UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória
|
|
- Giuliana Barreto Aveiro
- 1 Há anos
- Visualizações:
Transcrição
1 UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória Exercícios: 1. Maria inventou uma brincadeira. Digitou alguns algarismos na primeira linha de uma folha. Depois, no segunda linha, fez a descrição dos algarismos digitados da seguinte maneira: - Ela apresentou as quantidades de cada um dos que apareceram, em ordem crescente de algarismo. Exemplo: (1 a linha) 272 O número 272 é formado por dois algarismos 2 e um algarismo 7. Então a 2 a linha será formada pelo número: (2 a linha) 2217 (3 a linha) (4 a linha) (5 a linha) (a) Ela começou uma nova folha com 1. Fez, então sua descrição, ou seja digitou 21 na terceira linha, e assim continuou. O que ela digitou na 10 a linha da folha? (b) Maria gostou tanto de fazer isso que decidiu preencher várias folhas com essa brincadeira. Sabendo que ela começou a primeira linha com 01. Quais são os dois primeiros algarismos da esquerda do que ela digitou na 2017 a linha? 2. Quantas são os números de 3 algarismos distintos? E de 4 algarismos formados apenas por algarismos pares? 3. De quantas modos 3 pessoas podem se sentar em 6 cadeiras alinhadas? 4. Um construtor dispõe de quatro cores (verde, azul, amarelo e vermelho) para pintar cinco casas distintas lado a lado. Ele deseja que cada casa consecutiva não possuam a mesmo cor. Por exemplo, duas possibilidades diferentes de pintura estão indicadas abaixo: Primeira: verde, amarelo, vermelho, verde, azul; Segunda: verde, azul, verde, vermelho, azul. Quantas são as possibilidades? 5. Considere três cidades A, B e C, de forma tal existem três estradas ligando A à B e duas estradas ligando B à C. (a) De quantas formas diferentes podemos ir de A até C, passando por B? (b) De quantas formas diferentes podemos ir de A até C, passando por B, e voltando para A novamente, passando por B? (c) De quantas formas diferentes podemos ir de A até C, passando por B, e depois voltar para A sem repetir estradas e novamente passando por B? 1
2 6. Vai ser formada uma fila com 6 pessoas, dentre as quais Pedro e Ana. De quantas maneiras esta fila poderá ser formada se: (a) Ana deve ser a primeira da fila? (b) Ana ou Pedro devem ser o primeiro da fila? (c) Ana e Pedro não podem ficar juntos na fila? 7. Quatro amigos jogam tiro ao alvo. Cada um deles atirou três vezes. No alvo abaixo, pode-se ver os lugares atingidos. A pontuação é 6 para o centro e diminui um ponto para cada nível mais distante do centro. Se os quatro amigos empataram, determine: (a) A pontuação total de cada jogador. (b) A pontuação dos três tiros de cada jogador. 8. Encontre uma maneira de se escrever os algarismos de 1 a 9 em sequência, de forma que os números determinados por quaisquer dois algarismos consecutivos sejam divisíveis por 7 ou por Pedro e Mônica jogam em um tabuleiro 1 x 11. Cada um, em sua vez, pode pintar um dos quadrados (que não foram pintados anteriormente), ou dois quadrados consecutivos (se ambos estiverem brancos). Sabendo que Pedro sempre será o primeiro a jogar, quem pode sempre garantir a vitória? 10. A partir do tabuleiro mostrado nas figuras abaixo e quatro peças, duas circulares cinzas e duas quadradas pretas, João inventou o seguinte jogo: - Inicialmente, as peças são colocadas no tabuleiro como mostra a figura 1. - A meta do jogo é, após um certo número de movimentos, trocar as peças de posição chegando na situação mostrada na figura 2. 2
3 - Cada movimento consiste em mover uma das quatro peças uma ou mais casa acima, abaixo, à esquerda, à direita; todavia, tal peça não pode pular nenhuma peça que, eventualmente, esteja no caminha, ou ocupar uma casa onde já exista uma peça. Por exemplo, a peça marcada com A só pode se mover para alguma das casas destacadas em cinza. - Os movimentos dos círculos e dos quadrados são alternados. O jogo começa com um movimento de um dos quadrados. Determine a menor quantidade total de movimentos necessários para terminar o jogo. Mostre, passo-a-passo, através de desenhos, como movimentar as peças com esta quantidade de movimentos e prove que não é possível terminar o jogo com menos movimentos. 3
4 Resoluções: Observação: PFC = Princípio Fundamental de Contagem. 1. (a) Para resolver a questão, basta escrevermos em ordem as listas obtidas por Maria seguindo as regras do enunciado até obtermos a décima linha: (b) Escrevamos os números das novas linhas iniciais: Veja que todos os números da lista começam em 10. Isto ocorre pois nunca irá aparecer um outro 0 na sequência. Portanto, a resposta do problema é Como o algarismo da centena não pode ser 0, o total de possibilidades é = 648. Como existem 5 algarismos pares e o algarismo da unidade do milhar não pode ser 0, o total de possibilidades é = A primeira pessoa tem 6 possibilidades; a segunda, 5; e a terceira, 4. Assim, pelo PFC, são = 120 possibilidades. 4. Inicialmente a pintura pela primeira casa, que pode ser pintada com qualquer uma das quatro cores, seguindo para sua vizinha, que não poderá ser pintada apenas com a cor utilizada na primeira, e seguindo o mesmo raciocínio até a última casa, temos = (a) Pelo PFC, são 3 2 = 6 (b) Como, para ir são 6 possibilidades, para voltar também são 6. Pelo PFC, 6 6 = 36 possibilidades. (c) Como, para ir são 6 possibilidades, mas apenas uma delas foi escolhida, para não repetir estradas na volta, resta 1 possibilidade de C para B e 2 de B para A. Temos então = 12 possibilidades. 6. (a) Se Ana deve ser a primeira, sobram cinco pessoas para cinco lugares, ou seja, = 120 possibilidades. (b) Como em primeiro deve ficar Ana ou Pedro, temos = 240 possibilidades. (c) O total de possibilidades, sem restrição, é 6! = 720. Mas, deste total, subtrairemos as possibilidades nas quis Ana e Pedro ficam juntos. Assim, temos = 480 possibilidades. 4
5 7. A soma de todos os pontos obtidos foi = 40. Como todos empataram, cada um deve ter feito exatamente 10 pontos (isso responde o item a). Além disso é importante perceber que ninguém errou nenhum dos tiros, já que há exatamente 12 dardos no alvo. Note que um dos jogadores (digamos A) acertou um dos dardos no centro do alvo, fazendo 6 pontos. Para completar os 10 pontos ele deve ter feito mais 4 pontos. Como é impossível fazer apenas 1 ponto, ou dele ter errado, só nos resta a possibilidade dele ter feito 2 pontos nos dois outros tiros. (Continue a solução) 8. Primeiramente vamos listar todos os números de dois algarismos que são múltiplos de 7 ou 13. São eles: Múltiplos de 7: 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98 Múltiplos de 13: 13, 26, 39, 52, 65, 78, 91 Como não podemos repetir nenhum algarismo, devemos descartar o 77. Por outro lado, nenhum dos números acima (excluindo o 77) termina em 7. Daí, pode-se ter certeza que o primeiro número da lista deve ser 7. Para saber as possíveis listas, usamos um diagrama de árvore: Representamos com um quando não foi possível continuar a lista sem repetir nenhum dígito. Assim, o modo correto de se escrever os algarismo é: Pedro sempre poderá ganhar se seguir a seguinte estratégia: (a) Inicialmente, Pedro deve pintar o quadrado do meio. (b) Agora, depois que Mônica fizer sua jogada, Pedro deve jogar sempre simetricamente em relação ao centro do tabuleiro (i.é. sempre deixando o tabuleiro simétrico). Por exemplo, se Mônica jogar nas casas 9 e 10, Pedro deve jogar nas casas 2 e 3. (c) Assim, Mônica nunca poderá ganhar, pois na sua jogada ela quebra a simetria e a configuração final do jogo todas as casas pintadas, ou seja, a configuração é simétrica. 5
6 10. Veja que não existem duas peças diferentes (um quadrado e um círculo) que estão na mesma linha ou coluna do tabuleiro. Isso significa que cada peça deve utilizar ao menos dois movimento para ir de sua posição original para a final. Portanto, devemos utilizar pelo menos oito movimentos. O exemplo a seguir nos garante que bastam oito movimentos: 6
Jogos e Brincadeiras I. 1. Brincadeiras
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 1 Jogos e Brincadeiras I 1. Brincadeiras Nesta primeira parte da aula resolveremos duas questões retiradas da Olimpíada
Módulo de Princípios Básicos de Contagem. Princípio fundamental da contagem. Segundo ano
Módulo de Princípios Básicos de Contagem Princípio fundamental da contagem Segundo ano Princípio Fundamental de Contagem 1 Exercícios Introdutórios Exercício 1. Considere três cidades A, B e C, de forma
Jogos e Brincadeiras II
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. runo Holanda ula 2 Jogos e rincadeiras II Neste artigo continuaremos o assunto iniciado no material anterior. O primeiro exercício,
JOGOS Bruno Holanda, Fortaleza CE
JOGOS Bruno Holanda, Fortaleza CE Nível Iniciante Problemas sobre jogos estão entre os mais atrativos para a maioria dos alunos que estão iniciando o seu gosto pela matemática e, por isso, vêm ganhando
OBMEP 2010 Soluções da prova da 2ª Fase Nível 2. Questão 1
Questão a) Para saber o número que deve dizer ao matemágico, Joãozinho deve fazer quatro contas: ª conta: multiplicar o número no cartão escolhido por 2; 2ª conta: somar 3 ao resultado da primeira conta;
Canguru Brasil 2014 Nível E - Soluções
Canguru Brasil 2014 Nível E - Soluções 3 pontos 1. Qual dos desenhos abaixo é a parte central da figura ao lado? 1. Alternativa D A estrela tem 9 pontas. A parte central deve mostrar isso. 2. Gina quer
Planejamento Acadêmico - Grupo 1 - PIC 2012 Encontro 2 - Módulo 1 - Aritmética
Planejamento Acadêmico - Grupo 1 - PIC 2012 Encontro 2 - Módulo 1 - Aritmética 1. Divisão Euclidiana Exemplo 1: (Banco de Questões 2012, nível 1, problema 12) A figura abaixo representa o traçado de uma
Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em
Gatos & Cães Simon Norton, 1970s
Gatos & Cães Simon Norton, 1970s Um tabuleiro quadrado 8 por 8. 28 peças gato e 28 peças cão (representadas respectivamente por peças negras e brancas). Ganha o jogador que realizar a última jogada. zona
CONTEÚDOS DO PRIMEIRO PERÍODO EXERCÍCIOS DE RECUPERAÇÃO DO PRIMEIRO PERÍODO
Aluno(: Nº Comp. Curricular: Estatística Data: 16/04/2012 1º Período Ensino Médio Comércio Exterior Turma: 5 3MC1/ 2 Professor: José Manuel Análise Combinatória: CONTEÚDOS DO PRIMEIRO PERÍODO 1) Fatorial
Distribuição de Jogos por Ciclo
REGRAS DOS JOGOS Distribuição de Jogos por Ciclo 1º CEB 2º CEB 3º CEB Sec. Semáforo x Gatos & Cães x x Rastros x x x Produto x x x Avanço x x Flume x 2 Semáforo Autor: Alan Parr 8 peças verdes, 8 amarelas
SOLUÇÕES OBMEP 2ª. FASE 2016
SOLUÇÕES OBMEP 2ª. FASE 2016 N1Q1 Solução Carolina escreveu os números 132 e 231. Esses são os únicos números que cumprem as exigências do enunciado e que possuem o algarismo 3 na posição central. Para
Semáforo. Um tabuleiro retangular 4 por 3. 8 peças verdes, 8 amarelas e 8 vermelhas partilhadas pelos jogadores.
Semáforo Autor: Alan Parr Um tabuleiro retangular por. 8 peças verdes, 8 amarelas e 8 vermelhas partilhadas pelos jogadores. Ser o primeiro a conseguir uma linha de três peças da mesma cor na horizontal,
Exercícios sobre Métodos de Contagem
Exercícios sobre Métodos de Contagem 1) Um grupo de 4 alunos (Alice, Bernardo, Carolina e Daniel) tem que escolher um líder e um vice-líder para um debate. (a) Faça uma lista de todas as possíveis escolhas
Gatos & Cães Simon Norton, 1970s
Gatos & Cães Simon Norton, 970s Um tabuleiro quadrado 8 por 8. 8 peças gato e 8 peças cão (representadas respectivamente por peças negras e brancas). Ganha o jogador que realizar a última jogada. zona
JOGOS LIVRO REGRAS M AT E M Á T I CO S. 11.º Campeonato Nacional
Vila Real JOGOS M AT E M Á T I CO S.º Campeonato Nacional LIVRO DE REGRAS Semáforo Autor: Alan Parr Material Um tabuleiro retangular por. 8 peças verdes, 8 amarelas e 8 vermelhas partilhadas pelos jogadores.
Roteiro de Estudos OBMEP NA ESCOLA Grupo N2 2º Ciclo
Roteiro de Estudos OBMEP NA ESCOLA Grupo N2 2º Ciclo - Assuntos a serem abordados: Encontro 1: Princípios aditivo e multiplicativo: identificar, modelar e resolver situaçõesproblema. Resolução de exercícios
_32109, _42109, _52109 e (o traço indica onde deve ser colocado o algarismo das centenas de milhar)
Questão 1 Como o algarismo das unidades é 1, para que o número seja aditivado, a soma dos algarismos das casas das dezenas, centenas e unidades de milhar deve ser igual a 1. Existe só um número com quatro
Prova da segunda fase - Nível 3
Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões
+ 1, segue que o 103º termo dessa sequência é
1 N1Q1 a) A sequência é 415 537 810 91 10 1 b) Os seis primeiros termos são 995 1814 995 1814 995 1814 c) Os primeiros termos da sequência são 33333 6666 111 33333 6666 e vemos que os termos se repetem
ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI - PIBID 08/10/2014, 29/10/2014 e 05/11/2014
ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI - PIBID 08/10/2014, 29/10/2014 e 05/11/2014 Bolsistas: Mévelin Maus, Milena Poloni Pergher e Odair José Sebulsqui. Supervisora: Marlete Basso Roman Disciplina:
Encontro 11: Resolução de exercícios da OBMEP
Encontro 11: Resolução de exercícios da OBMEP Exercício 1: Cada livro da biblioteca municipal de Quixajuba recebe um código formado por três das 26 letras do alfabeto. Eles são colocados em estantes em
Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental. = 7 cm. Logo, ela parou na marca de = 13 cm.
Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental 1. ALTERNATIVA C Alvimar recebeu de troco 5,00 3,50 = 1,50 reais. Dividindo 1,50 por 0,25, obtemos o número de moedas de 25 centavos
Exemplos e Contra-Exemplos
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 7 Exemplos e Contra-Exemplos Você que já tentou resolver alguns problemas de provas anteriores de Olimpíada de Matemática
Combinatória: Dicas para escrever uma boa solução. Prof. Bruno Holanda Semana Olímpica 2010 São José do Rio Preto
Combinatória: icas para escrever uma boa solução. Prof. Bruno Holanda Semana Olímpica 00 São José do Rio Preto? Nível Uma dificuldade que é bastante frequente nos alunos do nível (ou em outros quaisquer
Manual básico de Go. MANUAL BÁSICO DE GO. Distribuição Gratuita.
MANUAL BÁSICO DE GO Distribuição Gratuita. Regras do GO: 1 As peças pretas começam a não ser que seja um jogo com handicap. 2 Os jogadores alternam suas jogadas, jogando-se uma peça por vez. 3 As peças
Resposta da questão 2: [B] O número de maneiras que esse aluno pode escrever essa palavra é igual ao arranjo de 4, 3 a 3.
Resposta da questão 1: [A],5h = 9.000 s Se d é número de algarismos da senha ímpar, podemos escrever que o número n de senhas será dado por: d1 n= 10 5 ou n= 9000 1,8 = 5000 Portanto, d1 10 5 = 5000 d
Canguru Matemático sem Fronteiras 2011
http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 9. ano de escolaridade Nome: Turma: Duração: 1h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões estão
OBMEP 2010 Soluções da prova da 2ª Fase Nível 1. Questão 1
1 Questão 1 a) O número-parada de 93 é 4, pois 93 9 3 = 27 2 7 = 14 1 4 = 4. b) Escrevendo 3 2 = 6 vemos que 32 3 2 = 6. Como 32 = 4 2 2 2, temos 4222 4 2 2 2 = 32 3 2 = 6 e assim o número-parada de 4222
XXVIII OLIMPÍADA DE MATEMATICA DO RIO GRANDE DO NORTE PRIMEIRA FASE SOLUÇÃO DA PROVA DO NÍVEL I
XXVIII OLIMPÍADA DE MATEMATICA DO RIO GRANDE DO NORTE 2017- PRIMEIRA FASE SOLUÇÃO DA PROVA DO NÍVEL I PARA CADA QUESTÃO, ASSINALE UMA ALTERNATIVA COMO A RESPOSTA CORRETA NOME DO(A) ESTUDANTE: ESCOLA: 1
PRINCÍPIO FUNDAMENTAL DA CONTAGEM OU PRINCÍPIO MULTIPLICATIVO
ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar
CONTAGEM. (a) uma semana (b) um mês (c) dois meses (d) quatro meses (e) seis meses
CONTAGEM Exercício 1(OBMEP 2011) Podemos montar paisagens colocando lado a lado, em qualquer ordem, os cinco quadros da figura. Trocando a ordem dos quadros uma vez por dia, por quanto tempo, aproximadamente,
Olimpíada Brasileira de Robótica /8
1/8 1. O nome do robô abaixo é MAX-362. Ele adora se olhar no espelho e sempre se espanta com a imagem que vê! Isso porque seu nome aparece no espelho de um jeito diferente. (Fonte: Modificado de https://openclipart.org/detail/191072/blue-robot
Polos Olímpicos de Treinamento. Aula 3. Curso de Combinatória - Nível 2. Paridade. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 3 Paridade Todo número é par ou ímpar. Óbvio, não? Pois é com essa simples afirmação que vamos resolver os problemas
O JOGO DE XADREZ. Vamos conhecer as peças que compõe o jogo: O Tabuleiro
O JOGO DE XADREZ O xadrez é um esporte intelectual, disputado entre duas pessoas que possuem forças iguais (peças) sobre um tabuleiro. Este jogo representa uma batalha em miniatura, onde cada lado comanda
Múltiplos, Divisores e Primos - Aula 02
Múltiplos, Divisores e Primos - Aula 02 Nessa lista vamos explorar conceitos básicos de divisão Euclidiana, múltiplos, divisores e primos. Quando dividimos o número 7 pelo número 3, obtemos um quociente
Tabuleiros. Problema 1. Determine se é possível cobrir ou não o tabuleiro abaixo (sem sobreposições) usando apenas dominós?
Polos Olímpicos de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 9 Tabuleiros Quem nunca brincou de quebra-cabeça? Temos várias pecinhas e temos que encontrar uma maneira de unir todas
XADREZ REGRAS BÁSICAS INTRODUÇÃO O xadrez, diferentemente de muitos jogos, não depende de sorte. O desenvolver do jogo não depende do resultado de
XADREZ REGRAS BÁSICAS INTRODUÇÃO O xadrez, diferentemente de muitos jogos, não depende de sorte. O desenvolver do jogo não depende do resultado de dados ou das cartas que são tiradas do baralho. O resultado
8º ANO; LISTA 2. Princípio fundamental da contagem AV 2 4º Bim. Escola adventista de Planaltina Professor: Celmo Xavier Aluno
8º ANO; LISTA 2. Princípio fundamental da contagem AV 2 4º Bim. Escola adventista de Planaltina Professor: Celmo Xavier Aluno ANÁLISE COMBINATÓRIA Introdução Consideremos o seguinte problema: Uma lanchonete
XXI Olimpíada de Matemática do Estado do Rio Grande do Norte. Prova do Nível I Em 25/09/2010
XXI Olimpíada de Matemática do Estado do Rio Grande do Norte Prova do Nível I Em 25/09/2010 Problema 1 Um professor de Matemática definiu a seguinte operação entre dois números naturais: Ele exemplificou
PROJETO CLUBE DE MATEMÁTICA
CLUBE DE MATEMÁTICA "O jogo é um tipo de atividade que alia raciocínio, estratégia e reflexão com desafio e competição de uma forma lúdica muito rica." EB1/PE da Vargem Ano letivo 2016/2017 Índice PROJETO
Polos Olímpicos de Treinamento. Aula 6. Curso de Combinatória - Nível 2. Jogos. 1. Simetria. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 6 Jogos Quando falamos em jogos, pensamos em vários conhecidos como: xadrez, as damas e os jogos com baralho. Porém,
XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental)
XXXVII OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase 9 de agosto de 2014 Nível (6º e 7º anos do Ensino Fundamental) Resoluções www.opm.mat.br PROBLEMA 1 a) O total de segundos destinados à visualização
Operações com Números Naturais. 6 ano E.F. Professores Cleber Assis e Tiago Miranda
Módulo Resolução de Exercícios Operações com Números Naturais 6 ano E.F. Professores Cleber Assis e Tiago Miranda Resolução de Exercícios Operações com Números Naturais 1 Exercícios Introdutórios Exercício
OBMEP - Novas Soluções para os Bancos de Questões
OBMEP - Novas Soluções para os Bancos de Questões 4 CONTEÚDO Banco 011 7 Banco 01 9 Banco 014 11 Banco 015 13 Banco 017 15 BANCO 011 1 Produto 000 (Problema 68 do Banco) Quantos números naturais de cinco
ANÁLISE COMBINATÓRIA
ANÁLISE COMBINATÓRIA 1) (PUC) A soma das raízes da equação (x + 1)! = x 2 + x é (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 2) (UFRGS) Um painel é formado por dois conjuntos de sete lâmpadas cada um, dispostos como
Neste jogo, cada jogador assume o papel de um turista que visita Portugal, procurando sempre as melhores fotos de cada região.
Livro de regras Introdução PORTUGAL está na moda. Repleto de monumentos únicos e paisagens deslumbrantes, o país merece a tua visita. Viaja de Norte a Sul pelas diferentes regiões e guarda as recordações
RESPOSTA Princípio Fundamental da contagem
RESPOSTA Princípio Fundamental da contagem Monitores: Juliana e Alexandre Exercício 1 Para resolver esse exercício, devemos levar em consideração os algarismos {0, 2, 3, 5, 6, 7, 8 e 9}. Para que esse
Cole aqui a etiqueta com os dados do aluno. Nível
Cole aqui a etiqueta com os dados do aluno. Nível 1 6.º e 7.º anos do Ensino Fundamental 2.ª FASE 10 de setembro de 2016 Nome completo do aluno Endereço completo do aluno (Rua, Av., n o ) Complemento (casa,
Nível SIMULADO. 7ª e 8ª séries (8º e 9º anos) do Ensino Fundamental. Visite nossas páginas na Internet:
Nível SIMULDO 2 7ª e 8ª séries (8º e 9º anos) do Ensino Fundamental Nome completo do aluno Endereço completo do aluno (Rua, v., n o ) Complemento (casa, apartamento, bloco) Bairro Cidade UF CEP Endereço
OBMEP a Fase Soluções Nível 2. N2Q1 Solução
1 N2Q1 Solução a) Com o número 92653 Mônica obteve a expressão 9 + 2 6 5 3. Efetuando primeiro a multiplicação e, em seguida, a divisão (ou então a divisão seguida da multiplicação), temos 9 + 2 6 5 3
Polos Olímpicos de Treinamento. Aula 8. Curso de Combinatória - Nível 1. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 8 Configurações Mágicas De maneira geral, podemos dizer que as configurações mágicas são tipos especiais de diagramas
Canguru Brasil 2014 Nível E
Canguru Brasil 2014 Nível E 3 pontos 1. Qual dos desenhos abaixo é a parte central da figura ao lado? 2. Gina quer acrescentar o algarismo 3 ao número 2014 de forma que o número de cinco algarismos resultante
Centro Universitário UNIVATES Pró-Reitoria de Pesquisa, Extensão e Pós-Graduação PROPEX Centro de Ciências Exatas e Tecnológicas Apoio: CNPq
Centro Universitário UNIVATES Pró-Reitoria de Pesquisa, Extensão e Pós-Graduação PROPEX Centro de Ciências Exatas e Tecnológicas Apoio: CNPq 4ª série/ 5º ano IDENTIFICAÇÃO: Nome(s) do(a)(s) aluno(a)(s):
Canguru Matemático sem Fronteiras 2011
http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 0. e. anos de escolaridade Nome: Turma: Duração: h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões
Nível 8.º e 9.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017
Solução da prova da 1.ª Fase Nível 8.º e 9.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017 2 QUESTÃO 1 Para obter o maior resultado possível, devemos fazer com que os termos que contribuem positivamente
De quantas formas distintas a estratégia desse cliente poderá ser posta em prática?
1. (Enem 014) Um cliente de uma videolocadora tem o hábito de alugar dois filmes por vez. Quando os devolve, sempre pega outros dois filmes e assim sucessivamente. Ele soube que a videolocadora recebeu
Grafos I. Figura 1: Mapa de Königsberg
Programa Olímpico de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 0 Grafos I O que é um grafo? Se você nunca ouviu falar nisso antes, esta é certamente uma pergunta que você deve
Cole aqui a etiqueta com os dados do aluno. Nível
Cole aqui a etiqueta com os dados do aluno. Nível 1 6º e 7º anos do Ensino Fundamental 2ª FASE 14 de setembro de 2013 Nome completo do aluno Endereço completo do aluno (Rua, Av., nº) Complemento Bairro
Paridade. Todo número é par ou ímpar. Óbvio, não? Pois é com essa simples afirmação que vamos resolver os problemas deste capítulo.
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 5 Paridade Todo número é par ou ímpar. Óbvio, não? Pois é com essa simples afirmação que vamos resolver os problemas
Espera, espera, tive uma idéia e uma idéia não se deixa fugir.
Nível 1 5ª e 6ª séries (6º e 7º anos) do Ensino Fundamental 2ª FSE 24 de outubro de 2009 Cole aqui a etiqueta com os dados do aluno. Parabéns pelo seu desempenho na 1ª Fase da OBMEP. É com grande satisfação
Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho
Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina
Combinatória. Samuel Barbosa. 28 de março de 2006
Combinatória Samuel Barbosa 28 de março de 2006 1 Princípios Básicos de Contagem Em contagem, tentamos abordar o problema de contar o número de elementos de um conjunto sem efetivamente contá-los de um
Neste quarto ciclo vamos continuar exercitando a teoria estudada resolvendo outros exercícios de provas anteriores da obmep.
Contagem 4: resolução de exercícios da obmep No ciclo 1 estudamos o princípio aditivo e o princípio multiplicativo. No ciclo 2 estudamos o conceito de permutação e resolvemos alguns exercícios de contagem.
1.1. O jogo Neste jogo parte-se de um tabuleiro com um número ímpar de discos (no caso da figura abaixo são 9), dispostos em linha,
1. Jogo dos saltos 1.1. O jogo Neste jogo parte-se de um tabuleiro com um número ímpar de discos (no caso da figura abaixo são 9), dispostos em linha, e por um conjunto de fichas de 2 cores diferentes
Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 12 de Setembro de 2014
Sumário 1 Análise Combinatória 1 1.1 Princípio Multiplicativo.............................. 1 1.1.1 Exercícios................................. 4 1.2 Permutação Simples................................
DANÔMIO. Objetivos Aprimorar o conhecimento da multiplicação de monômios.
DANÔMIO Objetivos Aprimorar o conhecimento da multiplicação de monômios. Materiais Dado feito de papel com um monômio em cada face, 6 tabelas que apresentam todas combinações de produtos dos monômios de
1 a Olimpíada Paranaense de Matemática Terceira Fase Nível 1 12/11/16 Duração: 5 Horas
1. Sofia colou, em cada face de um cubo com 5cm de lado, um cubo de lado 3cm. Em cada face livre dos cubos de lado 3cm colou um cubo com 1cm de lado. Depois pintou o sólido resultante como se indica na
Permutação; Fatorial; Resolução de exercícios de contagem. Assuntos:
Assuntos: Permutação; Fatorial; Resolução de exercícios de contagem. Prof. Hudson Sathler Delfino Exercícios Ciclo 5 N1 1º ENCONTRO. Exercício 1. (a) Quantos são os anagramas da palavra BOLA? (b)e quantos
SOLUÇÕES N Tempo de espera na fila(minutos)
N3Q1 Solução SOLUÇÕES N3 2015 O aluno D obteve nota zero em 1 questão, nota meio em 5 questões e nota um em 4 questões. Sendo assim, a nota obtida pelo aluno D na prova foi 1 0,0+5 0,5+4 1,0= 6,5. Há sete
SME Introdução à Programação de Computadores Primeiro semestre de Trabalho: jogo Semáforo
SME0230 - Introdução à Programação de Computadores Primeiro semestre de 2017 Professora: Marina Andretta (andretta@icmc.usp.br) Monitores: Douglas Buzzanello Tinoco (douglas.tinoco@usp.br) Amanda Carrijo
PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática 1 Dia (10 mim) Acomodação dos alunos e realização da chamada.
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Camila Dorneles da Rosa 1.2 Público alvo: Alunos do 6 ao 9 ano e Magistério. 1.3 Duração: 5 horas aula 1.4 Conteúdo desenvolvido: Operações
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) D 6) C ) D 6) C ) B ) A 7) B ) B 7) B ) C ) D 8) C ) E 8) B ) B 4) D 9) E 4) D 9) C 4) D ) D 0) A ou
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) D 6) C ) D 6) C ) B ) A 7) B ) B 7) B ) C ) D 8) C ) E 8) B ) B 4) D 9) E 4) D 9) C 4) D ) D 0) A ou
Dominó Geométrico 7.1. Apresentação Este é um bom material para interagir a matemática de uma forma divertida e descontraída por meio de um jogo de
Dominó Geométrico 7.1. Apresentação Este é um bom material para interagir a matemática de uma forma divertida e descontraída por meio de um jogo de dominó que pode ser desenvolvido por até no máximo quatro
É possível levar um sapo ao lago?
É possível levar um sapo ao lago? Resumo da atividade Nesta atividade o professor proporá aos alunos um jogo de tabuleiro, sem contar para os alunos que o objetivo do jogo é impossível de se alcançar.
Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: f=7 f=7 f=1 f=2
LERCI/LEIC Tagus 2005/06 Inteligência Artificial Exercícios sobre Minimax: Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: Max Min f=4 f=7
EXERCÍCIOS EXTRAS RESOLVIDOS PROF. THIAGO
EXERCÍCIOS EXTRAS RESOLVIDOS PROF. THIAGO INSTRUÇÃO: Leia atentamente cada um dos exercícios e suas respectivas resoluções. Se achar conveniente, tente resolver alguns desses antes de conferir a resposta.
Canguru sem fronteiras 2006
Canguru sem fronteiras 006 Duração: 1h15 Destinatários: alunos dos 10º e 11º anos de Escolaridade Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos.
Canguru Matemático sem Fronteiras 2017
Canguru Matemático sem Fronteiras 07 Destinatários: alunos dos 7. o e 8. o anos de escolaridade Duração: h 30min Nome: Turma: Não podes usar calculadora. Em cada questão deves assinalar a resposta correta.
DOMINÓ DAS QUATRO CORES
DOMINÓ DAS QUATRO CORES Aparecida Francisco da SILVA 1 Hélia Matiko Yano KODAMA 2 Resumo: O jogo Quatro Cores tem sido objeto de estudo de muitos profissionais que se dedicam à pesquisa da aplicação de
Espera, espera, tive uma idéia e uma idéia não se deixa fugir.
Nível 2 7ª e 8ª séries (8º e 9º anos) do Ensino Fundamental 2ª FSE 24 de outubro de 2009 Cole aqui a etiqueta com os dados do aluno. Parabéns pelo seu desempenho na 1ª Fase da OBMEP. É com grande satisfação
XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries)
TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries) PROBLEMA 1 Parte das casas de um quadriculado com o mesmo número de linhas (fileiras horizontais) e colunas (fileiras verticais) é pintada de preto, obedecendo
Prezados Estudantes, Professores de Matemática e Diretores de Escola,
Prezados Estudantes, Professores de Matemática e Diretores de Escola, Os Problemas Semanais são um incentivo a mais para que os estudantes possam se divertir estudando Matemática, ao mesmo tempo em que
MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID
PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Bianca Bitencourt da Silva 1.2 Público alvo: Alunos de 7º a 9º ano e Magistério 1.3 Duração: 2 aulas de 2 h e 30 min cada 1.4 Conteúdo
2 = cm2. Questão 1 Solução
1 Questão 1 Solução a) Como o quadrado formado com os três retângulos recortados da primeira tira tem área 36 cm, seu lado mede 6 cm. Logo o comprimento dos retângulos é 6 cm e sua largura é um terço de
Encontro 2: Princípio multiplicativo
Encontro 2: Princípio multiplicativo Exercício 1: Uma vila tem duas saídas ao norte e duas saídas ao sul. De quantas maneiras é possível sair da vila? Exercício 2. Quantos são os números inteiros entre
Exercícios Obrigatórios
Exercícios Obrigatórios ) (UFRGS/20) Observe a figura abaixo. Na figura, um triângulo equilátero está inscrito em um círculo, e um hexágono regular está circunscrito ao mesmo círculo. Quando se lança um
INTELIGÊNCIA ARTIFICIAL 2008/09
INTELIGÊNCIA ARTIFICIAL 2008/09 JOGOS Ex. 1) ( Teste 2005/06) Considere a seguinte árvore de procura de dois agentes. Reordene as folhas de modo a maximizar o número de cortes com uma procura da esquerda
Escola Secundária da Sobreda. Análise Combinatória e Probabilidades. Actividade 4
Escola Secundária da Sobreda Análise Combinatória e Probabilidades Actividade 4 Os vinte alunos de uma turma de uma escola secundária resolveram formar uma comissão de três de entre eles para organizar
XXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries)
XXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries) PROBLEMA 1 As peças de um jogo chamado Tangram são construídas cortando-se um quadrado em sete partes, como mostra o
10,00 (dez) pontos distribuídos em 20 itens
PAG - 1 QUESTÃO ÚNICA MÚLTIPLA ESCOLHA 10,00 (dez) pontos distribuídos em 20 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item: MATEMÁTICA 01.
COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM. 1. O número de anagramas da palavra verão que começam e terminam por consoante é:
1. O número de anagramas da palavra verão que começam e terminam por consoante é: a) 120 b) 60 c) 12 d) 24 e) 6 2. Com as letras da palavra prova, podem ser escritos x anagramas que começam por vogal e
Material Teórico - Módulo de Princípios Básicos de Contagem. O fatorial de um número e as permutações simples. Segundo Ano do Ensino Médio
Material Teórico - Módulo de Princípios Básicos de Contagem O fatorial de um número e as permutações simples Segundo Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio
Canguru Brasil 2014 Nível PE
3 pontos Canguru Brasil 2014 Nível PE 1. A joaninha irá assentar na flor que tiver cinco pétalas e três folhas. Qual das flores a seguir será escolhida pela joaninha? 2. Uma formiguinha anda ao longo do
Contagem e Probabilidade Soluções do Exercícios Adicionais. Paulo Cezar Pinto Carvalho
Contagem e Probabilidade Soluções do Exercícios Adicionais Paulo Cezar Pinto Carvalho 1. a) AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC b) O líder pode ser escolhido de modos; uma vez escolhido o líder,
QUESTÃO 1 ALTERNATIVA B
1 QUESTÃO 1 O tabuleiro 7 7 pode ser facilmente preenchido e constata-se que na casa central deve aparecer o número 25, mas existe uma maneira melhor de fazer isto: no tabuleiro quadrado de casas, a quantidade
Nome: N.º: endereço: data: telefone: PARA QUEM CURSA O 7 Ọ ANO EM Disciplina: matemática
Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 7 Ọ ANO EM 0 Disciplina: matemática Prova: desafio nota: QUESTÃO 6 Um aluno que adora matemática desenha uma estrela de 6 pontas e
SOLUÇÕES OBMEP 2ª. FASE 2016 NÍVEL 2
SOLUÇÕES OBMEP 2ª. FASE 2016 NÍVEL 2 N2Q1 Solução A figura em questão é formada pela junção de duas peças. Ela é formada por oito quadradinhos de 1 cm de lado, e seu contorno contém exatamente 16 lados
SOLUÇÕES N item a) Basta continuar os movimentos que estão descritos no enunciado:
N1Q1 Solução SOLUÇÕES N1 2015 Basta continuar os movimentos que estão descritos no enunciado: Basta continuar por mais dois quadros para ver que a situação do Quadro 1 se repete no Quadro 9. Também é possível