ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA C. GOUVEIA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. RESOLUÇÃO: PROFESSORA MARIA ANTÔNIA C. GOUVEIA"

Transcrição

1 PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ PROFESSORA MARIA ANTÔNIA C GOUVEIA Um capital aplicado a juros simples por 6 meses gera um montante de R$7, e o mesmo capital aplicado a mesma taa de juros simples por meses gera um montante de R$8, Qual a taa de juros mensal destas aplicações? ) % ) 5% ) 6% ) 7% 5) 8% Capital Tempo de Montante Capital Tempo de Montante aplicado aplicação aplicado aplicação C 6 meses C + 6i 7 C C + i 8 C + 6Ci 7 (L C + Ci 8 RESPOSTA: Alternativa Ci 96 C i L) Ci C 6 i, Um triângulo equilátero ABC e dois setores circulares de centros A e B estão representados na figura abaio Calcule o valor da área, em cm², da região hachurada considerando, 7 e π, ) 6,6 ) 6,9 ) 7, ) 8,7 5) 9,

2 A área hachurada é determinada da seguinte forma: S 6π ( S + S ) + 6 sec tor 6 CDE ABC Substituindo por, 7 e π por,: 6 (, + 9,7 ) 6, ( 7, + 5,) 8, 7 6,7 RESPOSTA: Alternativa Uma pessoa tem um cheque pré-datado de R$7, que vence daqui a quatro meses e outro de R$75, que vence em seis meses Ela resolve então ir numa financeira para descontar estes cheques hoje utilizando uma taa de desconto comercial simples de % ao mês Calcule o valor que a pessoa vai receber pelos dois cheques hoje ) R$, ) R$ 5, ) R$ 5, ) R$ 65, 5) NRA Valor futuro: R$7, Valor futuro: R$75, Valor atual: 7 (,) 66 Valor atual: 75 ( 6,) 65 VA RESPOSTA: Alternativa Seja p() o polinômio do terceiro grau, com coeficiente de ³ igual a, cujas raízes são iguais às raízes de q() ³ aumentadas em uma unidade O valor de p() é: ) ) 5 ) 6 ) 7 5) 8 q() é raiz de q() q() ³ é divisível por Pelo dispositivo de Briot-Ruffini: q() ³ ( )(² 6) ( ) ( 6 )( + 6 ), 6 e 6 portanto,, + 6 e 6 são raízes de p() p() ( ) [ ( + )] [ ( )] p() ( ) [ ( + 6 )] [ ( 6 )] ( 6 )( 6 ) 6 RESPOSTA: Alternativa são raízes de q() e

3 5 Dados os conjuntos A {, {},, {}} e B {, }, considere as proposições: ) {, {}} A ) {} A ) B A ){{}} A 5) O conjunto A tem eatamente 6 subconjuntos O número de afirmativas verdadeiras dentre as acima é: ) ) ) ) 5) 5 ) A afirmativa {, {}} A é verdadeira porque e {} são elementos de A ) A afirmativa {} A é verdadeira porque {} é elemento de A ) A afirmativa B A é falsa pois é elemento de B, mas não é de A ) A afirmativa {{}} A é verdadeira porque {} é elemento de A 5) A afirmativa: O conjunto A tem eatamente 6 subconjuntos, é verdadeira porque A tem elementos e o número de seus subconjuntos é portanto: 6 RESPOSTA: Alternativa 6 Considere a equação matricial AX X B onde A e B Calcule detx ) 8 ) ) 6 ) 5) AX X B (A I)X B X X 8 X det X X + RESPOSTA: Alternativa

4 7 Numa cidade eistem apenas três jornais, A, B e C Sabe-se que: ) quem lê o jornal A, não lê o jornal B; ) 5% dos habitantes lêem o jornal A; ) 5% dos habitantes lêem o jornal B; ) 5% dos habitantes lêem o jornal C; 5) % dos habitantes lêem apenas o jornal C Qual o percentual de habitantes dessa cidade que não lêem qualquer dos três jornais? ) % ) 5% ) % ) 5% 5) % Considerando como o número de habitantes da cidade, n(a B C) a + b + c + d +,,5 +,5 +,,7 o número dos habitantes da cidade que não lêem nenhum jornal é, RESPOSTA: Alternativa 5 8 O plano α, paralelo à base de uma pirâmide determina um tronco de pirâmide de volume 97cm³ e uma pirâmide menor As distâncias do plano α, respectivamente, ao vértice e à base da pirâmide estão na razão /5 O volume da menor pirâmide, em cm³, é: ) 5, ) 6, ) 6,8 ) 7, 5) 8, As duas pirâmides são semelhantes, logo: V V menor maior 8 V menor 7V 5 maior

5 V tronco 7Vmaior Vmaior 97 5Vmaior 7Vmaior Vmaior Vmaior Vmenor 5, RESPOSTA: Alternativa 9 Numa pesquisa de mercado, onde foram entrevistadas pessoas, sobre o consumo de três marcas de medicamentos genéricos A, B e C, apresentou os seguintes resultados: Marca N o de pessoas A 5 B C 5 A e B 5 B e C 6 A e C 5 Nem A, nem B e nem C 5 A probabilidade de, sorteando-se um dos entrevistados na pesquisa, encontrarmos alguém que consome apenas a marca C é: ) 5% ) % ) 5% ) % 5) 5% n(a) que o número dos que consomem apenas a marca C é A probabilidade pedida é: p 5% RESPOSTA: Alternativa 5 5

6 Um sólido é gerado pela rotação completa de um semi-heágono regular em torno do seu diâmetro AB Sabendo que AB 8cm, o volume desse sólido, em cm³, é: ) 6π ) π ) 8π ) 5π 5) 6π O volume do sólido gerado pela rotação completa de um semi-heágono regular em torno do seu diâmetro AB, tem a forma acima O lado do heágono regular ACDBEF, inscrito num círculo de raio cm, também tem cm O sólido representado acima é formado de dois cones de altura cm e dum cilindro de altura cm Os raios dos cones e dos cilindros medem π RESPOSTA: Alternativa 5 cm ( ) O volume do sólido é: + π ( ) 6π + 8π 6π Uma casa deve ser construída por certo número de operários em meses, trabalhando 6 horas por dia Dois meses após o início da obra, quinze operários foram demitidos O restante, trabalhando horas por dia, concluiu a obra 6 meses depois do previsto Qual foi o número de operários contratados inicialmente ) ) 6 ) 8 ) 5) Operários Meses Horas/dia Parte da obra 6 / /6 Operários Meses : Multiplicando-se o número de operários por, o número de meses automaticamente será dividido por, então essas grandezas são inversamente proporcionais 6

7 7 Operários Horas/dia 6 : 5 Multiplicando-se o número de operários por, o número de h/dia de trabalho, automaticamente será dividido por, então essas grandezas são inversamente proporcionais Operários Parte da obra /6,(/6) Multiplicando-se o número de operários por, o número que representa a parte da obra concluída será também multiplicada por, então essas grandezas são diretamente proporcionais Operários Meses Horas/dia Parte da obra /6 5/ RESPOSTA: Alternativa Escalonando o sistema 8 9 z y obtemos o sistema equivalente 5 b z y a Calcule o valor de a + b ) ) ) ) 5) 5 ( ) ( ) L L 6 7 z y L L ; L L 8 9 z y 5 7 z y 5 a + b RESPOSTA: Alternativa Na figura estão representados um diedro de e os pontos C α, D β, P α, P β A reta AB é a interseção dos planos α e β

8 É falso que: ) Se do ponto P baiarmos perpendiculares aos planos α e β, então o ângulo agudo formado por essas perpendiculares é de 6 ) Se a reta r passa por P e é paralela aos planos α e β, então a reta r é paralela à reta AB ) As retas AB e CD são reversas ) Toda reta paralela ao plano α é paralela ao plano β 5) Eiste plano paralelo às retas AB e CD ) VERDADEIRA Do ponto P baiando perpendiculares aos planos α e β, e traçando, QR e SR perpendiculares à reta AB então, no quadrilátero PQRS o ângulo Q Pˆ S mede 6 ) VERDADEIRA Traçando t // AB //s, r // t, então r // s r // AB ) VERDADEIRA Considerando, por eemplo, o ortoedro no qual uma das arestas é o segmento AB, uma aresta passando por C e outra passando por D Analisando a figura conclui-se que as retas AB e CD são reversas ) FALSA Na figura ao lado, r passa por P e é paralela à reta s, logo é paralela ao plano α A reta s é concorrente com o plano β, e sendo s // r, a reta r também é concorrente com o plano β 8

9 5) VERDADEIRA O plano δ, na figura ao lado, é paralelo às retas AB e CD Um recipiente cilíndrico de raio R cm contém água até certa altura Quando dois sólidos equivalentes, uma pirâmide quadrangular regular de aresta da base igual a 5cm e um cilindro de raio 8cm, são mergulhados, completamente, no recipiente, então o nível da água sobe cm A soma das alturas desses sólidos, considerando π,, é: ),cm ) 8,cm ) 5,cm ) 6,8cm 5) 6,6cm O volume da água que se deslocou dentro do recipiente, quando dentro dele foram colocados os dois sólidos equivalentes, isto é, de mesmo volume, formou um cilindro de raio cm e altura cm, cujo volume corresponde ao dos sólidos mergulhados: V πr²h, ² 558cm³ Então o volume de cada um dos sólidos é (558 )cm³ 79cm³ 5 H Vpirâmide 79 H 87 : 5 7, cm Vcilindro πr h, 8 h 79 h 79 :98,,65 cm H + h 7,cm +,65cm 5,65cm RESPOSTA: Alternativa 5 Planificando-se a superfície lateral de um cone circular reto, obtém-se um setor circular de área igual a ¾ da área de um círculo Calcule a razão entre a altura e o raio desse cone ) ) ) ) 5 5) 7 9

10 A área lateral do cone é dada pela relação S L πrg A área do setor circular resultante da planificação da superfície lateral é S ( πg ) g R Logo, π Rg π R g g Do triângulo retângulo ABV, vem: R 7R R 7 h 7 h g R h R h h 9 R RESPOSTA: Alternativa 5 setor 6 Um obelisco, formado por um ortoedro de altura m encimado por uma pirâmide regular de altura 6m, deve ser construído em concreto Um metro cúbico de concreto custa R$, A tinta a ser usada na pintura da superfície desse obelisco (naturalmente com eceção da base) rende 8m² por cada litros de tinta Sabendo que o preço da tinta é de R$, por litro, calcule o preço em reais de % do custo do material (concreto e tinta) a ser utilizado na construção do obelisco OBSERVAÇÃO: Considerar 7 6,

11 6 + pirâmide + A área do obelisco a ser pintada é: S S + S prisma O volume do obelisco é: V V V m ( 6 + 8) m m lateral do prisma lateral da pirâmide Para o cálculo da área lateral da pirâmide, deve-se determinar a medida de AB, apótema da pirâmide (altura de uma das faces laterais) h 6, 6 + h 7 6,m S ( ) + m ( 8 + 6,) 56,m Se com litros de tinta são pintados 8m², para pintar 56,m² serão necessários ( 56, : ) litros, litros de tinta O custo total será de: ( +, ) reais 56 % de R$ 56, R$5,6 RESPOSTA: R$5,6 reais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

Geometria Espacial - AFA

Geometria Espacial - AFA Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual

Leia mais

QUESTÃO 1. RESOLUÇÃO: RESPOSTA: Alternativa 02. QUESTÃO 02 = 3

QUESTÃO 1. RESOLUÇÃO: RESPOSTA: Alternativa 02. QUESTÃO 02 = 3 PROVA DE MATEMÁTICA AVALIAÇÃO 1_UTURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MAIO DE 010. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA Observe a tabela abaixo. Seja n o número da quadrícula em que, pela primeira vez, o número

Leia mais

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a CILINDRO Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a outra no plano, denomina-se cilindro circular.

Leia mais

SIMULADO DE MATEMÁTICA 2 COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ.

SIMULADO DE MATEMÁTICA 2 COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. SIMULADO DE MATEMÁTICA TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

Tarefa: SIMULADO DE MATEMÁTICA SIMULADO_2010 DE MATEMÁTICA APLICADO ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM JULHO DE 2010.

Tarefa: SIMULADO DE MATEMÁTICA SIMULADO_2010 DE MATEMÁTICA APLICADO ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM JULHO DE 2010. Tarefa: SIMULADO DE MATEMÁTICA ALUNO(A): ª série do ensino médio Professores: Octamar e Carié Nº de questões: 5 Data: / / Unidade: II Turma: Nº: Nota: SIMULADO_ DE MATEMÁTICA APLICADO ÀS TURMAS DO O ANO

Leia mais

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER ALUNO(A): TURMA: Nº Caro aluno, Esta lista de exercícios tem como objetivo auxiliá-lo e orientá-lo no estudo para que possa melhorar seu desempenho na Prova Oficial. Resolva os exercícios com dedicação.

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

Cone Nível Fácil

Cone Nível Fácil Cone 016 Nível Fácil 1. (Ufjf-pism 016) São dados dois cones equiláteros C 1 e C tais que a área total de C é o dobro da área total de C 1 e que o raio da base de C 1 é cm. Sabendo que em um cone equilátero,

Leia mais

SIMULADO_2009 DE MATEMÁTICA APLICADO ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 2009.

SIMULADO_2009 DE MATEMÁTICA APLICADO ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 2009. SIMULADO_9 DE MATEMÁTICA APLICADO ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 9 ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ PROFESSORA MARIA ANTÔNIA C GOUVEIA QUESTÕES

Leia mais

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3

a) b) 5 3 sen 60 o = x. 2 2 = 5. 3 x = x = No triângulo da figura abaixo, o valor do x é igual a: a) 7 c) 2 31 e) 7 3 b) 31 d) 31 3 Matemática a. série do Ensino Médio Frentes e Eercícios propostos AULA FRENTE Num triângulo ABC em que AB = 5, B^ = º e C^ = 5º, a medida do lado AC é: a) 5 b) 5 c) 5 d) 5 e) 5 Sabendo-se que um dos lados

Leia mais

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a CONE Cones Definição e elementos Um plano Um círculo C contido em Um ponto V que não pertence a Elementos do cone Base: é o círculo C, de centro O, situado no plano Vértice: é o ponto V Elementos do cone

Leia mais

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA A AVALIAÇÃO UNIDADE II -5 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA - (MACK) Em uma das provas de uma gincana, cada um dos 4 membros de cada equipe

Leia mais

Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000?

Quantos números pares, formados por algarismos distintos, existem entre 500 e 2000? PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - AGOSTO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Quantos

Leia mais

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa

Projeto Jovem Nota 10 Cilindros e Cones Lista A Professor Marco Costa 1. Um tanque, na forma de um cilindro circular reto, tem altura igual a 3 m e área total (área da superfície lateral mais áreas da base e da tampa) igual a 20. m2. Calcule, em metros, o raio da base deste

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

2. (Uerj 2002) Admita uma esfera com raio igual a 2 m, cujo centro O dista 4 m de um determinado ponto P.

2. (Uerj 2002) Admita uma esfera com raio igual a 2 m, cujo centro O dista 4 m de um determinado ponto P. 1. (Ita 2002) Seja S a área total da superfície de um cone circular reto de altura h, e seja m a razão entre as áreas lateral e da base desse cone. Obtenha uma expressão que forneça h em função apenas

Leia mais

Relação da matéria para a recuperação final. 2º Colegial / Geometria / Jeca

Relação da matéria para a recuperação final. 2º Colegial / Geometria / Jeca Relação da matéria para a recuperação final. º olegial / eometria / Jeca ula 33 - eometria métrica do espaço - Prisma reto. ula 34 - Paralelepípedo retorretângulo. ula 35 - ubo. ula 36 - Prisma regular.

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

Turma: Nº: Professora: OCTAMAR Nº de questões: 20 Data: / / Nota:

Turma: Nº: Professora: OCTAMAR Nº de questões: 20 Data: / / Nota: SALVADOR-BA Formando pessoas para transformar o mundo Tarefa: ª AVALIAÇÃO DE MATEMÁTICA UNIDADE I ALUNO(A): a Série do Ensino Médio Turma: Nº: Professora: OCTAMAR Nº de questões: 0 Data: / / Nota: QUESTÃO

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998 PROVA DE MATEMÁTICA 998 Se a seqüência de inteiros positivos (,, y) é uma Progressão Geométrica e (+, y, ) uma Progressão Aritmética, então, o valor de + y é a) b) c) d) A soma das raízes da equação log

Leia mais

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos ª PROA SUBSTITUTIA DE MATEMÁTICA 01 Aluno(a): Nº Ano: º Turma: Data: Nota: Professor(a): Cláudia e Gustavo alor da Prova: 5 pontos Orientações gerais: 1) Número de questões desta prova: 17 ) alor das questões:

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma:

Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma: Matemática Ficha Extra - Temas do º Bim. 3 os anos Walter/Blaidi 01 Nome: Nº: Turma: 1. (PUCRS) A região plana limitada por uma semicircunferência e seu diâmetro faz uma rotação completa em torno desse

Leia mais

Matemática. 3-3) As diagonais do cubo medem x / ) As diagonais da face do cubo medem 2 y 1/3. Resposta: VFFVV.

Matemática. 3-3) As diagonais do cubo medem x / ) As diagonais da face do cubo medem 2 y 1/3. Resposta: VFFVV. Matemática 01. Seja x a área total da superfície de um cubo, e y, o volume do mesmo cubo. Analise as afirmações a seguir, considerando essas informações. 0-0) Se x = 54 então y = 27. 1-1) 6y = x 3 2-2)

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r. EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro Em um plano H considere uma curva simples fechada C e seja r uma

Leia mais

Questão 01. Calcule o número de alunos que visitaram os dois museus. Questão 02

Questão 01. Calcule o número de alunos que visitaram os dois museus. Questão 02 Questão 01 Um grupo de alunos de uma escola deveria visitar o Museu de Ciência e o Museu de História da cidade. Quarenta e oito alunos foram visitar pelo menos um desses museus. 20% dos que foram ao de

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão

Leia mais

Turma 3.a série Professor(a)

Turma 3.a série Professor(a) Caderno de Questões Bimestre.o Questões 10 Disciplina Geometria Espacial Testes 00 Páginas 10 Turma 3.a série Professor(a) Período M Data da Prova 0/06/01 Verifique cuidadosamente se sua prova atende aos

Leia mais

PROVA DE MATEMÁTICA QUESTÃO 31 QUESTÃO 32. Sejam a, b e c números reais e positivos tais que. c. Então, é CORRETO afirmar que. A) a 2 = b 2 + c 2

PROVA DE MATEMÁTICA QUESTÃO 31 QUESTÃO 32. Sejam a, b e c números reais e positivos tais que. c. Então, é CORRETO afirmar que. A) a 2 = b 2 + c 2 PROVA DE MATEMÁTICA QUESTÃO 3 Sejam a, b e c números reais e positivos tais que. c Então, é CORRETO afirmar que A) a 2 = b 2 + c 2 B) b = a + c C) b 2 = a 2 + c 2 D) a = b + c QUESTÃO 32 Um carro, que

Leia mais

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =. 1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)

Leia mais

Resumo de Geometria Espacial Métrica

Resumo de Geometria Espacial Métrica 1) s. esumo de Geometria Espacial Métrica Extensivo - São João da Boa Vista Matemática - Base Base Base Base Base oblíquo reto quadrangular regular exagonal regular triangular regular Base Fórmulas dos

Leia mais

GEOMETRIA ESPACIAL

GEOMETRIA ESPACIAL GEOMETRIA ESPACIAL - 016 1. (Unicamp 016) Considere os três sólidos exibidos na figura abaixo, um cubo e dois paralelepípedos retângulos, em que os comprimentos das arestas, a e b, são tais que a b 0.

Leia mais

g 2 2 = ( 5) = = 9 g = 3 cm

g 2 2 = ( 5) = = 9 g = 3 cm Matemática Unidade III Geometria espacial Série 11 - Cone circular reto 01 a) Considere esta figura: g = ( 5) + = 5 + 4 = 9 g = 3 cm b) Ab = π r = 4π cm c) Al = π r g = π 3 = 6π cm d) At = Ab + Al = 4π

Leia mais

Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Cone. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cone Em um plano H considere uma curva simples fechada C e seja V um ponto fora

Leia mais

3ª Ficha de Trabalho

3ª Ficha de Trabalho SOL SUNÁRI LRTO SMPIO 3ª icha de Trabalho MTMÁTI - 10º no 01/013 1ª. Parte : ( Questões Múltiplas ) 1. O perímetro do retângulo é igual a: ( ) 0 8 ( ) 10 8 ( ) 5 3 10 ( ) 100 15 15 75. diagonal de um quadrado

Leia mais

Rua 13 de junho,

Rua 13 de junho, NOME: QUESTÕES 1. Um recipiente em forma de cone circular reto, com raio da base R e altura h, está completamente cheio com água e óleo. Sabe-se que a superfície de contato entre os líquidos está inicialmente

Leia mais

Segunda Etapa 2ª ETAPA 2º DIA 11/12/2006

Segunda Etapa 2ª ETAPA 2º DIA 11/12/2006 Segunda Etapa ª ETP º DI 11/1/006 CDERNO DE PROVS FÍSIC MTEMÁTIC GEOMETRI GRÁFIC IOLOGI GEOGRFI PORTUGUÊS LITERTUR INGLÊS ESPNHOL FRNCÊS TEORI MUSICL COMISSÃO DE PROCESSOS SELETIVOS E TREINMENTOS Geometria

Leia mais

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3.

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3. Matemática Pedro Paulo GEOMETRIA ESPACIAL VIII 1 TRONCO DE PIRÂMIDE Chamaremos de tronco de pirâmide de bases paralelas a porção da pirâmide limitada por sua base e por uma secção transversal qualquer

Leia mais

9.º Ano. Escola EB 2,3 de Ribeirão (Sede) ANO LECTIVO 2009/2010

9.º Ano. Escola EB 2,3 de Ribeirão (Sede) ANO LECTIVO 2009/2010 Escola EB,3 de Ribeirão (Sede) ANO LECTIVO 009/010 Ficha Trabalho Circunferência, Trigonometria, Áreas e Volumes, Equações do º grau Maio 010 Nome: 1ª PARTE N.º: Turma: 9.º Ano 1. Observa a seguinte figura:

Leia mais

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75 MATEMÁTICA 3 17. Sejam f() sen() e g() /2. Associe cada função abaio ao gráfico que melhor a representa. Para cada associação feita, calcule i k, onde i é o número entre parênteses à direita da função,

Leia mais

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G MATEMÁTICA O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5,,,, 0 e. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados

Leia mais

Projeto Jovem Nota 10

Projeto Jovem Nota 10 1. (Uff 99) Considere o cubo de vértices A, B, C, D, E, F, G e H representando na figura abaixo. Sabendo que a área do triângulo DEC é Ë2/2m, calcule o volume da pirâmide cujos vértices são D, E, G e C.

Leia mais

Questão 01 EB EA = EC ED. 6 x = 3. x =

Questão 01 EB EA = EC ED. 6 x = 3. x = Questão 0 Seja E um ponto eterno a uma circunferência. Os segmentos EA e ED interceptam essa circunferência nos pontos B e A, e, C e D, respectivamente. A corda AF da circunferência intercepta o segmento

Leia mais

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0 QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera Cone. ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera. Cone. 1 Exercícios

Leia mais

QUESTÕES DE 01 A 08. Assinale as proposições verdadeiras, some os resultados obtidos e marque na Folha de Respostas.

QUESTÕES DE 01 A 08. Assinale as proposições verdadeiras, some os resultados obtidos e marque na Folha de Respostas. PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA AGOSTO_UIII_ DE 9. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE A 8. Assinale

Leia mais

Matemática Uma circunferência de raio 12, tendo AB e CD como diâmetros, está ilustrada na figura abaixo. Indique a área da região hachurada.

Matemática Uma circunferência de raio 12, tendo AB e CD como diâmetros, está ilustrada na figura abaixo. Indique a área da região hachurada. Matemática 2 01. Pedro tem 6 bolas de metal de mesmo peso p. Para calcular p, Pedro colocou 5 bolas em um dos pratos de uma balança e a que restou, juntamente com um cubo pesando 100g, no outro prato,

Leia mais

Lista de Recuperação Bimestral de Matemática 2

Lista de Recuperação Bimestral de Matemática 2 Lista de Recuperação Bimestral de Matemática NOME Nº SÉRIE: DATA / /01 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática VISTO COORDENAÇÃO INSTRUÇÕES EM Visto: 1) Preencha seu nome número e série

Leia mais

Sólidos Inscritos. Interbits SuperPro Web

Sólidos Inscritos. Interbits SuperPro Web Sólidos Inscritos 1. (Uerj 014) Uma esfera de centro A e raio igual a 3dm é tangente ao plano de uma mesa em um ponto T. Uma fonte de luz encontra-se em um ponto F de modo que F, A e T são colineares.

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

PROCESSO SELETIVO/ O DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 15

PROCESSO SELETIVO/ O DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 15 PROCESSO SELETIVO/005 1 O DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 15 01. As prefeituras das cidades A, B e C construíram uma ponte sobre o rio próximo a estas cidades. A ponte dista 10 km de A, 1

Leia mais

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001 Matemática c Numa barraca de feira, uma pessoa comprou maçãs, bananas, laranjas e peras. Pelo preço normal da barraca, o valor pago pelas maçãs, bananas, laranjas e peras corresponderia a 5%, 0%, 5% e

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2

VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2 VESTIULR UFPE UFRPE / 1998 2ª ETP NOME DO LUNO: ESOL: SÉRIE: TURM: MTEMÁTI 2 01. nalise as afirmações: 0-0) 4 + 2 + 4 2 = 12 (as raízes quadradas são as positivas) 4 1-1) = 0,666... 11 log 2-2) 2 = 2 2

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Recuperação do 4 Bimestre Matemática Prof. Leandro Conteúdo: Cilindro. Pirâmide e Cone. Esfera. Posições relativas entre retas. Equação geral da circunferênc Distância

Leia mais

Apostila De Matemática ESFERA

Apostila De Matemática ESFERA Apostila De Matemática ESFERA ESFERA Consideremos um ponto O e um segmento de medida r. Chama-se esfera de centro O e raio r ao conjunto dos pontos P do espaço, tais que a distancia OP seja menor ou igual

Leia mais

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6. CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

QUESTÕES OBJETIVAS. ) é uma Progressão Aritmética (P.A.) de razão 2 e com a 1 Considere uma função f : dada por f ( x) = ax+ b.

QUESTÕES OBJETIVAS. ) é uma Progressão Aritmética (P.A.) de razão 2 e com a 1 Considere uma função f : dada por f ( x) = ax+ b. QUESTÕES OBJETIVAS Questão 9: Se y x= π, pode-se afirmar que: a) sen y sen x= 0 b) sen ( y π ) = 2.sen x c) cos y = cos x d) cos cos sen 2 2 y = x x e) cos 2x = cos y Questão : A seqüência ( a1, a2,...,

Leia mais

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2 NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,

Leia mais

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Enem 15 semanas 1. Um quadrado de lados medindo 1 cm sofre uma rotação completa em torno de um eixo paralelo a um de seus lados. A distância

Leia mais

A) 7 B) 8 C) 9 D) 10 E) 11. 4x A) 262,20 B) 267,80 C) 270,00 D) 272,00 E) 275,00

A) 7 B) 8 C) 9 D) 10 E) 11. 4x A) 262,20 B) 267,80 C) 270,00 D) 272,00 E) 275,00 Colégio Anchieta-Ba 3 ano do Ensino Médio. Avaliação I de Matemática relativa a Unidade I do ano letivo de 2003. Prova Elaborada pelo Prof. Octamar Marques. Resolução pela Prof. Maria Antônia Gouveia.

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 UFBA / UFRB 008 1a Fase Matemática Professora Maria Antônia Gouveia QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de

Leia mais

1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume

1 ELEMENTOS DO CONE 3 ÁREAS E VOLUME DO CONE 2 SECÇÃO MERIDIANA. 3.1 Área lateral. 3.2 Área da base. 3.3 Área total. 3.4 Volume Matemática Pedro Paulo GEOMETRIA ESPACIAL VII 1 ELEMENTOS DO CONE Cone é um sólido formado por um círculo que é a base e um ponto fora do plano da base que é o vértice, que é ligado a todos os pontos do

Leia mais

MA13 Geometria AV2 2014

MA13 Geometria AV2 2014 MA1 Geometria AV 014 Questão 1 [,0 pt ] Na figura a seguir temos que BAC = /, BAD = y/, medidos em radianos, e AB =. Com base nessas informações: a Epresse a área dos triângulos ABC e ABD como funções

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

CPV - especializado na ESPM

CPV - especializado na ESPM - especializado na ESPM ESPM JULHO/006 PROVA E MATEMÁTICA. Assinale a alternativa correspondente à epressão de menor valor: a) [( ) ] [ ] c) [( ) ] [ ] [ ] Calculando-se cada item, temos: a) [( ) ] = =

Leia mais

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!.

01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!. 0. (UFRGS/00) Se n é um número natural qualquer maior que, então n! + n é divisível por n. n. n +. n! -. n!. 0. (UFRGS/00) Se num determinado período o dólar sofrer uma alta de 00% em relação ao real,

Leia mais

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO DESENHO GEOMÉRICO º NO ENSINO MÉDIO PROFESSOR: DENYS YOSHID PERÍODO: NOIE DESENHO GEOMÉRICO NO ENSINO MÉDIO - 016 1 Sumário 1.Pirâmide... 1.1 Elementos de uma pirâmide... 1. Classificação da pirâmide...

Leia mais

Unicamp - 2 a Fase (17/01/2001)

Unicamp - 2 a Fase (17/01/2001) Unicamp - a Fase (17/01/001) Matemática 01. Três planos de telefonia celular são apresentados na tabela abaio: Plano Custo fio mensal Custo adicional por minuto A R$ 3,00 R$ 0,0 B R$ 0,00 R$ 0,80 C 0 R$

Leia mais

FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (9) -7 O ELITE RESOLVE IME 00 PORTUGUÊS/INGLÊS Você na elite das universidades! FUVEST 00 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (9) 5-0 O ELITE RESOLVE FUVEST

Leia mais

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Considerando a expressão para o volume, V, de um tronco de pirâmide quadrangular

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa E. alternativa B. alternativa B. alternativa D

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa E. alternativa B. alternativa B. alternativa D Questão TIPO DE PROVA: A No ano de 00, no Brasil, foram emplacados aproimadamente.0.000 veículos nacionais e 5.000 veículos importados, sendo que % dos importados eram japoneses. Do total de veículos emplacados

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I Escola Secundária com º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I º Teste de avaliação versão1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada

Leia mais

singular Exercícios-Paralelepípedo

singular Exercícios-Paralelepípedo singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma

Leia mais

Matemática 2 LEIA COM ATENÇÃO

Matemática 2 LEIA COM ATENÇÃO LEI COM TENÇÃO Matemática 2 01. Só abra este caderno após ler todas as instruções e quando for autorizado pelos fiscais da sala. 02. Preencha os dados pessoais. 03. utorizado o início da prova, verifique

Leia mais

Projeto Jovem Nota 10

Projeto Jovem Nota 10 1. (Fuvest 99) Considere uma caixa sem tampa com a forma de um paralelepípedo reto de altura 8 m e base quadrada de lado 6 m. Apoiada na base, encontra-se uma pirâmide sólida reta de altura 8m e base quadrada

Leia mais

Soluções do Capítulo 8 (Volume 2)

Soluções do Capítulo 8 (Volume 2) Soluções do Capítulo 8 (Volume 2) 1. Não. Basta considerar duas retas concorrentes s e t em um plano perpendicular a uma reta r. As retas s e t são ambas ortogonais a r, mas não são paralelas entre si.

Leia mais

(A) a 2 + b 2 c 2 = 0 (B) a 2 b 2 c 2 = 0 (C) a 2 + b 2 + c 2 = 0 (D) a 2 b 2 + c 2 = 0 (E) a 2 = b 2 = c 2 (A) 25. (B) 50. (C) 100. (D) 250. (E) 500.

(A) a 2 + b 2 c 2 = 0 (B) a 2 b 2 c 2 = 0 (C) a 2 + b 2 + c 2 = 0 (D) a 2 b 2 + c 2 = 0 (E) a 2 = b 2 = c 2 (A) 25. (B) 50. (C) 100. (D) 250. (E) 500. (UFRGS/), semanas corresponde a (A) dias e ora dias, oras e 4 minutos (C) dias, oras e 4 minutos (D) dias e oras (E) dias MATEMÁTICA (A) a + b c = a b c = (C) a + b + c = (D) a b + c = (E) a = b = c 5

Leia mais

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2003 1º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, em que n é um número inteiro positivo.

Leia mais

Escola Secundária de Lousada

Escola Secundária de Lousada Escola Secundária de Lousada Ficha de Trabalho de Matemática do 8º ano - nº Data: / 04 / 01 Assunto: Áreas e Volumes de Sólidos II Lições nº, 1. Para vedar um terreno quadrangular com 900 m de área, o

Leia mais

UNITAU APOSTILA CILINDROS PROF. CARLINHOS

UNITAU APOSTILA CILINDROS PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA CILINDROS PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: 1 CILINDROS Na figura abaixo, temos: - Dois planos paralelos α e β; - Um círculo contido em

Leia mais

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Disciplina: Série: ª - Ensino Médio Professor: Elias Atividades para Estudos Autônomos Data: 8 / 3 / 016 QUESTÃO 1 (UEMG) O desenho ao lado representa uma caixa de madeira

Leia mais

01) ) ) ) )NRA. Número de casos possíveis: = 6 Números de casos favoráveis à senha apresentar na susa formação o número 13:

01) ) ) ) )NRA. Número de casos possíveis: = 6 Números de casos favoráveis à senha apresentar na susa formação o número 13: PROVA OPCIONAL DE MATEMÁTICA TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio

Leia mais