Rodada #01 Raciocínio Lógico

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Rodada #01 Raciocínio Lógico"

Transcrição

1 Rodada #01 Raciocínio Lógico Professor Guilherme Neves Assuntos da Rodada RACIOCÍNIO LÓGICO: Conjuntos e suas operações. Números naturais, inteiros, racionais e reais e suas operações. Representação na reta. Potenciação e radiciação. Geometria plana: distâncias e ângulos, polígonos, circunferência, perímetro e área. Semelhança e relações métricas no triângulo retângulo. Medidas de comprimento área, volume, massa e tempo. Álgebra básica: expressões algébricas, equações, sistemas e problemas do primeiro e do segundo grau. Noção de função, função composta e inversa. Sequências, reconhecimento de padrões, progressões aritmética e geométrica. Proporcionalidade direta e inversa. Juros. Problemas de contagem e noção de probabilidade. Lógica: proposições, negação, conectivos, implicação, equivalência, quantificadores, operações. Plano cartesiano: sistema de coordenadas, distância. Problemas de lógica e raciocínio.

2 a. Teoria em tópicos 1. Chama-se proposição toda oração declarativa que pode ser valorada em verdadeira ou falsa, mas não as duas. Exemplo: Paris está na Inglaterra (Falso). 2. Sendo oração, deve possuir sujeito e predicado. Portanto, expressões como Os alunos do Ponto dos Concursos não são proposições lógicas, pois não possuem predicado (verbo). 3. Sendo declarativa, não pode ser exclamativa, interrogativa, imperativa ou optativa. Desta forma, as expressões abaixo não são consideradas proposições. i) Que belo dia! (exclamativa) ii) Qual é o seu nome? (interrogativa) iii) Leia isto atenciosamente. (imperativa indica ordem) iv) Que Deus te abençoe. (optativa exprime desejo). 4. Um importante tipo de sentença que não é proposição é a chamada sentença aberta ou função proposicional. Sentença aberta é aquela em que o sujeito é um termo variável. Exemplo: Ele foi aprovado no concurso da Receita Federal em

3 A frase acima não é uma proposição lógica, pois não pode ser classificada em V ou F, já que não sabemos quem é ele. Exemplo: x + 2 = 8 A sentença acima não pode ser classificada em V ou F, pois não sabemos o valor de x. A sentença x + 2 = 8 é, portanto, uma sentença aberta (não é proposição lógica). 5. A partir de proposições dadas, podemos construir novas proposições com o auxílio de operadores lógicos. Os operadores lógicos são o modificador (advérbio não) e os conectivos. 6. O modificador é um operador lógico que troca o valor lógico das proposições. Se temos em mãos uma proposição verdadeira, então, ao aplicarmos o modificador, teremos uma proposição falsa. Da mesma forma, se temos em mãos uma proposição falsa, então, ao aplicarmos o modificador, teremos uma proposição verdadeira. 7. Os símbolos que indicam que uma proposição foi modificada são:. A proposição modificada é chamada de negação da proposição original. Exemplos: Está é uma proposição falsa. Ao aplicarmos o modificador, teremos uma proposição verdadeira. 3

4 Esta frase também pode ser lida das seguintes formas: 8. Quando temos uma proposição simples, devemos modificar o verbo principal para negar a frase. Vejamos outro exemplo: Esta é uma proposição verdadeira. Vamos modificar o verbo e torná-la uma proposição falsa. 9. Uma tabela-verdade dispõe as relações entre os valores lógicos das proposições. Tabelas-verdade são especialmente usadas para determinar os valores lógicos de proposições construídas a partir de proposições simples. Observe a tabela que dispõe as relações entre uma proposição p e a sua negação ~p. p ~ p V F F V 4

5 10. Além do modificador, podemos construir novas proposições utilizando conectivos lógicos. 11. Os conectivos cobrados em provas são Conjunção (e), Disjunção Inclusiva (ou), Disjunção Exclusiva (ou...ou), Condicional (se..., então) e o Bicondicional (...se e somente se...). A banca IBFC adora esses nomes. É muito importante memorizá-los. 12. Caso o problema fale apenas disjunção, consideraremos que se trata da Disjunção Inclusiva. 13. Os conectivos podem estar disfarçados sob expressões equivalentes. Exemplo 1: Fui à praia, mas não estudei = Fui à praia e não estudei. Exemplo 2: Quando vou à praia, não durmo = Se vou à praia, então não durmo. Exemplo 3: Penso, logo existo = Se penso, então existo. 14. A proposição Guilherme e Moraes são professores é uma proposição simples. O sujeito dessa proposição, porém, é composto. A proposição Guilherme é professor e Moraes é professor é uma proposição composta. 15. Cada um dos conectivos é representado por um símbolo. Nome do Conectivo Forma mais comum Símbolo 5

6 Conjunção Disjunção (Inclusiva) Disjunção Exclusiva Condicional Bicondicional e ou Ou...ou Se..., então...se e somente se 16. Como distinguir os símbolos e? Basta colocar uma letra O ao lado dos símbolos. Observe: O / O Em qual das duas situações você consegue ler OU? Na palavra da esquerda! Portanto, aquele símbolo é o ou. Consequentemente o outro é o e. Outro processo mnemônico consiste em colocar um pontinho em cima do símbolo. Vejamos: Em qual das duas situações você consegue ver a letra cursiva i? No símbolo da direita! Portanto, aquele símbolo é o e (mesmo fonema do i ). 17. Para classificar uma proposição composta em V ou F, devemos saber a regra de cada um dos conectivos. 18. Uma proposição composta pelo conectivo e (conjunção) só é verdadeira quando as duas frases componentes são verdadeiras. Se pelo menos uma das frases componentes for falsa, a proposição composta será falsa. 6

7 Exemplo: Se a proposição João é pobre for falsa e se a proposição João pratica atos violentos for verdadeira, então a proposição João não é pobre, mas pratica atos violentos será verdadeira. Exemplo: A proposição 2+3 = 5 e a Lua é quadrada é falsa, pois um de seus componentes é falso. 19. Uma proposição composta pelo conectivo ou (disjunção (inclusiva)) só é verdadeira se pelo menos um de seus componentes for verdadeiro. A disjunção só será falsa se os dois componentes forem falsos. Exemplo: A proposição 2+3 = 5 ou a Lua é quadrada é verdadeira, pois pelo menos um de seus componentes é verdadeiro. Exemplo: A proposição Paris está na Inglaterra ou 16=3 é falsa, pois seus dois componentes são falsos. 7

8 20. Observe que o conectivo "ou" tem um sentido inclusivo, ou seja, classificamos como verdadeira a proposição composta pelo ou que possui os dois componentes verdadeiros. 21. Ao utilizar o conectivo Ou...ou... a proposição composta só será verdadeira quando APENAS um dos componentes for verdadeiro. Se as duas frases componentes forem verdadeiras, a composta será falsa. Se as duas frases forem falsas, a composta será falsa. Há exercícios em que a banca enfatiza o conectivo ou...ou... colocando a expressão mas não ambos ao final da frase. Assim, Ou p ou q = Ou p ou q, mas não ambos. 22. Na proposição condicional Se p, então q, a proposição p é o antecedente e a proposição q é o consequente. Exemplo: Se Guilherme é recifense, então é Igor é mineiro. O antecedente é a proposição Guilherme é recifense e o consequente é a proposição Igor é mineiro. A proposição Se p, então q pode ser lida como p é condição suficiente para q ou como q é condição necessária para p. 8

9 23. Uma proposição composta pelo conectivo Se..., então... só é falsa quando ocorre VF, ou seja, quando o antecedente é verdadeiro e o consequente é falso. Em qualquer outra possibilidade (VV, FV, FF) a composta será verdadeira. Exemplos: 24. O que precisamos saber é apenas isso: se ocorrer VF, ou seja, se o antecedente for verdadeiro e o consequente for falso, a proposição composta pelo se..., então é falsa. Em todos os outros casos a proposição composta será verdadeira. V V V V F F F V V F F V 9

10 25. Uma proposição composta pelo conectivo...se e somente se... (bicondicional) é verdadeira quando os dois componentes têm valores iguais, ou seja, VV ou FF. Se os componentes têm valores opostos (VF ou FV), a composta será falsa. 26. O conectivo se e somente se corresponde à conjunção (e) de dois condicionais (se...,então...). Em outras palavras, as proposições P se e somente se Q e Se P, então Q e se Q, então Q querem dizer a mesma coisa (são equivalentes). Exemplo: São equivalentes as proposições Hoje é Natal se e somente se hoje é 25/12 e Se hoje é Natal, então hoje é 25/12 e se hoje é 25/12, então hoje é Natal. A proposição p se e somente se q pode ser lida como p é condição necessária e suficiente para q ou q é condição necessária e suficiente para p. 27. Podemos resumir tudo o que foi dito sobre conectivos com a seguinte tabelaverdade. V V V V F V V 10

11 V F F V V F F F V F V V V F F F F F F V V 28. Para facilitar o processo mnemônico, podemos fixar as regras que tornam as compostas verdadeiras. Conjunção As duas proposições p, q devem ser verdadeiras Disjunção Inclusiva Ao menos uma das proposições p, q deve ser verdadeira. Não pode ocorrer o caso de as duas serem falsas. Disjunção Exclusiva Apenas uma das proposições pode ser verdadeira. A proposição composta será falsa se os dois componentes forem verdadeiros ou se os dois componentes forem falsos. Condicional Não pode acontecer o caso de o antecedente ser verdadeiro e o consequente ser falso. Ou seja, não pode acontecer V(p)=V e V(q)=F. Em uma linguagem informal, dizemos que não pode acontecer VF, nesta ordem. Bicondicional Os valores lógicos das duas proposições devem ser iguais. Ou as duas são verdadeiras, ou as duas são falsas. 29. O número de linhas da tabela-verdade de uma proposição composta com n proposições simples é 2 n. 11

12 Para uma proposição simples p, o número de linhas da tabela-verdade é 2, pois, pelas leis do pensamento a proposição p só pode assumir um dos dois valores lógicos: V ou F. p V F Para duas proposições p e q, o número de linhas da tabela-verdade é 2 2 = 4. SEMPRE que você for construir uma tabela-verdade envolvendo 2 proposições, começaremos com a seguinte disposição. p q V V V F F V F F Para 3 proposições p, q e r, o número de linhas da tabela-verdade é 2 3 = 8. SEMPRE que você for construir uma tabela-verdade envolvendo 3 proposições, começaremos com a seguinte disposição. p q r V V V 12

13 V V F V F V V F F F V V F V F F F V F F F Cada linha da tabela (fora a primeira que contém as proposições) representa uma valoração. 30. Tautologia é uma proposição composta que é verdadeira independentemente dos valores das proposições simples que a compõem. Vamos considerar três proposições quaisquer p, q e r. Assim, qualquer tabela-verdade envolvendo apenas estas três proposições terá linhas. Desta forma, vamos construir a tabela-verdade da proposição ( p r) (~ q r). E o que significa construir a tabela-verdade desta proposição? Significa dispor em uma tabela todas as possibilidades de valoração para esta proposição. Ou seja, estamos preocupados em responder quando é que esta proposição é verdadeira e quando é que ela é falsa. Para tal tarefa, devemos começar com a seguinte disposição: 13

14 p q r V V V V V F V F V V F F F V V F V F F F V F F F Neste começo de tabela, estão dispostas todas as possibilidades de valorações destas 3 proposições. Observe que há um padrão na construção deste início. Na primeira coluna, temos 4 V seguidos de 4 F. Na segunda coluna temos 2 V seguidos de 2 F alternadamente. Por fim, na terceira coluna temos V e F que se alternam. Pois bem toda tabela-verdade envolvendo três proposições começa assim. Queremos construir a tabela-verdade da proposição ( p r) (~ q r). Observe que não aparece a proposição propriamente dia e sim a sua negação. Portanto, o primeiro passo é construir a negação de. Lembre-se que se uma proposição é verdadeira, a sua negação é falsa e reciprocamente. 14

15 p q r ~ q V V V F V V F F V F V V V F F V F V V F F V F F F F V V F F F V Valores opostos!! Vamos obedecer a ordem de preferência. Vamos construir as proposições compostas que estão dentro dos parênteses. Comecemos por. Devemos conectar a proposição com a proposição através do conectivo e. Lembre-se que uma proposição composta pelo e só é verdadeira quando os dois componentes são verdadeiros. Vamos selecionar as linhas em que ambas e são verdadeiras. Todas as outras possibilidades tornam a composta falsa. p q r ~ q p r V V V F V V V F F F 15

16 V F V V V V F F V F F V V F F F V F F F F F V V F F F F V F Vamos agora construir a segunda proposição composta que está dentro de parênteses:. Lembre-se que uma proposição composta pelo conectivo ou é verdadeira quando pelo menos um dos dois componentes for verdadeiro. Vamos nos focar apenas nas linhas em que pelo menos uma das duas ou for verdadeira. p q r ~ q p r ~ q r V V V F V V V V F F F F V F V V V V V F F V F V F V V F F V F V F F F F F F V V F V 16

17 F F F V F V Observe que tanto na linha 2 quanto na linha 6 as duas proposições são falsas, e portanto, a composta construída é falsa nestes casos. Podemos agora, finalmente construir a composta ( p r) (~ q r). Lembre-se que há apenas um caso em que a composta pelo se..., então é falsa: quando o primeiro componente for verdadeiro e o segundo componente falso. Vamos olhar apenas as duas últimas colunas. Vejamos cada linha de per si: 1ª linha: V V (o condicional é verdadeiro). 2ª linha: F F (o condicional é verdadeiro). 3ª linha: V V (o condicional é verdadeiro). 4ª linha: F V (o condicional é verdadeiro). 5ª linha: F V (o condicional é verdadeiro). 6ª linha: F F (o condicional é verdadeiro). 7ª linha: F V (o condicional é verdadeiro). 8ª linha: F V (o condicional é verdadeiro). Desta forma: p q r ~ q p r ~ q r ( p r) (~ q r) V V V F V V V V V F F F F V 17

18 V F V V V V V V F F V F V V F V V F F V V F V F F F F V F F V V F V V F F F V F V V Concluímos que a proposição composta ( p r) (~ q r) é sempre verdadeira, independentemente dos valores atribuídos às proposições. Dizemos então que a proposição ( p r) (~ q r) é uma tautologia (ou proposição logicamente verdadeira). 31. Contradição é uma proposição composta que é falsa independentemente dos valores das proposições simples que a compõem. Para verificar se uma proposição é uma contradição, devemos construir a sua tabelaverdade. 32. Contingência é uma proposição composta que assume valores V ou F a depender dos valores das proposições componentes. Para verificar se uma proposição é uma contingência, devemos construir a sua tabelaverdade. 18

19 33. Grosso modo, duas proposições são logicamente equivalentes quando elas dizem a mesma coisa. Por exemplo: Eu joguei o lápis. O lápis foi jogado por mim. As duas proposições acima têm o mesmo significado. Elas querem dizer a mesma coisa!! Quando uma delas for verdadeira, a outra também será. Quando uma delas for falsa, a outra também será. Dizemos, portanto, que elas são logicamente equivalentes. Em símbolos, escrevemos. 34. Para mostrar que duas proposições são equivalentes, devemos construir as tabelas-verdade e verificar se elas possuem as mesmas valorações em todas as linhas. Exemplo: Mostre que são equivalentes as proposições, e. Precisamos apenas construir a tabela-verdade. p q ~ q ~ p p q ~ q ~ p ~ p q V V F F V V V V F V F F F F F V F V V V V F F V V V V V 19

20 Como os valores lógicos das três proposições são iguais, elas são ditas logicamente equivalentes. 35. As proposições equivalentes do tópico anterior são responsáveis por 99% das questões de concurso sobre este assunto. Portanto, não se preocupe. Você não precisará construir uma tabela para resolver a questão da sua prova (afirmo isso com 99% de probabilidade de acertar. Rs...). Portanto, memorize as seguintes equivalências: 36. A equivalência permite construir uma proposição composta pelo se...,então... a partir de outra proposição composta pelo se...,então. Para tanto, basta negar os dois componentes e trocar a ordem. Exemplo: São equivalentes as proposições Se bebo, então não dirijo e Se dirijo, então não bebo. 37. A equivalência permite construir uma proposição composta pelo ou a partir de uma composta pelo se...,então.... Para tanto, basta negar o primeiro componente. Exemplo: São equivalentes as proposições Penso, logo existo e Não penso ou existo. 20

21 38. Para negar uma proposição composta pelo conectivo ou, deve-se negar os componentes e trocar o conectivo por e. Exemplo: A negação de Corro ou não durmo é Não corro e durmo. 39. Para negar uma proposição composta pelo conectivo e, deve-se negar os componentes e trocar o conectivo por ou. Exemplo: A negação de Corro e não durmo é Não corro ou durmo. 40. Para negar uma proposição composta pelo Se...,então... : copie o antecedente, negue o consequente e troque o conectivo por e. Em outras palavras, copie a primeira parte, negue a segunda e troque por e. Exemplo: A negação de Penso, logo existo é Penso e não existo. 41. Proposições quantificadas são aquelas utilizam expressões como Todo, Nenhum, Algum. Observação: Algum = Existe = Pelo menos um = Existe um = Existe pelo menos um = Existe algum 42. Uma proposição do tipo Todo...é... é chamada de Proposição Universal Afirmativa (U.A.) Exemplo de U.A.: Todo recifense é pernambucano. 21

22 43. Uma proposição do tipo Todo...não é... é chamada de Proposição Universal Negativa (U.N.). A Universal Negativa também pode ser representada por Nenhum...é.... Exemplo de U.N.: Todo brasileiro não é uruguaio = Nenhum brasileiro é uruguaio. 44. Uma proposição do tipo Algum...é... é chamada de Proposição Particular Afirmativa (P.A.) Exemplo de P.A.: Algum recifense é pernambucano. 45. Uma proposição do tipo Algum... não é... é chamada de Proposição Particular Negativa (P.N.) Exemplo de P.N.: Algum carioca não é pernambucano. 46. Resumo das proposições quantificadas. Proposição universal afirmativa Todo recifense é pernambucano. Proposição universal negativa Nenhum recifense é pernambucano. Proposição particular afirmativa Algum recifense é pernambucano. Proposição particular negativa Algum recifense não é pernambucano. 22

23 47. Como negar proposições quantificadas? Se for Particular, troca por Universal (e vice-versa). Se Afirmativa, troca por Negativa. Afirmação Negação Particular afirmativa ( algum... ) Universal negativa ( nenhum... ou todo... não... ) Universal negativa ( nenhum... ou Particular afirmativa ( algum... ) todo... não... ) Universal afirmativa ( todo... ) Particular negativa ( algum... não ) Particular negativa ( algum... não ) Universal afirmativa ( todo... ) Observe que se a proposição original utiliza o quantificador UNIVERSAL, a sua negação terá um quantificador PARTICULAR. Se a proposição original tem um quantificador PARTICULAR, sua negação utilizará o quantificador UNIVERSAL. Verifique ainda que se a proposição original é AFIRMATIVA, sua negação será NEGATIVA. Se a proposição original é NEGATIVA, sua negação será AFIRMATIVA. Vejamos alguns exemplos: p : Algum político é honesto. p : Existe político honesto. A proposição dada é uma PARTICULAR AFIRMATIVA. Sua negação será uma UNIVERSAL NEGATIVA. ~ p : Nenhum político é honesto. ~ p : Todo político não é honesto. q : Nenhum brasileiro é europeu. 23

24 q : Todo brasileiro não é europeu. A proposição dada é uma UNIVERSAL NEGATIVA. Sua negação será uma PARTICULAR AFIRMATIVA. ~ q : Algum brasileiro é europeu. ~ q : Existe brasileiro que é europeu. r : Todo concurseiro é persistente. A proposição dada é uma UNIVERSAL AFIRMATIVA. Sua negação será uma PARTICULAR NEGATIVA. ~ r : Algum concurseiro não é persistente. ~ r : Existe concurseiro que não é persistente. t : Algum recifense não é pernambucano. t : Existe recifense que não é pernambucano. A proposição dada é uma PARTICULAR NEGATIVA. Sua negação será uma UNIVERSAL AFIRMARTIVA. ~ t : Todo recifense é pernambucano. 48. Como saberemos se uma questão qualquer se refere à negação? De três maneiras: i) A questão explicitamente pede a negação de uma proposição dada. ii) A questão fornece uma proposição verdadeira e pede uma falsa. iii) A questão fornece uma proposição falsa e pede uma verdadeira. 24

25 49. O estudo das proposições categóricas (que utilizam quantificadores) pode ser feito utilizando os diagramas de Euler-Venn. É habitual representar um conjunto por uma linha fechada e não entrelaçada. 50. Relembremos o significado, na linguagem de conjuntos, de cada uma das proposições categóricas. Todo A é B Todo elemento de A também é elemento de B. Nenhum A é B A e B são conjuntos disjuntos, ou seja, não possuem elementos comuns. Algum A é B Os conjuntos A e B possuem pelo menos 1 elemento em comum. Algum A não é B O conjunto A tem pelo menos 1 elemento que não é elemento de B. 51. Todo A é B A proposição categórica Todo A é B é equivalente a: A é subconjunto de B. A é parte de B. 25

26 A está contido em B. B contém A. B é universo de A. B é superconjunto de A. Se sabemos que a proposição Todo A é B é verdadeira, qual será o valor lógico das demais proposições categóricas? Algum A é B é necessariamente verdadeira. Nenhum A é B é necessariamente falsa. Algum A não é B é necessariamente falsa. 52. Algum A é B A proposição categórica Algum A é B equivale a Algum B é A. Se algum A é B é uma proposição verdadeira, qual será o valor lógico das demais proposições categóricas? Nenhum A é B é necessariamente falsa. Todo A é B e Algum A não é B são indeterminadas. Observe que quando afirmamos que Algum A é B estamos dizendo que existe pelo menos um elemento de A que também é elemento de B. 26

27 53. Nenhum A é B A proposição categórica Nenhum A é B equivale a: Nenhum B é A. Todo A não é B. Todo B não é A. A e B são conjuntos disjuntos. Se nenhum A é B é uma proposição verdadeira, qual será o valor lógico das demais proposições categóricas? Todo A é B é necessariamente falsa. Algum A não é B é necessariamente verdadeira. Algum A é B é necessariamente falsa. 54. Algum A não é B 27

28 Observe que Algum A não é B não equivale a Algum B não é A. Por exemplo, dizer que Algum brasileiro não é pernambucano não equivale a dizer que Algum pernambucano não é brasileiro. Se algum A não é B é uma proposição verdadeira, qual será o valor lógico das demais proposições categóricas? Nenhum A é B é indeterminada, pois poderia haver elementos na interseção dos conjuntos A e B. Algum A é B é indeterminada, pois pode haver ou não elementos na interseção dos conjuntos A e B. Todo A é B é necessariamente falsa. 28

29 b. Revisão 1 QUESTÃO IBFC - EMBASA Os valores lógicos das proposições, p: 3+2 = 5 e o dobro de 4 é 12 ; q: Se a metade de 10 é 6, então 3+5 = 7 são, respectivamente: a) F, F b) F, V c) V, F d) V, V QUESTÃO IBFC - EBSERH A frase Carlos não passou no vestibular, então vai estudar numa faculdade particular, equivale, logicamente, à frase: a) Carlos não passou no vestibular e vai estudar numa faculdade particular. b) Carlos passou no vestibular ou vai estudar numa faculdade particular. c) Se Carlos passou no vestibular, então não vai estudar numa faculdade particular. d) Carlos passou no vestibular e não vai estudar numa faculdade particular. e) Carlos não passou no vestibular ou vai estudar numa faculdade particular. QUESTÃO IBFC - EBSERH 29

30 Dentre as alternativas, a única correta, em relação aos conectivos lógicos, e : a) O valor lógico da disjunção entre duas proposições e falsa se o valor lógico de somente uma das proposições for falso. b) O valor lógico da conjunção entre duas proposições e verdade se, o valor lógico de somente uma das proposições for verdade. c) O valor lógico do condicional entre duas proposições e falsa se o valor lógico das duas proposições for falso. d) O valor lógico do bicondicional entre duas proposições e falsa se o valor lógico de somente uma das proposições for falso. e) O valor lógico da conjunção entre duas proposições e falsa se o valor lógico de somente uma das proposições for falso. QUESTÃO IBFC - EMBASA Sabendo que todos A é B, todo C é B e que nenhum C é A, segue necessariamente que: a) Algum A é C. b) Nenhum B é A. c) Algum B não é C. d) Algum C não é B. QUESTÃO IBFC - EBSERH Com relação aos conectivos lógicos é correto afirmar que: 30

31 a) O condicional entre duas proposições cujos valores lógicos são falsos tem valor lógico verdadeiro. b) A conjunção entre duas proposições cujos valores lógicos são falsos tem valor lógico verdadeiro. c) A disjunção entre duas proposições cujos valores lógicos são falsos tem valor lógico verdadeiro. d) O bicondicional entre duas proposições cujos valores lógicos são falsos tem valor lógico falso. e) A conjunção entre duas proposições cujos valores lógicos são verdadeiros tem valor lógico falso. 31

32 c. Revisão 2 QUESTÃO IBFC CÂMARA DE FRANCA/SP Dentre as alternativas abaixo e considerando o valor lógico das proposições compostas, a única falsa é a) (3+4 = 7) ou (25% de 60 = 18). b) (4+4 = 8) e (3+5 = 7) c) Se (2+3 = 4), então (1+4 = 3). d) (1+4=4) se, e somente se, (2+3 = 6). QUESTÃO IBFC PREF. DE ALAGOA GRANDE Sejam as proposições p: 15% de 30% = 45% e q: a quarta parte de uma dúzia é igual a 3, e considerando os valores lógicos dessas proposições, podemos afirmar que o valor lógico da proposição composta é: a) falso b) verdadeiro ou falso c) verdade d) inconclusivo QUESTÃO IBFC PREF. DE ALAGOA GRANDE 32

33 Dentre as afirmações, a única incorreta é: a) se os valores lógicos de duas proposições são falsos então o valor lógico do condicional entre elas é falso. b) se o valor lógico de uma proposição é falso e o valor lógico de outra proposição é verdade, então o valor lógico da conjunção entre elas é falso. c) se os valores lógicos de duas proposições são falsos então o valor lógico da disjunção entre elas é falso. d) se o valor lógico de uma proposição é falso e o valor lógico de outra proposição é verdade, então o valor lógico do bicondicional entre elas é falso. QUESTÃO IBFC CÂMARA DE FRANCA/SP Se o valor lógico de uma proposição é falso e o valor lógico de outra proposição é verdade, então o valor lógico do condicional entre eles, nessa ordem, é: a) verdadeiro b) falso. c) falso ou verdadeiro. d) impossível de determinar. QUESTÃO IBFC - EBSERH Se uma proposição p for falsa e uma proposição q for verdade, então a única alternativa incorreta é: 33

34 a) p ou q é verdade. b) p e q é verdade. c) p se e somente se q é falso. d) se p, então q é verdade. e) não p e não q é falso. QUESTÃO IBFC AMAZUL Considerando as proposições r: a quinta parte de 24 é maior que 5 e s: 35% de 70 é menor que 25, pode-se afirmar que: a) r condicional s é falso. b) r bicondicional s é verdade. c) a conjunção entre r e s é verdade. d) s condicional r é falso. QUESTÃO IBFC - AMAZUL Se os valores lógicos de duas proposições são falsas, então pode-se afirmar que: a) a conjunção entre as duas proposições é verdade. b) o condicional entre as duas proposições é verdade. c) o bicondicional entre as duas proposições é falso. d) a disjunção entre as duas é verdade. 34

35 d. Revisão 3 QUESTÃO IBFC - AMAZUL Se p e q são duas proposições e seus valores lógicos são, respectivamente, verdade e falso, então o valor lógico da proposição composta é: a) verdade. b) falso ou verdade. c) falso. d) inconclusivo. QUESTÃO IBFC PREF. DE FERNANDÓPOLIS Se os valores lógicos de duas proposições simples são falsos, então o valor lógico do bicondicional entre as proposições e : a) Falso b) Inconclusivo c) Incompleto d) Verdade QUESTÃO IBFC PREF. DE FERNANDÓPOLIS O valor lógico da disjunção entre duas proposições e falso se: 35

36 a) Os valores lógicos das duas proposições forem verdades. b) Os valores lógicos das duas proposições forem falsos. c) Os valores lógicos das duas proposições forem opostos. d) O valor lógico da primeira for falso e o valor lógico da segunda for verdade. QUESTÃO IBFC PREF. DE FERNANDÓPOLIS A negação da frase João não foi ao médico e Eduarda e psicóloga, de acordo com a lógica proposicional, e : a) João foi ao médico ou Eduarda não e psicóloga. b) João foi ao médico ou Eduarda e psicóloga. c) João foi ao médico e Eduarda não e psicóloga. d) João não foi ao médico ou Eduarda e psicóloga. QUESTÃO IBFC FUNED Sejam as proposições: p: Carlos joga bola. q: João e esportista. r: Maria joga vôlei. Uma escrita simbólica correta da proposição composta: Carlos joga bola ou Maria não joga vôlei e condição necessária e suficiente para que João seja esportista e : 36

37 a) b) c) d) QUESTÃO IBFC FUNED A negação da frase Celso e médico e Paula e enfermeira e : a) Celso não e médico ou Paula não e enfermeira. b) Celso não e médico e Paula não e enfermeira. c) Se Celso não e médico então Paula não e enfermeira. d) Celso não e médico mas Paula não e enfermeira. QUESTÃO IBFC FUNED A proposição composta que e equivalente a proposição Se Marcos esta feliz, então Mara foi a escola e : a) Marcos esta feliz ou Mara não foi a escola. b) Marcos não esta feliz ou Mara foi a escola. c) Marcos não esta feliz ou Mara não foi a escola. d) Marcos não esta feliz se, e somente se, Mara foi a escola. 37

38 QUESTÃO IBFC FUNED A proposição que e equivalente a p q e : a) ~q ~p b) ~p ~q c) q p d) ~( p q) 38

39 e. Gabarito B B D C A B C A A B D B C D B A C A B A 39

Rodada #1 Raciocínio Lógico

Rodada #1 Raciocínio Lógico Rodada #1 Raciocínio Lógico Professor Guilherme Neves Assuntos da Rodada RACIOCIŃIO LOǴICO: 1 Estruturas lógicas. 2 Lógica de argumentação: analogias, inferências, deduções e conclusões. 3 Lógica sentencial

Leia mais

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 4

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 4 Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 4 1 Apresentação Olá, pessoal Tudo bem com vocês? Finalmente saiu o edital do TCM/RJ Para quem ainda não me conhece, meu nome

Leia mais

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 3

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 3 Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 3 www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal Tudo bem com vocês? Em breve teremos o concurso do TCM/RJ e sabemos

Leia mais

RECEITA FEDERAL ANALISTA

RECEITA FEDERAL ANALISTA SENTENÇAS OU PROPOSIÇÕES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (V), ou só como

Leia mais

Campos Sales (CE),

Campos Sales (CE), UNIERSIDADE REGIONAL DO CARIRI URCA PRÓ-REITORIA DE ENSINO E GRADUAÇÃO PROGRAD UNIDADE DESCENTRALIZADA DE CAMPOS SALES CAMPI CARIRI OESTE DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Tópicos de Matemática SEMESTRE:

Leia mais

Aula 00. Raciocínio Lógico para PCDF. Matemática e Raciocínio Lógico Professor: Guilherme Neves. Prof.

Aula 00. Raciocínio Lógico para PCDF. Matemática e Raciocínio Lógico Professor: Guilherme Neves.  Prof. Aula 00 Matemática e Raciocínio Lógico Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal! Em breve teremos o concurso para Polícia Civil do Distrito Federal. A banca organizadora

Leia mais

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula /

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula / 1 www.romulopassos.com.br / www.questoesnasaude.com.br GRATUITO RACIOCÍNIO LÓGICO - EBSERH Professor Paulo Henrique PH Aula 02 R A C I O C Í N I O L Ó G I C O E B S E R H a u l a 0 2 Página 1 2 www.romulopassos.com.br

Leia mais

Proposições simples e compostas

Proposições simples e compostas Revisão Lógica Proposições simples e compostas Uma proposição é simples quando declara algo sem o uso de conectivos. Exemplos de proposições simples: p : O número 2 é primo. (V) q : 15 : 3 = 6 (F) r :

Leia mais

Lógica formal. A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação IV) Simbolização 1. Simples 2.

Lógica formal. A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação IV) Simbolização 1. Simples 2. Lógica formal A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação I) Simbolização 1. Simples 2. Composta B)Leis do pensamento I) Princípio da Identidade II) Principio do não-contraditório

Leia mais

(Lógica) Negação de Proposições, Tautologia, Contingência e Contradição.

(Lógica) Negação de Proposições, Tautologia, Contingência e Contradição. aula 07 (Lógica) Negação de Proposições, Tautologia, Contingência e Contradição. Professor: Renê Furtado Felix E-mail: rffelix70@yahoo.com.br Site: http://www.renecomputer.net/pdflog.html Negação de Proposições

Leia mais

Aula 1 Aula 2. Ana Carolina Boero. Página:

Aula 1 Aula 2. Ana Carolina Boero.   Página: Elementos de lógica e linguagem matemática E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Linguagem matemática A linguagem matemática

Leia mais

Raciocínio lógico matemático

Raciocínio lógico matemático Raciocínio lógico matemático Unidade 2: Introdução à lógica Seção 2.3 Equivalências, contradições e tautologias 1 Proposições compostas Composta de duas ou mais proposições simples Tanto a primeira como

Leia mais

Matemática Régis Cortes. Lógica matemática

Matemática Régis Cortes. Lógica matemática Lógica matemática 1 INTRODUÇÃO Neste roteiro, o principal objetivo será a investigação da validade de ARGUMENTOS: conjunto de enunciados dos quais um é a CONCLUSÃO e os demais PREMISSAS. Os argumentos

Leia mais

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE 1 1. LÓGICA SETENCIAL E DE PRIMEIRA Conceito de proposição ORDEM Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, seja este verdadeiro ou falso.

Leia mais

Aula 00. Raciocínio Lógico. Raciocínio Lógico para MP-RJ Aula Demonstrativa Professor: Karine Waldrich

Aula 00. Raciocínio Lógico. Raciocínio Lógico para MP-RJ Aula Demonstrativa Professor: Karine Waldrich Aula 00 Raciocínio Lógico para MP-RJ Aula Demonstrativa Professor: Karine Waldrich www.pontodosconcursos.com.br 1 Aula 00 Aula Demonstrativa Oi, tudo bem? Meu nome é Karine Waldrich. Nasci em Blumenau,

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO SENTENÇAS OU PROPOSIÇÕES MODIICADORES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (),

Leia mais

Compreender estruturas lógicas é, antes de tudo, compreender o que são proposições.

Compreender estruturas lógicas é, antes de tudo, compreender o que são proposições. Caros alunos, Antes de darmos início a nossa aula demonstrativa, vamos às apresentações pessoais e profissionais: meu nome é Letícia Protta, sou agente administrativo do Ministério do Trabalho e Emprego,

Leia mais

INSS 2016 Técnico CESPE

INSS 2016 Técnico CESPE INSS 2016 Técnico CESPE Art. 21. A alíquota de contribuição dos segurados contribuinte individual e facultativo será de 20 por cento sobre o respectivo salário-de-contribuição. Considerando o art. 21 da

Leia mais

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1 Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados

Leia mais

Planificação do 1º Período

Planificação do 1º Período Direção-Geral dos Estabelecimentos Escolares Direção de Serviços da Região Centro Planificação do 1º Período Disciplina: Matemática A Grupo: 500 Ano: 10º Número de blocos de 45 minutos previstos: 74 Ano

Leia mais

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL Atualizado em 12/11/2015 LÓGICA PROPOSICIONAL Lógica é a ciência que estuda as leis do pensamento e a arte de aplicá-las corretamente na investigação e demonstração

Leia mais

Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar. Noções de Lógica

Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar. Noções de Lógica Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar Noções de Lógica Proposição: É uma sentença declarativa, seja ela expressa de forma afirmativa

Leia mais

(Questões de provas resolvidas e comentadas) Carlos R. Torrente

(Questões de provas resolvidas e comentadas) Carlos R. Torrente (Questões de provas resolvidas e comentadas) Carlos R. Torrente Dados Internacionais de Catalogação na Publicação (CIP) (Câmara Brasileira do Livro, SP, Brasil) Torrente, Carlos Roberto Raciocínio lógico

Leia mais

ANÁLISE MATEMÁTICA I. Curso: EB

ANÁLISE MATEMÁTICA I. Curso: EB ANÁLISE MATEMÁTICA I (com Laboratórios) Curso: EB Lógica - Resumo Ana Matos DMAT Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a qualquer sequência de símbolos.

Leia mais

LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014

LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 1) Determinar o valor verdade da proposição (p q) r, sabendo-se que AL (p) =, AL (q) = e AL (r) =. Proposições são afirmações que podem ser julgadas como verdadeira

Leia mais

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico.

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico. CENTRO UNVERSITÁRIO UNA NOÇÕES DE RACIOCÍNIO LÓGICO Professor: Rodrigo Eustáquio Borges A disciplina Lógica Matemática tem como objetivo capacitar o aluno a reconhecer e aplicar os conceitos fundamentais

Leia mais

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo)

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo) (2º ciclo) 5º ano Operações e Medida Tratamento de Dados Efetuar com números racionais não negativos. Resolver problemas de vários passos envolvendo com números racionais representados por frações, dízimas,

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

Unidade: Proposições Logicamente Equivalentes. Unidade I:

Unidade: Proposições Logicamente Equivalentes. Unidade I: Unidade: Proposições Logicamente Equivalentes Unidade I: 0 Unidade: Proposições Logicamente Equivalentes Nesta unidade, veremos a partir de nossos estudos em tabelas-verdade as proposições logicamente

Leia mais

Aula 00. Raciocínio Lógico para Técnico do INSS. Raciocínio Lógico Professor: Guilherme Neves. Prof.

Aula 00. Raciocínio Lógico para Técnico do INSS. Raciocínio Lógico Professor: Guilherme Neves.  Prof. Aula 00 Raciocínio Lógico Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Aula 00 Aula Demonstrativa Raciocínio Lógico para INSS Apresentação... 3 Modelos de Questões Comentadas - CESPE... 4

Leia mais

Lógica das Proposições

Lógica das Proposições Lógica das Proposições Transcrição - Podcast 1 Professor Carlos Mainardes Olá eu sou Carlos Mainardes do blog Matemática em Concursos, e esse material que estou disponibilizando trata de um assunto muito

Leia mais

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios...

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios... Lógica para Ciência da Computação I Lógica Matemática Texto 11 Tautologias Sumário 1 Comportamento de um enunciado 2 1.1 Observações................................ 4 2 Classificação dos enunciados 4 2.1

Leia mais

Sumário. Capítulo 1 Conhecendo os Vários Tipos de Problema... 1

Sumário. Capítulo 1 Conhecendo os Vários Tipos de Problema... 1 Sumário Capítulo 1 Conhecendo os Vários Tipos de Problema... 1 Capítulo 2 Problemas sobre Correlacionamento... 5 2.1. Problemas Envolvendo Correlação entre Elementos...5 2.2. Considerações Finais Sobre

Leia mais

CEM CADERNO DE EXERCÍCIOS MASTER. Raciocínio Lógico e Matemático TCM. Banca: IBFC. Período

CEM CADERNO DE EXERCÍCIOS MASTER. Raciocínio Lógico e Matemático TCM. Banca: IBFC. Período CEM CADERNO DE EXERCÍCIOS MASTER Raciocínio Lógico e Matemático TCM Banca: IBFC Período 2010 2016 Sumário Tabela Verdade das Proposições Compostas... 3 Tautologia, Contradição e Contingência... 8 Equivalências

Leia mais

Expressões e enunciados

Expressões e enunciados Lógica para Ciência da Computação I Lógica Matemática Texto 2 Expressões e enunciados Sumário 1 Expressões e enunciados 2 1.1 Observações................................ 2 1.2 Exercício resolvido............................

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa.

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa. Tema 1 Lógica e Teoria dos Conjuntos 1. Proposições e valores lógicos. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira

Leia mais

PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO

PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO EB 2.3 DE SÃO JOÃO DO ESTORIL 2016/17 MATEMÁTICA PERFIL DO ALUNO PERFIL DO ALUNO APRENDIZAGENS ESPECÍFICAS - 5.ºANO /DOMÍNIOS NUMEROS E OPERAÇÕES NO5 GEOMETRIA E MEDIDA GM5 ALG5 ORGANIZAÇÃO E TRATAMENTO

Leia mais

Concurso Público Conteúdo

Concurso Público Conteúdo Concurso Público 2016 Conteúdo Estrutura lógica de relações arbitrárias entre pessoas, lugares, objetos ou eventos fictícios; deduzir novas informações das relações fornecidas e avaliar as condições usadas

Leia mais

TESTES RESOLVIDOS. É uma sentença aberta. Nada podemos afirmar, não conhecemos o conteúdo da frase. Não é uma proposição.

TESTES RESOLVIDOS. É uma sentença aberta. Nada podemos afirmar, não conhecemos o conteúdo da frase. Não é uma proposição. LÓGICA PROPOSICIONAL 1. PROPOSIÇÃO CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas. Por exemplo: 2 é um número primo. Resposta: É uma

Leia mais

LÓGICA APLICADA A COMPUTAÇÃO

LÓGICA APLICADA A COMPUTAÇÃO LÓGICA APLICADA A COMPUTAÇÃO 2009.3 Aquiles Burlamaqui Conteúdo Programático Unidade I Linguagens Formais Linguagens Formais Sigma Álgebras Relação entre Linguagens Formais e Sigma Álgebras Sigma Domínios

Leia mais

FUNDAÇÃO UNIVERSIDADE DO TOCANTINS TADS 2008/1 1º PERÍODO MP1 1º ETAPA 11/07/2008 MATEMÁTICA PARA COMPUTAÇÃO 2008/1

FUNDAÇÃO UNIVERSIDADE DO TOCANTINS TADS 2008/1 1º PERÍODO MP1 1º ETAPA 11/07/2008 MATEMÁTICA PARA COMPUTAÇÃO 2008/1 FUNDAÇÃO UNIVERSIDADE DO TOCANTINS TADS 2008/1 1º PERÍODO MP1 1º ETAPA 11/07/2008 MATEMÁTICA PARA COMPUTAÇÃO 2008/1 Dados de identificação do Aluno: Nome: Login: Cidade: CA: Data da Prova: / / ORIENTAÇÃO

Leia mais

RACIOCÍNIO LÓGICO PROPOSIÇÕES LÓGICAS

RACIOCÍNIO LÓGICO PROPOSIÇÕES LÓGICAS 1 RACIOCÍNIO LÓGICO PROPOSIÇÕES LÓGICAS 2 TIPOS DE PROPOSIÇÃO Simples ou Atômicas Oscar é prudente; Mário é engenheiro; Maria é morena. 3 TIPOS DE PROPOSIÇÃO Composta ou Molecular Walter é engenheiro E

Leia mais

Apostilas OBJETIVA Ano X - Concurso Público Conteúdo

Apostilas OBJETIVA Ano X - Concurso Público Conteúdo Conteúdo Introdução Estruturas lógicas. 2 Lógica de argumentação: analogias, inferências, deduções e conclusões. 3 Lógica sentencial (ou proposicional). 3.1 Proposições simples e compostas. 3.2 Tabelas-verdade.

Leia mais

LÓGICA. CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas.

LÓGICA. CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas. LÓGICA 1. PROPOSIÇÃO CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas. Por exemplo: 2 é um número primo. Resposta: É uma proposição verdadeira

Leia mais

Matriz de Referência da área de Matemática Ensino Fundamental

Matriz de Referência da área de Matemática Ensino Fundamental Matemática EF Matriz de Referência da área de Matemática Ensino Fundamental C1 Utilizar o conhecimento numérico para operar e construir argumentos ao interpretar situações que envolvam informações quantitativas.

Leia mais

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula /

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula / 1 www.romulopassos.com.br / www.questoesnasaude.com.br GRATUITO RACIOCÍNIO LÓGICO - EBSERH Professor Paulo Henrique PH Aula 03 R A C I O C Í N I O L Ó G I C O E B S E R H a u l a 0 2 Página 1 2 www.romulopassos.com.br

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

SUMÁRIO. Língua Portuguesa

SUMÁRIO. Língua Portuguesa Língua Portuguesa Compreensão de texto contemporâneo... 3 Reconhecimento de modos de organização de diferentes gêneros de texto...9 Reconhecimento do uso significativo dos diferentes recursos gramaticais

Leia mais

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Argumentação em Matemática Prof. Lenimar Nunes de Andrade e-mail: numerufpb@gmail.com ou lenimar@mat.ufpb.br versão 1.0

Leia mais

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano

PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano PLANO CURRICULAR DISCIPLINAR MATEMÁTICA 7º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUBTÓPICOS METAS DE APRENDIZAGEM 1º Período - Multiplicar e dividir números inteiros. - Calcular o valor de potências em que

Leia mais

Elementos de Lógica Matemática p. 1/2

Elementos de Lógica Matemática p. 1/2 Elementos de Lógica Matemática Uma Breve Iniciação Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Elementos de Lógica Matemática p. 1/2 Vamos aprender a falar aramaico? ǫ > 0 ( δ

Leia mais

APOSTILA DE LÓGICA. # Conceitos iniciais INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE

APOSTILA DE LÓGICA. # Conceitos iniciais INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE INSTITUTO EDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE CÂMPUS APODI Sítio Lagoa do Clementino, nº 999, RN 233, Km 2, Apodi/RN, 59700-971. one (084) 4005.0765 E-mail: gabin.ap@ifrn.edu.br

Leia mais

Algoritmos e Programação I

Algoritmos e Programação I Algoritmos e Programação I Operadores Relacionais, Lógicos e Aritméticos Prof. Fernando Maia da Mota mota.fernandomaia@gmail.com CPCX/UFMS Fernando Maia da Mota 1 Expressões Uma expressão relacional, ou

Leia mais

Lóg L ica M ca at M em e ática PROF.. J EAN 1

Lóg L ica M ca at M em e ática PROF.. J EAN 1 Lógica Matemática PRO. JEAN 1 LÓGICA MATEMÁTICA - CONTEÚDO Definição de Termo e Proposição alor Lógico Proposição Simples e Proposição Composta Conectivos Tabela-erdade 2 LÓGICA MATEMÁTICA INTRODUÇÃO ao

Leia mais

Noções básicas de Lógica

Noções básicas de Lógica Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a uma sequências de símbolos. Uma expressão pode ser uma expressão com significado expressão sem significado

Leia mais

Prova Resolvida Raciocínio Lógico (ANAC/2016) Prof. Guilherme Neves

Prova Resolvida Raciocínio Lógico (ANAC/2016) Prof. Guilherme Neves Prova Resolvida Raciocínio Lógico (ANAC/2016) 71. (ANAC 2016/ESAF) Sabendo que os valores lógicos das proposições simples p e q são, respectivamente, a verdade e a falsidade, assinale o item que apresenta

Leia mais

PLANO DE ENSINO Disciplina: Matemática 8 a série Professor: Fábio Girão. Competências Habilidades Conteúdos. I Etapa

PLANO DE ENSINO Disciplina: Matemática 8 a série Professor: Fábio Girão. Competências Habilidades Conteúdos. I Etapa PLANO DE ENSINO 2015 Disciplina: Matemática 8 a série Professor: Fábio Girão I Etapa Competências Habilidades Conteúdos Construir significados e ampliar os já existentes para os números naturais, inteiros,

Leia mais

Analista Tributário da Receita Federal do Brasil ESAF

Analista Tributário da Receita Federal do Brasil ESAF Analista ributário da Receita Federal do Brasil ESAF - 0 0. A negação da proposição se Paulo estuda, então Marta é atleta é logicamente equivalente à proposição: a) Paulo não estuda e Marta não é atleta.

Leia mais

ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016

ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016 ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016 PLANIFICAÇÃO DE MATEMÁTICA 7ºANO 1º Período 2º Período 3º Período Apresentação,

Leia mais

Raciocínio Lógico Matemático

Raciocínio Lógico Matemático Raciocínio Lógico Matemático Cap. 4 - Implicação Lógica Implicação Lógica Antes de iniciar a leitura deste capítulo, verifique se de fato os capítulos anteriores ficaram claros e retome os tópicos abordados

Leia mais

Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013

Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013 Programação de Conteúdos de Matemática SPE Ensino Médio REGULAR 2013 1ª série - volume 1 1. Conjuntos - Conceito de conjunto - Pertinência - Representação de um conjunto - Subconjuntos - União de conjuntos

Leia mais

Iniciação a Lógica Matemática

Iniciação a Lógica Matemática Iniciação a Lógica Matemática Faculdade Pitágoras Prof. Edwar Saliba Júnior Julho de 2012 1 O Nascimento da Lógica É lógico que eu vou!, Lógico que ela disse isso! são expressões que indicam alguma coisa

Leia mais

MATRIZ DE REFERÊNCIA DE MATEMÁTICA - SADEAM 3 ANO DO ENSINO FUNDAMENTAL

MATRIZ DE REFERÊNCIA DE MATEMÁTICA - SADEAM 3 ANO DO ENSINO FUNDAMENTAL 3 ANO DO ENSINO FUNDAMENTAL ESPAÇO E FORMA Identificar a localização/movimentação de objeto ou pessoa em mapa, croqui e outras representações gráficas. Identificar propriedades comuns e diferenças entre

Leia mais

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior

Lógica Formal. Matemática Discreta. Prof. Vilson Heck Junior Lógica Formal Matemática Discreta Prof. Vilson Heck Junior vilson.junior@ifsc.edu.br Objetivos Utilizar símbolos da lógica proposicional; Encontrar o valor lógico de uma expressão em lógica proposicional;

Leia mais

QUESTÕES REVISÃO DE VÉSPERA FUNAI

QUESTÕES REVISÃO DE VÉSPERA FUNAI QUESTÕES REVISÃO DE VÉSPERA FUNAI RACIOCÍNIO LÓGICO Prof. Josimar Padilha EDITAL: RACIOCÍNIO LÓGICO E QUANTITATIVO: 1. Lógica e raciocínio lógico: problemas envolvendo lógica e raciocínio lógico. 2. Proposições:

Leia mais

INTRODUÇÃO À LÓGICA MATEMÁTICA

INTRODUÇÃO À LÓGICA MATEMÁTICA INTRODUÇÃO À LÓGICA MATEMÁTICA Matemática Aplicada a Computação rofessor Rossini A M Bezerra Lógica é o estudo dos princípios e métodos usados para distinguir sentenças verdadeiras de falsas. Definição

Leia mais

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem e manual adoptado 3º CICLO MATEMÁTICA 7ºANO TEMAS/DOMÍNIOS

Leia mais

Professor conteudista: Ricardo Holderegger

Professor conteudista: Ricardo Holderegger Lógica Professor conteudista: Ricardo Holderegger Sumário Lógica Unidade I 1 SISTEMAS DICOTÔMICOS...3 1.1 Proposições...3 1.1.1 Proposições lógicas...3 1.1.2 Símbolos da lógica matemática...4 1.1.3 A negação...4

Leia mais

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2015/2016 5º Ano de escolaridade

Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 2015/2016 5º Ano de escolaridade Uma Escola de Cidadania Uma Escola de Qualidade Agrupamento de Escolas Dr. Francisco Sanches Departamento de Matemática e Ciências Experimentais PLANO DE ESTUDO MATEMÁTICA 05/06 5º Ano de escolaridade

Leia mais

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I 6º Olímpico Matemática I Sistema de numeração romano. Situações problema com as seis operações com números naturais (adição, subtração, multiplicação, divisão, potenciação e radiciação). Expressões numéricas

Leia mais

MP - RJ Ministério Público do Estado do Rio de Janeiro. Cargo: Técnico Administrativo Área Administrativa

MP - RJ Ministério Público do Estado do Rio de Janeiro. Cargo: Técnico Administrativo Área Administrativa MP - RJ Ministério Público do Estado do Rio de Janeiro Cargo: Técnico Administrativo Área Administrativa Conteúdo 1ª Parte Proposições, valor-verdade, negação, conjunção, disjunção, implicação, equivalência,

Leia mais

Sumário. 1 CAPÍTULO 1 Revisão de álgebra

Sumário. 1 CAPÍTULO 1 Revisão de álgebra Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção

Leia mais

7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano

7.º Ano. Planificação Matemática 2016/2017. Escola Básica Integrada de Fragoso 7.º Ano 7.º Ano Planificação Matemática 201/2017 Escola Básica Integrada de Fragoso 7.º Ano Geometria e medida Números e Operações Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números racionais - Simétrico

Leia mais

Alex Lira. Olá, pessoal!!!

Alex Lira. Olá, pessoal!!! Olá, pessoal!!! Seguem abaixo os meus comentários das questões de Lógica que foram cobradas na prova para o cargo de Agente da Polícia Federal, elaborada pelo Cespe, realizada no último final de semana.

Leia mais

Aula 00. Matemática Financeira para ISS-Cuiabá. Matemática Financeira Professor: Guilherme Neves. Prof.

Aula 00. Matemática Financeira para ISS-Cuiabá. Matemática Financeira Professor: Guilherme Neves.  Prof. Aula 00 Matemática Financeira Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Aula 00 Aula Demonstrativa Matemática Financeira Apresentação... 3 Modelos de questões resolvidas FGV... 4 Relação

Leia mais

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA:

DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (10º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (18 de setembro a 17 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

IME, UFF 5 de novembro de 2013

IME, UFF 5 de novembro de 2013 Lógica IME, UFF 5 de novembro de 2013 . em LS. Método das.. Sumário. Simbolização não é determinística Dependendo de o entendemos o significado de uma sentença, ela pode ser simbolizada de mais de uma

Leia mais

Ordenar ou identificar a localização de números racionais na reta numérica.

Ordenar ou identificar a localização de números racionais na reta numérica. Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando

Leia mais

7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano

7º Ano. Planificação Matemática 2014/2015. Escola Básica Integrada de Fragoso 7º Ano 7º Ano Planificação Matemática 2014/2015 Escola Básica Integrada de Fragoso 7º Ano Domínio Subdomínio Conteúdos Objetivos gerais / Metas Números e Operações Números racionais - Simétrico da soma e da diferença

Leia mais

SMA Elementos de Matemática Notas de Aulas

SMA Elementos de Matemática Notas de Aulas Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação SMA 341 - Elementos de Matemática Notas de Aulas Ires Dias Sandra Maria Semensato de Godoy São Carlos 2009 Sumário 1 Noções

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas de Aprendizagem

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas de Aprendizagem AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem 3º CICLO MATEMÁTICA 7ºANO TEMAS/DOMÍNIOS CONTEÚDOS OBJETIVOS

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Números inteiros adição e subtração

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Números inteiros adição e subtração Unidade 1 Números inteiros adição e subtração 1. Números positivos e números negativos Reconhecer o uso de números negativos e positivos no dia a dia. 2. Conjunto dos números inteiros 3. Módulo ou valor

Leia mais

Matriz de Referência de Matemática* SAEPI Temas e seus Descritores 5º ano do Ensino Fundamental

Matriz de Referência de Matemática* SAEPI Temas e seus Descritores 5º ano do Ensino Fundamental MATEMÁTICA - 5º EF Matriz de Referência de Matemática* SAEPI Temas e seus Descritores 5º ano do Ensino Fundamental Identificar a localização/movimentação de objeto em mapas, croquis e outras representações

Leia mais

Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Inclusão Operações com conjuntos

Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Inclusão Operações com conjuntos Tutoria Matemática para Informática Teoria geral dos conjuntos Pertinência Є (pertence) ou Є (não pertence) Sempre verificando de elemento para conjunto { } ou Ø = vazio {Ø} = conjunto com elemento vazio

Leia mais

Calendarização da Componente Letiva

Calendarização da Componente Letiva Calendarização da Componente Letiva 2015/2016 7º Ano Matemática s 1º 2º 3º Número de aulas previstas (45 minutos) 61 50 48 Apresentação e Diagnóstico 2 Avaliação (preparação, fichas de avaliação e correção)

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos

Leia mais

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Currículo da disciplina de Matemática - 7ºano Unidade 1 Números inteiros Propriedades da adição de números racionais Multiplicação de números

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA - 7.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA - 7.º ANO DE MATEMÁTICA - 7.º ANO Ano Letivo 2014 2015 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de multiplicar e dividir números racionais relativos. No domínio da Geometria e Medida,

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL Belo Horizonte/MG

Leia mais

PLANO DE ESTUDOS DE MATEMÁTICA 7.º ANO

PLANO DE ESTUDOS DE MATEMÁTICA 7.º ANO DE MATEMÁTICA 7.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de multiplicar e dividir números racionais relativos. No domínio da Geometria e Medida,

Leia mais

1. = F; Q = V; R = V.

1. = F; Q = V; R = V. ENADE 2005 e 2008 Nas opções abaixo, representa o condicional material (se...então...), v representa a disjunção (ou um, ou outro, ou ambos) e ~ representa a negação (não). Com o auxílio de tabelas veritativas,

Leia mais

TEMA I: Interagindo com os números e funções

TEMA I: Interagindo com os números e funções 31 TEMA I: Interagindo com os números e funções D1 Reconhecer e utilizar característictas do sistema de numeração decimal. D2 Utilizar procedimentos de cálculo para obtenção de resultados na resolução

Leia mais

26. (Analista Judiciário TRF 3ª Região 2016/FCC) Considere verdadeiras as afirmações abaixo.

26. (Analista Judiciário TRF 3ª Região 2016/FCC) Considere verdadeiras as afirmações abaixo. 26. (Analista Judiciário TRF 3ª Região 2016/FCC) Considere verdadeiras as afirmações abaixo. Ou Bruno é médico, ou Carlos não é engenheiro. Se Durval é administrador, então Eliane não é secretária. Se

Leia mais

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade

Resumo de Filosofia. Preposição frase declarativa com um certo valor de verdade Resumo de Filosofia Capítulo I Argumentação e Lógica Formal Validade e Verdade O que é um argumento? Um argumento é um conjunto de proposições em que se pretende justificar ou defender uma delas, a conclusão,

Leia mais

A escala de Língua Portuguesa para o 3º ano do Ensino Médio

A escala de Língua Portuguesa para o 3º ano do Ensino Médio A escala de Língua Portuguesa para o 3º ano do Ensino Médio LÍNGUA PORTUGUESA 3º ANO DO ENSINO MÉDIO (continua) 1 225-250 2 250-275 3 275-300 4 300-325 Nesse nível, o estudante pode ser capaz de identificar

Leia mais

Raciocínio Lógico Matemático Cap. 2 Lógica Matemática

Raciocínio Lógico Matemático Cap. 2 Lógica Matemática Raciocínio Lógico Matemático Cap. 2 Lógica Matemática Capítulo2 1. Lógica Matemática No primeiro capítulo, discutimos uma série de conceitos atrelados à lógica de uma forma geral, mas de forma tendenciosa

Leia mais

PLANO CURRICULAR DISCIPLINAR. Matemática 5º Ano

PLANO CURRICULAR DISCIPLINAR. Matemática 5º Ano PLANO CURRICULAR DISCIPLINAR Matemática 5º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUB-TÓPICOS METAS DE APRENDIZAGEM 1º Período Compreender as propriedades das operações e usá-las no cálculo. Interpretar uma

Leia mais

RACIOCÍNIO LÓGICO. Raciocínio Lógico Ficha 1 Prof. Nelson Carnaval

RACIOCÍNIO LÓGICO. Raciocínio Lógico Ficha 1 Prof. Nelson Carnaval RACIOCÍNIO LÓGICO Lógica proposicional Chama-se proposição toda sentença declarativa que pode ser classificada em verdadeira ou falsa, mas não as duas. Letras são usualmente utilizadas para denotar proposições.

Leia mais

Matemática Básica Relações / Funções

Matemática Básica Relações / Funções Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os

Leia mais