintaxe e de semântica de linguagens. Paulo. Menezes sintaxe e a semântica são dois componentes importantes das linguagens de programação. Sintaxe é conjunto de regras formais que especifica a composição de programas (letras,digitos, ), while, do....) e semântica é o conjunto de regras que especificam o significado de algum programa sintaticamente válido. Sintaxe é dividida em: 1. nálise Léxica (regras léxicas): São regras que especificam um conjunto de caracteres que constituem um alfabeto (símbolos elementares) é a maneira como tais caracteres podem ser combinados. Ela efetua a validação da formação das palavras de uma linguagem. 2. nálise Sintática (regras sintáticas): São regras que definem a forma da linguagem. Realiza a verificação da estrutura sintática da linguagem (sintaxe possui construções matemáticas bem definidas e universalmente reconhecidas). Teoria dos Conjuntos Conjunto é um grupo de objetos representados como uma unidade (sem repetições e sem qualquer ordenação). Ex.: conjunto das vogais. Elementos são membros ou objetos num conjunto. Ex.: a,e,i,o,u Dizemos que um elemento pertence ( ) ou não pertence ( ) quanto ele está ou não está em um conjunto, respectivamente. Ex.: a pertence ao conjunto das vogais Diagrama de Venn é a forma de se representar graficamente na teoria dos conjuntos. a e i o u universo (U) Conjunto Conjunto

3 é um subconjunto de se e somente se todo elemento de pertence também a, denotamos a continência da seguinte forma: {a, b} {a, b, c, d} {a, b, c} {b, c, d, e} Sendo,, e C três conjuntos arbitrários valem as seguintes propriedades: (reflexiva) 3. ( e ) = (anti-simétrica) 4. ( e C) C (transitiva) Dois conjuntos são iguais ( = ) se e somente se têm os mesmos elementos, caso contrário. Dados dois conjuntos e, chama-se reunião de e o conjunto formado pelos elementos que pertencem a ou a. {a,b} U {c, d} = {a, b, c, d} ; U = ; {a, b, c} U = {a, b, c}; U = U Dados dois conjuntos e, chama-se intersecção de e o conjunto formado pelos elementos que pertencem a e a. {a,b} {c, d} = (conjunto disjunto não tem elementos comum) {a, b, c} =

4 diferença de dois conjuntos é o conjunto formado pelos elementos de que não pertence a {a, b, c} {b, c, d, e} = {a} {a, b} {a, b, c, d, e} = = - O produto cartesiano de dois conjuntos ( x ) é o conjunto de todos os pares onde o primeiro elemento é um objeto de e o segundo e um elemento de. Se = {1, 2, 3} e = {1, 2} então x = { (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 1)} O complementar de um conjunto, denominado, é o conjunto de todos os elementos que não pertence a. = ; U = U. definição de um conjunto pode ser dada através da: denotação por extensão onde é dada uma lista de todos os elementos do conjunto numa ordem qualquer, separados por vírgula e entre chaves, como por exemplo: V = {a,e,i,o,u} denotação por compreensão onde o conjunto é definido por sua propriedade, como por exemplo: P = {n N n é número par} lguns conjuntos bem conhecidos são: O conjunto dos números naturais, denotado por N. N={0,1,2,3,...} O conjunto dos números inteiros, denotado por Z. Z={...,-2,-1,0,1,2,...} O conjunto dos números reais, denotado por R. Conceitos ásicos Um alfabeto, denotado por, é um conjunto finito não vazio de símbolos. SCII e ECDIC são exemplos de alfabetos de computadores. Exemplos: = {a, b, c,... } = {0, 1} (alfabeto binário) = {verde, amarelo, azul, branco} Um símbolo do alfabeto pode ter mais de um caractere. única restrição que temos é que o conjunto de símbolos é finito. Podemos usar reticências para definir alfabetos extensos.

5 definição de palavra está intimamente relacionada com a de alfabeto. Uma palavra é um conjunto de símbolos de um alfabeto. Dado um, a sequência de símbolos a 1 a 2 a 3... a n é uma palavra sobre se e somente se, para cada i= 1, 2, 3,..., n, a i pertença ao alfabeto. Exemplos: Dado = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } palavras sobre : {0, 11, 9787, 33} -11 não é uma palavra sobre o alfabeto por causa do sinal (-) Dado = {a, b,..., z} palavras sobre : {casa, zebra} fa3 não é uma palavra sobre o alfabeto por causa do 3 Dado um alfabeto e uma palavra x = a 1 a 2 a 3... a n sobre ; x denota o comprimento (tamanho) de x. Isto é: a 1 a 2 a 3... a n = n. Exemplos: = {a, b, c,... z} amor = 4 verde = 5 = {verde, amarelo, azul, branco} verde = 1 azulamarelo = 2 Palavra de comprimento 0, isto é, palavra que não possui nenhum símbolo é denominada palavra vazia. Denotaremos a palavra vazia por ε (epsilon) (alguns autores utiliza N). Note que ε é uma palavra e não um símbolo, logo ε não pode pertencer a nenhum alfabeto. Um prefixo (ou sufixo) de uma palavra é qualquer sequência inicial (final) de símbolos contígua da palavra. Exemplos: Dado = {a, b, c} e a palavra abcb Prefixos: ε, a, ab, abc, abcb Sufixos: ε, b, cb, bcb, abcb Subpalavras: qualquer sufixo ou qualquer prefixo Dado o alfabeto, sejam x = a 1 a 2 a 3... a n e y = b 1 b 2 b 3... b n palavras sobre, a concatenação de x e y é denotada por xy = a 1 a 2 a 3... a n b 1 b 2 b 3... b n. concatenação, portanto, é formada pelos símbolos de x seguidos de y. Deve-se observar que: x + y = xy xy é diferente de yx. ordem é importante. xε = x εx = x

6 Exemplos: Dado = {a, b}, x = abab e y = babab xy = ababbabab yx = babababab x 2 = xx = abababab εx = abab Dado um alfabeto e um inteiro não negativo k, definimos: k = {x x é uma palavra sobre e x = k} k é o conjunto de todas as palavras sobre de comprimento k. Exemplo: Dado o = {0, 1} 1 = {0, 1} 2 = {00, 01, 10, 11} 0 = {ε} Dado um alfabeto definimos: * = U k=0 até k = 0 U 1 U = U k=1 até k = 1 U 2 U = * - {ε } * é o conjunto de todas as palavras possíveis sobre o alfabeto + é o conjunto de todas as palavras possíveis e não vazias sobre o alfabeto * é um conjunto infinito sobre, cada palavra que pertence * tem comprimento finito definição de linguagem está intimamente relacionada com a de alfabeto e palavra. Uma linguagem é um conjunto de palavras sobre um alfabeto. Normalmente denotaremos uma linguagem pela letra L. Exemplo: Dado = {a,b,c}, podemos definir a. L1 = {ab, b, ca, cc} b. L2 = todas as palavras sobre que terminam com o símbolo a c. L3 = conjunto de todas as palavras sobre que possuam a subpalavra ab d. L4 = {x x é uma palavra sobre e x = 4} = 4 Na matemática os objetos são números e as ferramentas são operações para manipulá-los, como: + e x. Na teoria da computação os objetos são linguagens e as ferramentas são operações especialmente formuladas para manipular as linguagens. Vamos definir três operações chamadas operações regulares: Sejam e linguagens 1. = {x x ou x } junta todas as palavras de e 2. = {xy x e y } coloca uma palavra de em frente de uma palavra de de todas as formas possíveis 3. * = {x 1 x 2..., x k k 0 e cada x i } junta qualquer quantidade de palavras de para formar uma nova palavra. é sempre uma palavra de *

7 Exemplo: Dados = {a, b,..., z}; L1 = {bom, ruim}; L2 = {garoto, garota} L1 L2 = {bom, ruim, garoto, garota} L1 L2 = {bomgaroto, bomgarota, ruimgaroto, ruimgarota} L1* = {, bom, ruim, bombom, ruimruim,... } Revisão Exercícios 1) Provar as Leis de Morgan. 1. ( ) = 2. ( ) = 2) Examine as seguintes descrições formais dos conjuntos e escreva uma breve descrição informal em português para cada conjunto abaixo. 1. {1, 3, 5,7,...} 2. {..., -4, -2, 0, 2, 4,...} 3. {n n = 2m para algum m em N} 3) Dê a descrição formal dos conjuntos abaixo: 1. o conjunto contento os números 1, 10, o conjunto contento todos os inteiros maiores que 5 3. o conjunto contento todos os naturais menores que 5 4. o conjunto contento a palavra aba 5. o conjunto contento a palavra vazia 6. o conjunto vazio 4) Dado ={x,y,z} e ={x,y} 1. é subconjunto de? 2. é subconjunto de? 3. O que é? 4. O que é? 5. O que é x? 6. O que é - Conceitos ásicos 1) Escreva 3 palavras para cada um dos alfabetos abaixo: a. = {GU,, L } b. = {0, 1,..., 9, a, b,..., z } c. = {Maria, João, José} d. = {:, =, 0, 1,..., 9} 2) Dado = {a, b} escreva

8 a. todas as possíveis palavras de comprimento 1 b. todas as possíveis palavras de comprimento 2 c. todas as possíveis palavras de comprimento 3 d. uma palavra qualquer de comprimento 15 3) Dado = {do, re, mi, fa, sol, la, si} determine os comprimentos das palavras abaixo: a. re = b. sidoremi = c. misimisimisi = d. rerererererere = 4) Dado = { do, re, mi, fa, sol, la, si} e a palavra doremifa sobre determine: a. todos os sufixos b. todos os prefixos c. todas as subpalavras que não são sufixos e nem prefixos 5) Considere os alfabetos abaixo: a. = {V, F} b. = {a, b, c} c. = {Maria, João, Casa, oneca} Escreva todas as palavras possíveis para 1. Palavras com comprimento 4 para o alfabeto a. 2. Palavras com comprimento 2 para o alfabeto b. 3. Palavras com comprimento 2 para o alfabeto c. 6) Dadas as palavras x = VVF, y= abbc, z = VF, escreva os resultados das concatenações abaixo: a. xxy b. xyz c. xzy d. z 2 y e. zεy 3 f. εyx g. x 2 y 2 h. xy 3 x 7) Dado = {V, F}, determine os conjuntos abaixo: a. 0 b. 1 c. 2 d. 3 8) Dado = {a, b, c}, determine os conjuntos 1 e 2

Linguagens Formais e Autômatos. Apresentação do Plano de Ensino

Linguagens Formais e Autômatos. Apresentação do Plano de Ensino Linguagens Formais e Autômatos Apresentação do Plano de Ensino Linguagens Formais e Autômatos LFA Código - CMP4145 Turma A01 Engenharia da Computação e Ciência da Computação Horário: Segunda, Terça e Quinta.

Leia mais

Linguagens Formais. Aula 01 - Conceitos Básicos. Prof. Othon Batista Mestre em Informática

Linguagens Formais. Aula 01 - Conceitos Básicos. Prof. Othon Batista Mestre em Informática Linguagens Formais Aula 01 - Conceitos Básicos Prof. Othon Batista Mestre em Informática Sumário Introdução à Linguagem Alfabeto Cadeias de Símbolos, Palavras Tamanho de Palavra Prefixo, Sufixo ou Subpalavra

Leia mais

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO TEORIA DA COMPUTAÇÃO Aula 02 Introdução à Teoria da Computação Prof.ª Danielle Casillo Linguagem: é uma forma precisa de expressar

Leia mais

LINGUAGENS FORMAIS E AUTÔMATOS

LINGUAGENS FORMAIS E AUTÔMATOS LINGUAGENS FORMAIS E AUTÔMATOS O objetivo deste curso é formalizar a idéia de linguagem e definir os tipos de sintaxe e semântica. Para cada sintaxe, analisamos autômatos, ue são abstrações de algoritmos.

Leia mais

Linguagens Formais e Autômatos P. Blauth Menezes

Linguagens Formais e Autômatos P. Blauth Menezes Linguagens Formais e Autômatos P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação - P. Blauth Menezes

Leia mais

Apostila 01 Fundamentação da Teoria da Computação e Linguagens Formais

Apostila 01 Fundamentação da Teoria da Computação e Linguagens Formais Cursos: Bacharelado em Ciência da Computação e Bacharelado em Sistemas de Informação Disciplinas: (1493A) Teoria da Computação e Linguagens Formais, (4623A) Teoria da Computação e Linguagens Formais e

Leia mais

Juliana Kaizer Vizzotto. Universidade Federal de Santa Maria. Disciplina de Teoria da Computação

Juliana Kaizer Vizzotto. Universidade Federal de Santa Maria. Disciplina de Teoria da Computação Universidade Federal de Santa Maria Disciplina de Teoria da Computação Quais são as capacidades e limitações fundamentais dos computadores? Funções Computáveis Algoritmo: descrição finitade uma computação

Leia mais

Linguagens Formais e Autômatos 02/2015. LFA Aula 02. introdução 28/09/2015. Celso Olivete Júnior.

Linguagens Formais e Autômatos 02/2015. LFA Aula 02. introdução 28/09/2015. Celso Olivete Júnior. LFA Aula 02 Linguagens regulares - introdução 28/09/2015 Celso Olivete Júnior olivete@fct.unesp.br 1 Na aula passada... Visão geral Linguagens regulares expressões regulares autômatos finitos gramáticas

Leia mais

Conceitos Básicos. Vocabulário Cadeias Linguagens Expressões Regulares Problema X Linguagem

Conceitos Básicos. Vocabulário Cadeias Linguagens Expressões Regulares Problema X Linguagem Conceitos Básicos Vocabulário Cadeias Linguagens Expressões Regulares Problema X Linguagem Alfabeto ou Vocabulário: Conjunto finito não vazio de símbolos. Símbolo é um elemento qualquer de um alfabeto.

Leia mais

Linguagens Formais e Autômatos

Linguagens Formais e Autômatos Linguagens Formais e Autômatos Prof. Yandre Maldonado - 1 Prof. Yandre Maldonado e Gomes da Costa Introdução Problema: definir um conjunto de cadeias de símbolos; Prof. Yandre Maldonado - 2 Exemplo: conjunto

Leia mais

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Prof.ª Danielle Casillo Nome: Teoria da Computação Créditos: 4 60 horas Período: 2010.2 Horário: segundas e quintas das 20:40 às 22:20

Leia mais

Definição: Todo objeto parte de um conjunto é denominado elemento.

Definição: Todo objeto parte de um conjunto é denominado elemento. 1. CONJUNTOS 1.1. TEORIA DE CONJUNTOS 1.1.1. DEFINIÇÃO DE CONJUNTO Definição: Conjunto é toda coleção de objetos. Uma coleção de números é um conjunto. Uma coleção de letras é um conjunto. Uma coleção

Leia mais

Linguagens Formais e Autômatos

Linguagens Formais e Autômatos Linguagens Formais e Autômatos (notas da primeira aula 1 Definições básicas 1.1 Conjuntos Definição 1. Um conjunto é uma coleção de objetos, denominados elementos. Notação 1. Para indicar que um elemento

Leia mais

Matemática Discreta para Computação e Informática

Matemática Discreta para Computação e Informática Matemática Discreta para Computação e Informática P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Computação e Informática

Leia mais

INTRODUÇÃO À TEORIA DOS CONJUNTOS

INTRODUÇÃO À TEORIA DOS CONJUNTOS 1 INTRODUÇÃO À TEORIA DOS CONJUNTOS Gil da Costa Marques 1.1 Introdução 1.2 Conceitos básicos 1.3 Subconjuntos e intervalos 1.4 O conjunto dos números reais 1.4.1 A relação de ordem em 1.5 Intervalos 1.5.1

Leia mais

Linguagens Formais e Autômatos. Conceitos Básicos Prof. Anderson Belgamo

Linguagens Formais e Autômatos. Conceitos Básicos Prof. Anderson Belgamo Linguagens Formais e Autômatos Conceitos Básicos Prof. Anderson Belgamo Introdução Teoria das Linguagens Formais Originariamente desenvolvida na década de 1950. Objetivo inicial: desenvolver teorias relacionadas

Leia mais

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições)

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Exemplos Definições Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Matemática Elementar - EAD Departamento de Matemática Universidade Federal da Paraíba 4 de setembro de 2014

Leia mais

Prof. Adriano Maranhão COMPILADORES

Prof. Adriano Maranhão COMPILADORES Prof. Adriano Maranhão COMPILADORES LINGUAGENS: INTERPRETADAS X COMPILADAS Resumo: Linguagem compilada: Se o método utilizado traduz todo o texto do programa, para só depois executar o programa, então

Leia mais

Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos

Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos. Teoria dos Conjuntos Pode-se dizer que a é em grande parte trabalho de um único matemático: Georg Cantor (1845-1918). noção de conjunto não é suscetível de definição precisa a partir d noções mais simples, ou seja, é uma noção

Leia mais

Teoria das Linguagens. Linguagens Formais e Autómatos (Linguagens)

Teoria das Linguagens. Linguagens Formais e Autómatos (Linguagens) Teoria das Lic. em Ciências da Computação Formais e Autómatos () Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Teoria das - LCC - 2010/2011 Dep. Matemática e Aplicações - Univ.

Leia mais

Linguagem (formal) de alfabeto Σ

Linguagem (formal) de alfabeto Σ Linguagem (formal) de alfabeto Σ Linguagem é qualquer subconjunto de Σ, i.e. qualquer conjunto de palavras de Σ Σ = {a, b} {aa, ab, ba, bb} ou {x x {a, b} e x = 2} {a, aa, ab, ba, aaa, aab, aba,...} ou

Leia mais

Capítulo 2: Procedimentos e algoritmos

Capítulo 2: Procedimentos e algoritmos Capítulo 2: Procedimentos e algoritmos Para estudar o processo de computação de um ponto de vista teórico, com a finalidade de caracterizar o que é ou não é computável, é necessário introduzir um modelo

Leia mais

INTRODUÇÃO À TEORIA DOS CONJUNTOS1

INTRODUÇÃO À TEORIA DOS CONJUNTOS1 INTRODUÇÃO À TEORIA DOS CONJUNTOS1 TÓPICO Gil da Costa Marques 1.1 Elementos da Teoria dos Conjuntos 1.2 Introdução 1.3 Conceitos Básicos 1.4 Subconjuntos e Intervalos 1.5 Conjuntos Numéricos 1.5.1 O Conjunto

Leia mais

Conceitos Básicos. Vocabulário Cadeias Linguagens Problema

Conceitos Básicos. Vocabulário Cadeias Linguagens Problema Conceitos Básicos Vocabulário Cadeias Linguagens Problema Alfabeto ou Vocabulário: Conjunto finito não vazio de símbolos. Símbolo é um elemento qualquer de um alfabeto. Ex: {A,B,C,.Z} alfabeto latino (maiúsculas)

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Este capítulo visa oferecer uma breve revisão sobre teoria elementar dos conjuntos. Além de conceitos básicos importantes em matemática, a sua imprtância reside no fato da

Leia mais

Matemática Discreta para Ciência da Computação

Matemática Discreta para Ciência da Computação Matemática Discreta para Ciência da Computação P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação

Leia mais

Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 3. Autômatos Finitos

Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 3. Autômatos Finitos Curso: Ciência da Computação Turma: 6ª Série Aula 3 Autômatos Finitos Alfabeto Alfabeto Conjunto finito de símbolos; Normalmente descrito por ; Exemplos: ={a, b} ={1, 2, 3} ={00, 11} Ø Alfabeto romano

Leia mais

Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 2. Conceitos Básicos da Teoria da Computação

Curso: Ciência da Computação Turma: 6ª Série. Teoria da Computação. Aula 2. Conceitos Básicos da Teoria da Computação Curso: Ciência da Computação Turma: 6ª Série Aula 2 Conceitos Básicos da Computação pode ser definida como a solução de um problema ou, formalmente, o cálculo de uma função, através de um algoritmo. A

Leia mais

AXB = {(x, y) x A e y B}

AXB = {(x, y) x A e y B} CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA 2010 1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não

Leia mais

Matemática Discreta - 07

Matemática Discreta - 07 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta - 07 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

LINGUAGENS FORMAIS Definições. Desenvolveram-se na História em função da necessidade dos grupos humanos que as empregavam

LINGUAGENS FORMAIS Definições. Desenvolveram-se na História em função da necessidade dos grupos humanos que as empregavam Linguagens Naturais LINGUAGENS FORMAIS Definições Desenvolveram-se na História em função da necessidade dos grupos humanos que as empregavam São muito ricas, mas também ambíguas e imprecisas. Ex.: João

Leia mais

sumário 1 introdução e conceitos básicos 1 2 noções de lógica e técnicas de demonstração introdução à matemática discreta...

sumário 1 introdução e conceitos básicos 1 2 noções de lógica e técnicas de demonstração introdução à matemática discreta... sumário 1 introdução e conceitos básicos 1 1.1 introdução à matemática discreta... 2 1.2 conceitos básicos de teoria dos conjuntos... 3 1.2.1 conjuntos...3 1.2.2 pertinência...5 1.2.3 alguns conjuntos

Leia mais

Teoria dos Conjuntos. Prof. Jorge

Teoria dos Conjuntos. Prof. Jorge Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos - Conjunto I. O conjunto dos alunos do

Leia mais

Teoria da Computação. Unidade 1 Conceitos Básicos. Referência Teoria da Computação (Divério, 2000)

Teoria da Computação. Unidade 1 Conceitos Básicos. Referência Teoria da Computação (Divério, 2000) Unidade 1 Conceitos Básicos Referência (Divério, 2000) Conceitos Básicos Linguagem Conceito fundamental Forma precisa de expressar problemas Permite um desenvolvimento formal adequado ao estudo da computabilidade

Leia mais

Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9.

Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9. Pós-Graduação em Ciência da Computação DCC/ICEx/UFMG Teoria de Linguagens 2 o semestre de 2015 Professor: Newton José Vieira Primeira Lista de Exercícios Entrega: até 16:40h de 15/9. Observações: Pontos

Leia mais

Tópicos de Matemática. Teoria elementar de conjuntos

Tópicos de Matemática. Teoria elementar de conjuntos Tópicos de Matemática Lic. em Ciências da Computação Teoria elementar de conjuntos Carla Mendes Dep. Matemática e Aplicações Universidade do Minho 2010/2011 Tóp. de Matemática - LCC - 2010/2011 Dep. Matemática

Leia mais

Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente

Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente ESIN/UCPel 058814 Linguagens Formais e Autômatos TEXTO 5 Máquina de Turing Linguagens Sensíveis ao Contexto e Enumeráveis Recursivamente Prof. Luiz A M Palazzo Maio de 2007 0. Introdução A Ciência da Computação

Leia mais

Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000)

Teoria da Computação. Unidade 3 Máquinas Universais. Referência Teoria da Computação (Divério, 2000) Teoria da Computação Referência Teoria da Computação (Divério, 2000) 1 L={(0,1)*00} de forma que você pode usar uma Máquina de Turing que não altera os símbolos da fita e sempre move a direita. MT_(0,1)*00=({0,1},{q

Leia mais

Teoria dos conjuntos

Teoria dos conjuntos Teoria dos conjuntos Zenão de Eléia, filósofo grego que viveu por volta de 45 a C., já se preocupava com o conceito de infinito ao propor a questão a seguir, conhecida como paradoxo de Zenão. Em meados

Leia mais

5COP096 TeoriadaComputação

5COP096 TeoriadaComputação Sylvio 1 Barbon Jr barbon@uel.br 5COP096 TeoriadaComputação Aula 13 Prof. Dr. Sylvio Barbon Junior Sumário - Problemas NP-Completo Algoritmos Não-deterministas; Classes NP-Completo e NP-Dificil; Teorema

Leia mais

Pontifícia Universidade Católica do Rio Grande do Sul

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Matemática - Departamento de Matemática Estruturas Algébricas Prof. M.Sc. Guilherme Luís Roëhe Vaccaro e-mail: vaccaro@mat.pucrs.br Prof.

Leia mais

Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática

Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática 2014 Na teoria dos conjuntos três noções são aceitas sem denição (noção primitiva):: Conjunto;

Leia mais

Linguagens Regulares. Prof. Daniel Oliveira

Linguagens Regulares. Prof. Daniel Oliveira Linguagens Regulares Prof. Daniel Oliveira Linguagens Regulares Linguagens Regulares ou Tipo 3 Hierarquia de Chomsky Linguagens Regulares Aborda-se os seguintes formalismos: Autômatos Finitos Expressões

Leia mais

Linguagens Formais e Autômatos (BBC242) Professor: Anderson Almeida Ferreira DECOM-UFOP

Linguagens Formais e Autômatos (BBC242) Professor: Anderson Almeida Ferreira DECOM-UFOP Linguagens Formais e Autômatos (BBC242) Professor: Anderson Almeida Ferreira DECOM-UFOP Ementa Gramáticas. Linguagens Regulares, Livres-de-Contexto e Sensíveis-ao- Contexto. Tipos de Reconhecedores. Operações

Leia mais

Definições Exemplos de gramáticas

Definições Exemplos de gramáticas Definições Exemplos de gramáticas 1 Gramáticas Conceito introduzido pela lingüística Objetivo de ensinar o inglês pelo computador e conseguir um tradutor de línguas Fracasso da tradução por volta dos anos

Leia mais

Linguagens Formais e Autômatos 02/2016. LFA Aula 01 24/10/2016. Celso Olivete Júnior.

Linguagens Formais e Autômatos 02/2016. LFA Aula 01 24/10/2016. Celso Olivete Júnior. LFA Aula 01 Apresentação 24/10/2016 Celso Olivete Júnior olivete@fct.unesp.br 1 Professor Celso Olivete Júnior Bacharelado em Ciência da Computação (Unoeste-2002) Mestrado e Doutorado em Engenharia Elétrica

Leia mais

Instituto de Matemática e Estatística, UFF Março de 2011

Instituto de Matemática e Estatística, UFF Março de 2011 ,,,,, Instituto de Matemática e Estatística, UFF Março de 2011 ,, Sumário,,. finitos,. conjunto: por lista, por propriedade.. Igualdade,. Propriedades básicas.. ,, Christos Papadimitriou, Autor dos livros

Leia mais

Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS

Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTOS O conjunto é um conceito fundamental em todos os ramos da matemática. Intuitivamente, um conjunto é uma lista, coleção ou classe de objetods bem

Leia mais

Matemática Discreta para Ciência da Computação

Matemática Discreta para Ciência da Computação Matemática Discreta para Ciência da Computação P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação

Leia mais

Centro Universitário do Triângulo

Centro Universitário do Triângulo Centro Universitário do Triângulo Cálculo Lambda 1. Introdução A elaboração de modelos de computação (resolução de problemas por uma máquina) baseia-se em trabalhos de dois pesquisadores com enfoques bastante

Leia mais

Teoria da Computação

Teoria da Computação 1 Teoria da Computação Última atualização: 2/2/2009 1 Autômatos: Introdução e Conceitos Básicos A teoria de autômatos é o estudo de computadores abstratos, também chamados de máquinas. Em 1930, antes de

Leia mais

INE5622 INTRODUÇÃO A COMPILADORES

INE5622 INTRODUÇÃO A COMPILADORES INE5622 INTRODUÇÃO A COMPILADORES PLANO DE ENSINO Objetivo geral Conhecer o processo de especificação e implementação de linguagens de programação, a partir do estudo dos conceitos, modelos, técnicas e

Leia mais

Linguagens Formais e Autômatos P. Blauth Menezes

Linguagens Formais e Autômatos P. Blauth Menezes Linguagens Formais e Autômatos P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação - P. Blauth Menezes

Leia mais

Construção de Compiladores Aula 16 - Análise Sintática

Construção de Compiladores Aula 16 - Análise Sintática Construção de Compiladores Aula 16 - Análise Sintática Bruno Müller Junior Departamento de Informática UFPR 25 de Setembro de 2014 1 Introdução Hierarquia de Chomsky Reconhecedores Linguagens Livres de

Leia mais

Introdução à Matemática

Introdução à Matemática Universidade Estadual de Goiás Unidade Universitária de Ciências Sócio-Econômicas e Humanas de Anápolis Introdução à Matemática Conjuntos e Conjuntos Numéricos Introdução A noção de conjunto Propriedades,

Leia mais

Par ordenado [ordered pair]. É uma estrutura do tipo x, y. Se x y x,y y,x.

Par ordenado [ordered pair]. É uma estrutura do tipo x, y. Se x y x,y y,x. Matemática Discreta ESTiG\IPB Cap2. Relações. Funções pg 4 Par ordenado [ordered pair]. É uma estrutura do tipo x, y. Se x y x,y y,x. então Produto cartesiano do conjunto A pelo conjunto B [cartesian product].

Leia mais

Matemática Discreta para Ciência da Computação

Matemática Discreta para Ciência da Computação Matemática Discreta para Ciência da Computação P. Blauth Menezes blauth@inf.ufrgs.br Departamento de Informática Teórica Instituto de Informática / UFRGS Matemática Discreta para Ciência da Computação

Leia mais

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há 1 Produto Cartesiano Par Ordenado A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há casos entretanto em que a ordem é importante. Daí a necessidade de se introduzir

Leia mais

Matemática Discreta 10

Matemática Discreta 10 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta 10 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br - www.univasf.edu.br/~jorge.cavalcanti 1 Muitas

Leia mais

a n Sistemas de Estados Finitos AF Determinísticos

a n Sistemas de Estados Finitos AF Determinísticos a n Sistemas de Estados Finitos AF Determinísticos 1 Relembrando Uma representação finita de uma linguagem L qualquer pode ser: 1. Um conjunto finito de cadeias (se L for finita); 2. Uma expressão de um

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/30 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

Algoritmos e Técnicas de Programação Introdução Givanaldo Rocha de Souza

Algoritmos e Técnicas de Programação Introdução Givanaldo Rocha de Souza Algoritmos e Técnicas de Programação Introdução Givanaldo Rocha de Souza givanaldo.rocha@ifrn.edu.br http://docente.ifrn.edu.br/givanaldorocha Conceitos Lógica de Programação técnica de encadear pensamentos

Leia mais

SEMÂNTICA. Rogério Rocha. rode = program simples = var x : int := 3 in x := x + 5 end.

SEMÂNTICA. Rogério Rocha. rode = program simples = var x : int := 3 in x := x + 5 end. SEMÂNTICA program simples = var x : int := 3 in x := x + 5 end. rode =? Rogério Rocha Roteiro Introdução Sintaxe Semântica Dinâmica (Métodos formais) Operacional Axiomática Denotacional Estática Conclusão

Leia mais

Capítulo 1: Alfabetos, cadeias, linguagens

Capítulo 1: Alfabetos, cadeias, linguagens Capítulo 1: Alfabetos, cadeias, linguagens Símbolos e alfabetos. Um alfabeto é, para os nossos fins, um conjunto finito não vazio cujos elementos são chamados de símbolos. Dessa maneira, os conceitos de

Leia mais

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO. Prof.ª Danielle Casillo UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO CURSO: CIÊNCIA DA COMPUTAÇÃO Prof.ª Danielle Casillo Proposta por Alan Turing em 1936; É universalmente conhecida e aceita como formalização de algoritmo; Teoria

Leia mais

Alfabeto e palavras. Alfabeto conjunto finito de símbolos (Σ).

Alfabeto e palavras. Alfabeto conjunto finito de símbolos (Σ). Alfabeto e palavras Alfabeto conjunto finito de símbolos (Σ). {A,...,Z}, {α, β,... }, {a,b}, {0,1}, ASCII Palavra de Σ sequência finita de símbolos do alfabeto Σ Σ = {a, b} aabba a aaaaaaaa Comprimento

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERSIDADE FEDERAL DE UBERLÂNDIA Faculdade de Computação Disciplina : Teoria da Computação Professora : Sandra de Amo Solução da Lista de Exercícios n o 8 - Indecidibilidade Exercicio 1-5.5 do Livro

Leia mais

Notas de aula de MAC0329 Álgebra Booleana e Aplicações

Notas de aula de MAC0329 Álgebra Booleana e Aplicações Notas de aula de MAC0329 Álgebra Booleana e Aplicações Nina S. T. Hirata Depto. de Ciência da Computação IME / USP Este texto é uma referência-base para o curso de MAC0329 (Álgebra Booleana e Aplicações).

Leia mais

Projeto e Análise de Algoritmos NP Completude. Prof. Humberto Brandão

Projeto e Análise de Algoritmos NP Completude. Prof. Humberto Brandão Projeto e Análise de Algoritmos NP Completude Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Universidade Federal de Alfenas versão da aula: 0.4 Introdução Problemas intratáveis ou difíceis são comuns

Leia mais

ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA AULA 1 _ Conjuntos Professor Luciano Nóbrega Maria Auxiliadora 2 Pode-se dizer que a é, em grande parte, trabalho de um único matemático: Georg Cantor (1845-1918). A noção de conjunto não é suscetível

Leia mais

Linguagens de Programação Aula 3

Linguagens de Programação Aula 3 Aula 3 Celso Olivete Júnior olivete@fct.unesp.br Na aula passada... Classificação das LPs (nível, geração e paradigma) Paradigmas Imperativo, OO, funcional, lógico e concorrente 2/33 Na aula de hoje...

Leia mais

RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS

RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS Aula 02 TEORIA DOS CONJUNTOS 1. Definição de Conjuntos 2. Como se representa um Conjunto 3. Subconjunto, Pertinência e Continência 4. Conjunto das Partes 5. Operação com Conjuntos 1. União ou Reunião (Conjunção)

Leia mais

CT-200 Fundamentos de Linguagens Formais e Automata - Aula 01 - In...

CT-200 Fundamentos de Linguagens Formais e Automata - Aula 01 - In... 1 de 14 14/3/2010 09:28 CT-200 Fundamentos de Linguagens Formais e Automata Aula 01 - Introdução Primeira aula (updated just now by YourName) Orientações Gerais: Horários e Avaliação Horários: 3 tempos

Leia mais

Aula 10: Decidibilidade

Aula 10: Decidibilidade Teoria da Computação Segundo Semestre, 2014 Aula 10: Decidibilidade DAINF-UTFPR Prof. Ricardo Dutra da Silva Definição 10.1. Um problema de decisão P é um conjunto de questões para as quais as respostas

Leia mais

2. DISCIPLINA REQUISITO (RECOMENDAÇÃO) 3. INDICAÇÃO DE CONJUNTO (BCC) Obrigatória TEORIA: 60 LABORATÓRIO: 30

2. DISCIPLINA REQUISITO (RECOMENDAÇÃO) 3. INDICAÇÃO DE CONJUNTO (BCC) Obrigatória TEORIA: 60 LABORATÓRIO: 30 Universidade Federal do ABC Rua Santa Adélia, 166 - Bairro Bangu - Santo André - SP - Brasil CEP 09.210-170 - Telefone/Fax: +55 11 4996-3166 1. CÓDIGO E NOME DA DISCIPLINA MC3106 - LINGUAGENS FORMAIS E

Leia mais

CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,...

CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,... ssunto: Conjunto e Conjuntos Numéricos ssunto: Teoria dos Conjuntos Conceitos primitivos. Representação e tipos de conjunto. Operação com conjuntos. Conceitos Primitivos: CURSO DO ZERO Para dar início

Leia mais

Terceira Lista de Exercícios 2004/2...

Terceira Lista de Exercícios 2004/2... UFLA Universidade Federal de Lavras Departamento de Ciência da Computação COM162 Linguagens Formais e Autômatos Prof. Rudini Sampaio Monitor: Rodrigo Pereira dos Santos Terceira Lista de Exercícios 2004/2

Leia mais

Introdução à Programação

Introdução à Programação Introdução à Programação Linguagens de Programação: sintaxe e semântica de linguagens de programação e conceitos de linguagens interpretadas e compiladas Engenharia da Computação Professor: Críston Pereira

Leia mais

Generalidades sobre conjuntos

Generalidades sobre conjuntos Generalidades sobre conjuntos E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Conjuntos e a noção de pertinência Na teoria dos

Leia mais

Matemática para Ciência de Computadores

Matemática para Ciência de Computadores Matemática para Ciência de Computadores 1 o Ano - LCC & ERSI Luís Antunes lfa@ncc.up.pt DCC-FCUP Complexidade 2002/03 1 Teoria de Conjuntos Um conjunto é uma colecção de objectos/elementos/membros. (Cantor

Leia mais

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Números - Aula 03. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Números - Aula 03 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 28 de Fevereiro de 2014 Primeiro Semestre de 2014 Turma 2013106 - Engenharia Mecânica Corpos Vimos que o

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Objetivo: Desenvolver algoritmos a partir de problemas

Objetivo: Desenvolver algoritmos a partir de problemas Objetivo: Desenvolver algoritmos a partir de problemas Definição de Lógica Definição de Algoritmo Algoritmo x Lógica Diagrama de Blocos e Portugol Portugol: Estrutura da Linguagem Exemplos de Diagramas

Leia mais

Construção de Compiladores

Construção de Compiladores Construção de Compiladores Parte 1 Introdução Linguagens e Gramáticas F.A. Vanini IC Unicamp Klais Soluções Motivação Porque compiladores? São ferramentas fundamentais no processo de desenvolvimento de

Leia mais

MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS. Conjunto é um conceito primitivo, e portanto, não tem definição.

MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS. Conjunto é um conceito primitivo, e portanto, não tem definição. 1 - Conceito de Conjunto MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS Conjunto é um conceito primitivo, e portanto, não tem definição. Representação O conjunto pode ser representado de três maneiras diferentes:

Leia mais

Matemática tica Discreta Módulo Extra (2)

Matemática tica Discreta Módulo Extra (2) Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática tica Discreta Módulo Extra (2) Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br - www.univasf.edu.br/~jorge.cavalcanti

Leia mais

Como construir um compilador utilizando ferramentas Java

Como construir um compilador utilizando ferramentas Java Como construir um compilador utilizando ferramentas Java p. 1/2 Como construir um compilador utilizando ferramentas Java Aula 1 - Introdução Prof. Márcio Delamaro delamaro@icmc.usp.br Como construir um

Leia mais

Aula 7: Autômatos com Pilha

Aula 7: Autômatos com Pilha Teoria da Computação Segundo Semestre, 2014 Aula 7: Autômatos com Pilha DAINF-UTFPR Prof. Ricardo Dutra da Silva Vamos adicionar um memória do tipo pilha ao nossos autômatos para que seja possível aceitar

Leia mais

12 AULA. Relações de Ordem LIVRO. META: Apresentar o conceito de relações de ordem e suas propriedades.

12 AULA. Relações de Ordem LIVRO. META: Apresentar o conceito de relações de ordem e suas propriedades. 2 LIVRO Relações de Ordem META: Apresentar o conceito de relações de ordem e suas propriedades. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Determinar se uma dada relação é uma relação

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aulas 5 e 6 03/2014 Erros Aritmética no Computador A aritmética executada por uma calculadora ou computador é diferente daquela

Leia mais

Complexidade de Algoritmos. Edson Prestes

Complexidade de Algoritmos. Edson Prestes Edson Prestes O limite superior de complexidade de um problema refere-se ao melhor algoritmo que o resolve. nlog 2 n é um limite superior para o problema de classificação. O limite inferior de um problema

Leia mais

I. Conjunto Elemento Pertinência

I. Conjunto Elemento Pertinência TEORI DOS CONJUNTOS I. Conjunto Elemento Pertinência Conjunto, elemento e pertinência são três noções aceitas sem definição, ou seja, são noções primitivas. idéia de conjunto é praticamente a mesma que

Leia mais

Contando o Infinito: os Números Cardinais

Contando o Infinito: os Números Cardinais Contando o Infinito: os Números Cardinais Sérgio Tadao Martins 4 de junho de 2005 No one will expel us from the paradise that Cantor has created for us David Hilbert 1 Introdução Quantos elementos há no

Leia mais

Complexidade computacional

Complexidade computacional Complexidade computacional CLRS sec 34.1 e 34.2 Algoritmos p. 1 Algumas questões Por que alguns problemas parecem ser (computacionalmente) mais difíceis do que outros? Algoritmos p. 2 Algumas questões

Leia mais

Atividades 1 - Matemática Discreta /02

Atividades 1 - Matemática Discreta /02 Atividades 1 - Matemática Discreta - 2014/02 1. Descreva cada um dos conjuntos a seguir, listando seus elementos: (a) P = {x R x 2 x 2 = 0}; (b) Q = {x x é uma letra na palavra amor }; (c) R = {x Z x 2

Leia mais

Também podemos representar um conjunto por meio de uma figura chamada diagrama de Venn (John Venn, lógico inglês, ).

Também podemos representar um conjunto por meio de uma figura chamada diagrama de Venn (John Venn, lógico inglês, ). O que é conjunto Frequentemente usamos a noção de conjunto. Assim, ao organizar a lista de amigos para uma festa, ao preparar o material escolar ou, então, ao formar um time, estamos constituindo conjuntos.

Leia mais

Linguagens de Programação I. Introdução a Algoritmos e Lógica de Programação

Linguagens de Programação I. Introdução a Algoritmos e Lógica de Programação Linguagens de Programação I Introdução a Algoritmos e Lógica de Programação 1 INTRODUÇÃO Que é um programa de computador? Um programa de computador é o produto resultante da atividade intelectual de um

Leia mais

FUNÇÃO. 4.1 Relação Binária. Definição 4.1

FUNÇÃO. 4.1 Relação Binária. Definição 4.1 FUNÇÃO Apesar da formalização de função ter se efetivado com as reformas curriculares do século IX, seu uso já era freqüente desde a antiguidade, pelos babilônios. O conceito de função está presente em

Leia mais

5. Expressões aritméticas

5. Expressões aritméticas 5. Expressões aritméticas 5.1. Conceito de Expressão O conceito de expressão em termos computacionais está intimamente ligado ao conceito de expressão (ou fórmula) matemática, onde um conjunto de variáveis

Leia mais

Definição: Todo objeto parte de um conjunto é denominado elemento.

Definição: Todo objeto parte de um conjunto é denominado elemento. 1. REVISÃO 1.1. CONJUNTOS 1.1.1. DEFINIÇÃO DE CONJUNTO Definição: Conjunto é toda coleção de objetos. Uma coleção de números é um conjunto. Uma coleção de letras é um conjunto. Uma coleção de nomes é um

Leia mais