Intervalos de conança

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Intervalos de conança"

Transcrição

1 Intervalos de conança Prof. Hemílio Fernandes Campos Coêlho Departamento de Estatística - Universidade Federal da Paraíba - UFPB

2 Exemplo Suponha que se deseja estimar o diâmetro da pupila de coelhos adultos. A variável diâmetro possui distribuição normal. A partir de uma amostra de 12 animais, vericou-se que a média da variável foi 5,2mm. Sabe-se que o desvio padrão populacional é conhecido, e igual a 1,2mm. Se adotarmos um nível de conança de 95%, temos que IC 95% = [ 5, 2 ± 1, 96 1, 2 12 ] = [5, 2±0, 68] = [4, 52mm ; 5, 88mm] Este resultado indica que se pode ter uma conança de 95% de que a média verdadeira dos diâmetros pupilares em coelhos adultos esteja entre 4,52 e 5,88mm.

3 Tamanho da amostra para obter um intervalo de conança determinado Foi visto que a base da estimativa para a média populacional é uma média amostral. Para a média, vimos que é possível construir um intervalo, cujos limites são denidos por uma MARGEM DE ERRO, dada por z C σ n. Suponha que seja de interesse xar essa margem de erro como, no máximo, um valor diretamente proporcional à estimativa X. Ou seja, suponha que queremos o seguinte: z C σ n εx

4 continuação Com algumas manipulações algébricas, temos que n ( z C σ εx ) 2 Ou seja, este é o tamanho de amostra necessário para que os limites de conança assoacidos ao valor de C não diram mais do que a proporção ε de média amostral. Uma questão importante é: E QUANDO O DESVIO PADRÃO DA POPULAÇÃO NÃO FOR CONHECIDO? A resposta será: estimá-lo, através do cálculo do desvio padrão amostral. Uma vez que utilizamos uma estimativa do desvio padrão, não podemos recorrer à tabela da distribuição normal. Será necessário utilizar a tabela de outra distribuição de probabilidade contínua, a distribuição t-student.

5 continuação Lembre que a fórmula do desvio padrão amostral é dada por S = n ( ) 2 x i X i=1 n 1 Uma vez estimado o desvido padrão, temos que I.C. (1 α) 100% = [X ± t C S n ] Foi necessário o uso da tabela da t-student porque tivemos que incorporar outra fonte de incerteza à estimativa da média, neste caso uma estimativa do desvio padrão. Para t C, também será admitido que C = 1 α/2.

6 continuação O efeito prático desta alteração é aumentar o tamanho do intervalo de conança, o que signica uma estimativa mais prudente ou conservadora para a média populacional. Para termos uma ideia, para um nível de conança de 95%, tem-se que z C = 1, 96. Mantendo este mesmo nível, temos que t C = 2, 20, o que implica em um maior intervalo quando estimamos o valor do desvio padrão Vejamos alguns exemplos a seguir.

7 Uso da tabela t-student O uso da tabela t, é similar ao da distribuição normal. A busca também será feita através do cruzamento de linhas e colunas. Nas linhas, você identicará o valor ν = n 1. Nas colunas você identicará o valor de C = 1 α/2. Finalmente, o valor t C será resultante do cruzamento entre a linha referente a ν e a coluna referente a C.

8 Exemplos Considere α = 0, 20, n = 12 e C = 1 0, 20/2 = 0, 90. Logo, temos que ν = 12 1 = 11 e portanto t C = t 0,90 = 1, 36 Considere α = 0, 05, n = 30 e C = 1 0, 05/2 = 0, 975. Logo, temos que ν = 30 1 = 29 e portanto t C = t 0,975 = 2, 04 Considere α = 0, 10, n = 19 e C = 1 0, 10/2 = 0, 95. Logo, temos que ν = 19 1 = 18 e portanto t C = t 0,95 = 1, 34 Considere α = 0, 40, n = 41 e C = 1 0, 40/2 = 0, 80. Logo, temos que ν = 41 1 = 40 e portanto t C = t 0,80 = 0, 851

9 Exemplo aplicado Suponha que temos 12 coelhos disponíveis para um experimento onde é coletado o diâmetro pupilar. Suponha agora que o desvio padrão é desconhecido. Considere ainda que a estimativa será efetuada a partir de uma amostra, cujos dados são mostrados no quadro a seguir. Coelho Diâmetro 5,0 5,5 5,0 4,5 4,5 6,0 6,5 5,5 5,5 5,0 5,5 4,0 Note que a média amostra é dada por X = 5, 2mm. Como o desvio padrão populacional é desconhecido, será necessário estimarmos a partir dos 12 coelhos da amostra. Assim, temos que S = 0, 69.

10 continuação Dessa forma, tem-se então que para um intervalo de conança de 95% é necessário determinar o valor de t C. Temos que n = 12, e portanto ν = 12 1 = 11. Ainda, temos que C = 1 α/2 = 1 0, 05/2 = 0, 975. Portanto, t C = t 0,975 = 2, 20. Portanto, o intervalo para a média populacional, ao nível de 95% de conança é dado por I.C. 95% = [ ] 0, 69 5, 2 ± 2, 20 = [5, 2 ± 0, 44] = [4, 76 ; 5, 64] 12 Mais uma vez, este é o intervalo com nível de conança 95% para a média populacional do diâmetro pupilar de coêlhos adultos normais calculado, neste caso a partir da estimativa de S.

11 Intervalo de conança para a diferença de médias populacionais No caso em que desejamos comparar dois grupos distintos de indivíduos em relação a uma determinada variável de interesse, recorreremos a uma diferença de médias. Se A representa o primeiro grupo, e B representa o segundo grupo, esta diferença será representada por X A X B. Neste caso, um intervalo de conança ao nível de (1 α) 100% para esta diferença entre as médias de duas populações A e B é dado por I.C. (1 α) 100% = [X A X B ± tc S A n A + S B n B ] Neste caso, temos que o valor ν para se olhar na tabela é dado por ν = n A + n B 2.

12 Exemplo Continuando o exemplo anterior, suponha que um outro grupo de coelhos, com 10 animais, foi submetido a um estímulo doloroso. Com isso, podemos considerar dois grupos de coelhos: Grupo A (com estímulo) e Grupo B (sem estímulo). Grupo A , ,5 - - B 5,0 5,5 5,0 4,5 4,5 6,0 6,5 5,5 5,5 5,0 5,5 4,0 O intuito deste estudo seria saber qual o nível de alteração do diâmetro pupilar que os coelhos sofrem ao receber um estímulo. A construção de um intervalo de conança para a diferença entre as médias dos diâmetros nos dois grupos pode fornecer uma evidência plausível pra se chegar ao ponto do problema.

13 Exemplo Com base então nos dados do problema, temos que: X A = 8, 9mm S A = 0, 93 X B = 5, 2mm S B = 0, 47 Então, ao nível de conança de 95%, por exemplo, tem-se que = 2, 09, pois ν = = 20. Portanto: t C I.C. 95% = [ (8, 9 5, 2) ± 2, 09 0, ] 0, 47 + = [3, 7 ± 0, 76] 12 Interpretação: Este resultado pode ser interpretado da seguinte forma: Ao nível de 95% de conança, o estímulo doloroso aumenta o diâmetro pupilar entre 2,94 e 4,46mm.

14 continuação Observe um pouco mais o intervalo obtido: I.C. 95% = [2, 94 ; 4, 46]. Note que o valor 0 NÃO pertence a este intervalo. O que isto signica? Resposta: Signica que a interpreteção anterior pode ser reescrito de forma ainda mais forte: Ao nível de 95% de conança, HÁ EVIDÊNCIA ESTATÍSTICA SUFICIENTE PARA AFIRMAR QUE o estímulo doloroso interfere no diâmetro pupilar dos coelhos, como mostra o intervalo construído. Se o valor 0 estivesse presente no intervalo obtido, concluiríamos que NÃO HÁ EVIDÊNCIA ESTATÍSTICA SUFICIENTE para armar que o estímulo doloroso interfere no diâmetro pupilar dos coelhos, como mostra o intervalo construído. Note que o intervalo construído baseou-se em grupos diferentes. E se considerássemos o mesmo grupo de indivíduos avaliados em instante de tempo distintos? Neste caso, consideraríamos o que chamamos em estatística de amostra pareada.

15 Amostra pareada Amostras pareadas são dados referentes a um mesmo conjunto de indivíduos. Os dados são obtidos em duas situações diferentes. Exemplo de situações: ANTES e DEPOIS O objetivo é avaliar se estas duas situações são iguais ou não. Por exemplo, suponha que consideramos o peso de um grupo de indivíduos obesos ANTES da aplicação de uma dieta, e seis meses depois, admitindo que os pacientes foram acompanhados rigorosamente, consideramos novamente os pesos destes mesmo indivíduos. Uma amostra pareada pode ser representada pelo quadro a seguir

16 Representação de uma amostra pareada Antes x A1 x A2 x A3 x A4. x An Depois x B1 x B2 x B3 x B4. x Bn x Ai representa um valor genérico da variável X na situação antes, enquanto x Bi se refere à situação depois.

17 Construção do intervalo de conança para uma amostra pareada Observando a tabela anterior, devemos construir uma coluna de diferenças entre as observações: Antes Depois Diferenças (d i ) x A1 x B1 x A1 x B1 x A2 x B2 x A2 x B2 x A3 x B3 x A3 x B3 x A4 x B4 x A4 x B4... x An x Bn x An x Bn Considere as diferenças, e sua média das diferenças e o desvio padrão das diferenças: d i = x Ai x Bi d = n d i i=1 n S d = n i=1 ( ) 2 d i d n 1

18 Construção do intervalo de conança para uma amostra pareada Logo, o intervalo de conança ao nível (1 α) 100% para a diferença de médias na situação em que consideramos amostras pareadas é dado por [ I.C. (1 α) 100% = d ± t C ] S d n O nível de variabilidade deste tipo de intervalo é menor que o intervalo para amostras não-pareadas. Isto ocorre porque estamos lidando com os mesmos indivíduos nos dois grupos de teste.

19 Exemplo Considere que um grupo de 10 indivíduos com febre elevada foi tratado com um medicamento experimental. A temperatura destes foi avaliada ANTES de tomar a medicação (A) e 2h depois de tomar a medicação (B). Os dados são fornecidos no quadro a seguir. Paciente A 38 39, ,7 37, ,8 36,7 39 B 36,5 37, , , ,

20 continuação Temos que as diferenças são dadas por Paciente A 38 39, ,7 37, ,8 36,7 39 B 36,5 37, , , , d i 1,5 1,7 1,0 1,2 1,5 0,5 1,0 1,3 0,7 2,0 A média das diferenças é igual a 1, 19 o. Ou seja, d = 1, 19 o. O desvio padrão das diferenças é estimado em 0, 39 o. Ou seja, = 0, 39 o S d Como n = 10, então ν = O nível de conança é estabelecido. Se for 95%, temos que t C = 2, 26, pois ν = 10 1 = 9. Logo: I.C. 95% = [ ] 0, 39 1, 19 ± 2, 26 = [1, 19 ± 0, 28] = [0, 91 o ; 1, 47 o ] 10

21 continuação Interpretação: Há evidência estatística suciente para armar que o medicamento contribuiu para redução na temperatura térmica corporal, e esta variação foi de 0,91 a 1,47 graus celsius. Mais uma vez, o intervalo de conança forneceu evidência, pois neste intervalo também não tivemos o zero incluído. Ou seja, o medicamento experimental de fato contribui para a diminuição da temperatura corporal após sua admistração.

22 Intervalo de conança para proporções populacionais O intervalo de conança ao nível de conança de (1 α) 100% associado a um determinado grau de conança para a proporção populacional P (ou π) é dado por [ I.C. (1 α) 100% = n ] p ± t C pq Temos neste caso que p é a proporção amostral. Temos ainda que q = 1 p. Veremos esta descrição através de um exemplo.

23 Exemplo Suponha que um levantamento sobre etilismo em adultos num determinado bairro mostrou que, de 30 entrevistados, 18 armam ingerir bebidas alcóolicas com frequência. A estimativa para a proporção de indivíduos que habitualmente usam bebidas alcóolicas, com um grau de conança de 95%, seria efetuada da seguinte forma: p = = 0, 6 q = 1 p = 1 = 0, 4 ν = Logo, o intervalo de conança com 95% de conança (t C = 2, 05), por exemplo, é dado por [ ] I.C. 95% 0, 6 0, 4 = 0, 6 ± 2, 05 = [0, 6±0, 1833] = [0, 4167 ; 0, 7833] 30

24 Intervalo de conança para diferenças de proporções populacionais No caso da coleta de duas proporções populacionais obtidas de dois grupos distintos, o intervalo de conança é bastante parecido com o intervalo para a diferença de médias entre dois grupos distintos: [ I.C. (1 α) 100% pa q A = p A p B ± t C n A + p B q B n B ] O valor ν é obtido de forma idêntica ao caso da comparação de médias de dois grupos distintos.

Intervalos Estatísticos para uma única Amostra - parte I

Intervalos Estatísticos para uma única Amostra - parte I Intervalos Estatísticos para uma única Amostra - parte I Intervalo de confiança para média 14 de Janeiro Objetivos Ao final deste capítulo você deve ser capaz de: Construir intervalos de confiança para

Leia mais

Intervalos de Confiança - Amostras Pequenas

Intervalos de Confiança - Amostras Pequenas Intervalos de Confiança - Amostras Pequenas Teste de Hipóteses para uma Média Jorge M. V. Capela, Marisa V. Capela, Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2016

Leia mais

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48) Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro

Leia mais

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p INFERÊNCIA ESTATÍSTICA ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir

Leia mais

Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva

Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva Inferência Estatística: Prof.: Spencer Barbosa da Silva Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos

Leia mais

Estatística Indutiva

Estatística Indutiva Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa 2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante

Leia mais

Testes de Hipóteses Paramétricos

Testes de Hipóteses Paramétricos Testes de Hipóteses Paramétricos Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplos Testar se mais de metade da população irá consumir um novo produto

Leia mais

Respostas. Resposta 1: Considerando que o objetivo é calcular a proporção de hipertensos, recorremos à fórmula abaixo:

Respostas. Resposta 1: Considerando que o objetivo é calcular a proporção de hipertensos, recorremos à fórmula abaixo: Deseja-se saber a proporção de pacientes com hipertensão arterial entre os pacientes de um ambulatório de diabetes mellitus. Estudos anteriores de diabetes têm encontrado uma proporção de 18,5%. 1. Qual

Leia mais

ANOVA - parte I Conceitos Básicos

ANOVA - parte I Conceitos Básicos ANOVA - parte I Conceitos Básicos Erica Castilho Rodrigues 9 de Agosto de 2011 Referências: Noções de Probabilidade e Estatística - Pedroso e Lima (Capítulo 11). Textos avulsos. Introdução 3 Introdução

Leia mais

Princípios de Bioestatística

Princípios de Bioestatística Princípios de Bioestatística Cálculo do Tamanho de Amostra Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 1 / 32 2 / 32 Cálculo do Tamanho de Amostra Parte fundamental

Leia mais

Aula 10 Estimação e Intervalo de Confiança

Aula 10 Estimação e Intervalo de Confiança Aula 10 Estimação e Intervalo de Confiança Objetivos da Aula Fixação dos conceitos de Estimação; Utilização das tabelas de Distribuição Normal e t de Student Introdução Freqüentemente necessitamos, por

Leia mais

Inferência Estatística: Conceitos Básicos II

Inferência Estatística: Conceitos Básicos II Inferência Estatística: Conceitos Básicos II Distribuição Amostral e Teorema do Limite Central Análise Exploratória de dados no SPSS Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,

Leia mais

7 Teste de Hipóteses

7 Teste de Hipóteses 7 Teste de Hipóteses 7-1 Aspectos Gerais 7-2 Fundamentos do Teste de Hipóteses 7-3 Teste de uma Afirmação sobre a Média: Grandes Amostras 7-4 Teste de uma Afirmação sobre a Média : Pequenas Amostras 7-5

Leia mais

MÉTODOS QUANTITATIVOS PARA CIÊNCIA DA COMPUTAÇÃO EXPERIMENTAL

MÉTODOS QUANTITATIVOS PARA CIÊNCIA DA COMPUTAÇÃO EXPERIMENTAL MÉTODOS QUANTITATIVOS PARA CIÊNCIA DA COMPUTAÇÃO EXPERIMENTAL Pedro Henrique Bragioni Las Casas Pedro.lascasas@dcc.ufmg.br Apresentação baseada nos slides originais de Jussara Almeida e Virgílio Almeida

Leia mais

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas.

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas. 1. Inferência Estatística Inferência Estatística é o uso da informção (ou experiência ou história) para a redução da incerteza sobre o objeto em estudo. A informação pode ou não ser proveniente de um experimento

Leia mais

AMOSTRAGEM. É a parte da Teoria Estatística que define os procedimentos para os planejamentos amostrais e as técnicas de estimação utilizadas.

AMOSTRAGEM. É a parte da Teoria Estatística que define os procedimentos para os planejamentos amostrais e as técnicas de estimação utilizadas. AMOSTRAGEM É a parte da Teoria Estatística que define os procedimentos para os planejamentos amostrais e as técnicas de estimação utilizadas. Nos planejamentos amostrais, a coleta dos dados deve ser realizada

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques e Nuno Bastos (DepMAT) Intervalos de Confiança 2010/2011 1 / 33 Introdução

Leia mais

Inferência Estatística. Estimação

Inferência Estatística. Estimação Inferência Estatística Estimação Inferência Estatística fazer inferências tirar conclusões fazer inferência estatística tirar conclusões sobre uma população com base em somente uma parte dela, a amostra,

Leia mais

TÉCNICAS DE AMOSTRAGEM

TÉCNICAS DE AMOSTRAGEM TÉCNICAS DE AMOSTRAGEM Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Teorema Central do Limite (TCL) Se y 1, y 2,...,

Leia mais

Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: inferência Nome: GABARITO

Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: inferência Nome: GABARITO Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: inferência Nome: GABARITO GRR: Observação: em todos os problemas que envolvem teste de hipótese, é necessário

Leia mais

Métodos Quantitativos em Medicina

Métodos Quantitativos em Medicina Métodos Quantitativos em Medicina Comparação de Duas Médias Terceira Aula 009 Teste de Hipóteses - Estatística do teste A estatística do teste de hipótese depende da distribuição da variável na população

Leia mais

7. Testes de Hipóteses

7. Testes de Hipóteses 7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,

Leia mais

Exemplo 7.0 Numa linha de produção, os pesos de pacotes de pó de café embalados por uma máquina têm distribuição Normal, com média

Exemplo 7.0 Numa linha de produção, os pesos de pacotes de pó de café embalados por uma máquina têm distribuição Normal, com média Exemplo 7.0 Numa linha de produção, os pesos de pacotes de pó de café embalados por uma máquina têm distribuição Normal, com média µ = 505g e desvio padrão σ = 9g. a) Selecionado ao acaso um pacote embalado

Leia mais

Estimativas e Tamanhos de Amostras

Estimativas e Tamanhos de Amostras Estimativas e Tamanhos de Amostras 1 Aspectos Gerais 2 Estimativa de uma Média Populacional: Grandes Amostras 3 Estimativa de uma Média Populacional: Pequenas Amostras 4 Tamanho Amostral Necessário para

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Distribuição Conjunta Suponha que se queira analisar o comportamento conjunto das variáveis X = Grau de Instrução e Y = Região

Leia mais

Em várias ocasiões há de se proceder à coleta de dados diretamente na origem, isto é, dos sujeitos com quem pretendemos realizar determinado estudo.

Em várias ocasiões há de se proceder à coleta de dados diretamente na origem, isto é, dos sujeitos com quem pretendemos realizar determinado estudo. UNIVERSIDADE FEDERAL DA PARAÍBA Amostragem Luiz Medeiros de Araujo Lima Filho Departamento de Estatística INTRODUÇÃO Em várias ocasiões há de se proceder à coleta de dados diretamente na origem, isto é,

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais 1 Da população, com parâmetro, retira-se k amostras de tamanho n e calcula-se a estatística. Estas estatísticas são as estimativas de. As estatísticas, sendo variáveis aleatórias,

Leia mais

Métodos Quantitativos para Ciência da Computação Experimental

Métodos Quantitativos para Ciência da Computação Experimental Métodos Quantitativos para Ciência da Computação Experimental Revisão Virgílio A. F. Almeida Maio de 2008 Departamento de Ciência da Computação Universidade Federal de Minas Gerais FOCO do curso Revisão

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Luiz Medeiros http://www.de.ufpb.br/~luiz/ As medidas de posição apresentadas fornecem a informação dos dados apenas a nível

Leia mais

Estatística

Estatística Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...

Leia mais

Exemplo (tabela um) distribuições marginais enquanto que. Distribuição Conjunta

Exemplo (tabela um) distribuições marginais enquanto que. Distribuição Conjunta Distribuição Conjunta Suponha que se queira analisar o comportamento conjunto das variáveis = de Instrução e = Região de procedência. Neste caso, a distribuição de freqüências é apresentada como uma tabela

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 4

MAE Introdução à Probabilidade e Estatística II Resolução Lista 4 MAE 9 - Introdução à Probabilidade e Estatística II Resolução Lista 4 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 Antes de testar se a produtividade média dos operários do período diurno

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

ESTIMAÇÃO POR INTERVALO DE CONFIANÇA. Profª Sheila Oro 1

ESTIMAÇÃO POR INTERVALO DE CONFIANÇA. Profª Sheila Oro 1 ESTIMAÇÃO POR INTERVALO DE CONFIANÇA Profª Sheila Oro 1 DEFINIÇÃO Um itervalo de confiança (ou estimativa intervalar) é uma faixa (ou um intervalo) de valores usada para se estimar o verdadeiro valor de

Leia mais

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional Estimação Teste de Hipóteses Qual é a probabilidade de "cara no lançamento de uma moeda? A moeda é honesta ou desequilibrada?

Leia mais

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO ESTATÍSTICA APLICADA À ADMINISTRAÇÃO Thiago Marzagão INTERVALOS DE CONFIANÇA Thiago Marzagão (IDP) ESTATÍSTICA APLICADA À ADMINISTRAÇÃO 1/2016 1 / 53 média amostral ( x) Queremos saber o salário médio

Leia mais

HEP-5800 BIOESTATÌSTICA

HEP-5800 BIOESTATÌSTICA HEP-58 BIOESTATÌSTICA UNIDADE IV INFERÊNCIA ESTATÍSTICA: TESTES DE HIPÓTESES Nila Nunes da Silva Regina I. T. Bernal I. QUADRO CONCEITUAL São procedimentos estatísticos que consistem em usar dados de amostras

Leia mais

Tópicos em Gestão da Informação II

Tópicos em Gestão da Informação II Tópicos em Gestão da Informação II Aula 05 Variabilidade estatística Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Faculdade de Informação e Comunicação Universidade Federal de Goiás Exercício

Leia mais

TÉCNICAS DE AMOSTRAGEM

TÉCNICAS DE AMOSTRAGEM TÉCNICAS DE AMOSTRAGEM Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Amostragem estratificada Divisão da população em

Leia mais

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional Métodos Estatísticos Métodos Estatísticos Estatística Descritiva Inferência Estatística Estimação Teste de Hipóteses TESTE

Leia mais

Estatística (MAD231) Turma: IGA. Período: 2016/2

Estatística (MAD231) Turma: IGA. Período: 2016/2 Estatística (MAD231) Turma: IGA Período: 2016/2 Aula #02 de Inferência Estatística: 28/11/2016 1 Intervalos de Confiança Vamos começar com um exemplo. Suponha que se deseja estimar a média µ de uma população

Leia mais

(a) 0,90 (b) 0,67 (c) 1,0 (d) 0,005

(a) 0,90 (b) 0,67 (c) 1,0 (d) 0,005 359$'((67$7Ë67,&$6(/(d 0(675$'80*,QVWUXo}HVSDUDDSURYD D&DGDTXHVWmRUHVSRQGLGDFRUUHWDPHQWHYDOHSRQWR E4XHVW}HV GHL[DGDV HP EUDQFR YDOHP ]HUR SRQWRV QHVVH FDVR PDUTXH WRGDV DV DOWHUQDWLYDV F &DGDTXHVWmRUHVSRQGLGDLQFRUUHWDPHQWHYDOHSRQWR

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Inferência Estatística:

Inferência Estatística: Inferência Estatística: Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos Estimação É um processo que

Leia mais

X e Y independentes. n + 1 m

X e Y independentes. n + 1 m DEPARTAMENTO DE ESTATÍSTICA / CCEN / UFPA Disciplina: Inferência I Prof: Regina Tavares 5.0. TESTE DE HIPÓTESES PARA DUAS POPULAÇÕES 5.0.. Duas Populações Normais independentes : X, X 2,, X n uma a.a.

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões

MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões MEDIDAS DE DISPERSÃO Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões Cidade A: 185, 185, 185 x 185mm Cidade B: 18, 184, 189 x 185mm

Leia mais

Teste de Hipóteses. Enrico A. Colosimo/UFMG enricoc/ Depto. Estatística - ICEx - UFMG 1/24

Teste de Hipóteses. Enrico A. Colosimo/UFMG  enricoc/ Depto. Estatística - ICEx - UFMG 1/24 1/24 Introdução à Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/24 Exemplo A concentração de certa substância no sangue entre

Leia mais

Estatística Inferencial

Estatística Inferencial statística Inferencial A ou inferencial compreende a stimação e o Teste de hipótese. Na verdade, a estatística inferencial forma a base das atividades de controle da qualidade e também pode auxiliar na

Leia mais

Princípios de Bioestatística Teste de Hipóteses

Princípios de Bioestatística Teste de Hipóteses 1/36 Princípios de Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG Tabela 2/36 3/36 Exemplo A concentração de certa substância

Leia mais

Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida

Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida Nesta aula você completará seu estudo básico sobre intervalos de confiança, analisando o problema de estimação da média de uma

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução O curso foi dividido em três etapas:

Leia mais

Mecânica experimental Lima Junior, P.; Silva, M.T.X.; Silveira, F.L.

Mecânica experimental Lima Junior, P.; Silva, M.T.X.; Silveira, F.L. ATIVIDADE 02 Texto de Apoio I Desvio Padrão da Média e Intervalos de Confiança Variabilidade e desvio padrão Quando realizamos uma série de observações do mesmo mensurando sob as mesmas condições, podemos

Leia mais

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM 1 Na prática da pesquisa em geral, o tamanho da amostra parece sintetizar todas as questões relacionadas ao processo

Leia mais

2 Conceitos Básicos de Probabilidade

2 Conceitos Básicos de Probabilidade CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

Testes de Aderência, Homogeneidade e Independência

Testes de Aderência, Homogeneidade e Independência Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa

Leia mais

Cap. 11 Testes de comparação entre duas amostras

Cap. 11 Testes de comparação entre duas amostras Estatística Aplicada às Ciências Sociais Sexta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC, 006 Cap. 11 Testes de comparação entre duas amostras Planejamento da pesquisa e análise estatística

Leia mais

Testes de Hipótese para uma única Amostra - parte I

Testes de Hipótese para uma única Amostra - parte I Testes de Hipótese para uma única Amostra - parte I 26 de Junho de 2014 Objetivos Ao final deste capítulo você deve ser capaz de: Estruturar problemas de engenharia como testes de hipótese. Entender os

Leia mais

Inferência Estatística

Inferência Estatística Inferência Estatística Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Núcleo de Estatística e Informática HUUFMA email: alcione.miranda@terra.com.br Inferência Estatística Inferências

Leia mais

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula Prof.: Patricia Maria Bortolon, D. Sc. Distribuições Amostrais ... vocês lembram que: Antes de tudo... Estatística Parâmetro Amostra População E usamos estatíticas das amostras para

Leia mais

Conceito de Estatística

Conceito de Estatística Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir

Leia mais

i. f Y (y, θ) = 1/θ... 0 y θ 0... y < 0 ou y > θ Se a amostra selecionada foi ( ), qual será a estimativa para θ?

i. f Y (y, θ) = 1/θ... 0 y θ 0... y < 0 ou y > θ Se a amostra selecionada foi ( ), qual será a estimativa para θ? Fundação Getulio Vargas Curso: Graduação Disciplina: Estatística Professor: Moisés Balassiano Lista de Exercícios Inferência. Seja (Y, Y 2,..., Y n ) uma amostra aleatória iid, de tamanho n, extraída de

Leia mais

Em várias ocasiões há de se proceder à coleta de dados diretamente na origem, isto é, dos sujeitos com quem pretendemos realizar determinado estudo.

Em várias ocasiões há de se proceder à coleta de dados diretamente na origem, isto é, dos sujeitos com quem pretendemos realizar determinado estudo. UNIVERSIDADE FEDERAL DA PARAÍBA Amostragem Luiz Medeiros de Araujo Lima Filho Departamento de Estatística INTRODUÇÃO Em várias ocasiões há de se proceder à coleta de dados diretamente na origem, isto é,

Leia mais

Estimação e Testes de Hipóteses

Estimação e Testes de Hipóteses Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas

Leia mais

Inferência Estatística. Teoria da Estimação

Inferência Estatística. Teoria da Estimação Inferência Estatística Teoria da Estimação Os procedimentos básicos de inferência Estimação: usamos o resultado amostral para estimar o valor desconhecido do parâmetro Teste de hipótese: usamos o resultado

Leia mais

Tópico 3. Estudo de Erros em Medidas

Tópico 3. Estudo de Erros em Medidas Tópico 3. Estudo de Erros em Medidas A medida de uma grandeza é obtida, em geral, através de uma experiência, na qual o grau de complexidade do processo de medir está relacionado com a grandeza em questão

Leia mais

Turma: Engenharia Data: 12/06/2012

Turma: Engenharia Data: 12/06/2012 DME-IM-UFRJ - 2ª Prova de Estatística Unificada Turma: Engenharia Data: 12/06/2012 1 - Admita que a distribuição do peso dos usuários de um elevador seja uma Normal com média 75kg e com desvio padrão 15kg.

Leia mais

Inferência Estatística - Teoria da Estimação

Inferência Estatística - Teoria da Estimação Inferência Estatística - Teoria da Estimação Introdução Neste capítulo abordaremos situações em que o interesse está em obter informações da população a partir dos resultados de uma amostra. Como exemplo,

Leia mais

Tratamento de dados e representação das incertezas em resultados experimentais

Tratamento de dados e representação das incertezas em resultados experimentais Tratamento de dados e representação das incertezas em resultados experimentais Medida, erro e incerteza Qualquer medida física sempre possui um valor verdadeiro, que é sempre desconhecido e um valor medido.

Leia mais

Distribuição t de Student

Distribuição t de Student Distribuição t de Student Introdução Quando o desvio padrão da população não é conhecido (o que é o caso, geralmente), usase o desvio padrão da amostra como estimativa, substituindo-se σ x por S x nas

Leia mais

7 Resultados de Medições Diretas. Fundamentos de Metrologia

7 Resultados de Medições Diretas. Fundamentos de Metrologia 7 Resultados de Medições Diretas Fundamentos de Metrologia Motivação definição do mensurando procedimento de medição resultado da medição condições ambientais operador sistema de medição Como usar as informações

Leia mais

Teste Qui-quadrado. Dr. Stenio Fernando Pimentel Duarte

Teste Qui-quadrado. Dr. Stenio Fernando Pimentel Duarte Dr. Stenio Fernando Pimentel Duarte Exemplo Distribuição de 300 pessoas, classificadas segundo o sexo e o tabagismo Tabagismo Fumante (%) Não Fumante (%) Masculino 92 (46,0) 108 (54,0) Sexo Feminino 38

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Capítulo 3 Introdução à Probabilidade e à Inferência Estatística INTERVALOS DE CONFIANÇA: Diferentes pesquisadores, selecionando amostras de uma mesma

Leia mais

Estatística Vital Aula 1-07/03/2012. Hemílio Fernandes Campos Coêlho Departamento de Estatística UFPB

Estatística Vital Aula 1-07/03/2012. Hemílio Fernandes Campos Coêlho Departamento de Estatística UFPB Estatística Vital Aula 1-07/03/2012 Hemílio Fernandes Campos Coêlho Departamento de Estatística UFPB Programa proposto Noções de estatística descritiva Noções de probabilidade Noções de Intervalo de confiança

Leia mais

Aula 7. Testes de Hipóteses Paramétricos (II)

Aula 7. Testes de Hipóteses Paramétricos (II) Aula 7. Testes de Hipóteses Paramétricos (II) Métodos Estadísticos 008 Universidade de Averio Profª Gladys Castillo Jordán IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais.

Leia mais

Prof. Francisco Crisóstomo

Prof. Francisco Crisóstomo Unidade II ESTATÍSTICA BÁSICA Prof. Francisco Crisóstomo Unidade II Medidas de posição Medidas de posição Tem como característica definir um valor que representa um conjunto de valores (rol), ou seja,

Leia mais

Aula 7. Testes de Hipóteses Paramétricos (II)

Aula 7. Testes de Hipóteses Paramétricos (II) Aula 7. Testes de Hipóteses Paramétricos (II) Métodos Estadísticos 008 Universidade de Averio Profª Gladys Castillo Jordán IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais.

Leia mais

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem)

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem) Amostragem: Em pesquisas científicas, quando se deseja conhecer características de uma população, é comum se observar apenas uma amostra de seus elementos e, a partir dos resultados dessa amostra, obter

Leia mais

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012

AULA 09 Regressão. Ernesto F. L. Amaral. 17 de setembro de 2012 1 AULA 09 Regressão Ernesto F. L. Amaral 17 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução à

Leia mais

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição

Instrumentação Industrial. Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Instrumentação Industrial Fundamentos de Instrumentação Industrial: Introdução a Metrologia Incerteza na Medição Introdução a Metrologia O que significa dizer: O comprimento desta régua é 30cm. A temperatura

Leia mais

Teste de % de defeituosos para 1 amostra

Teste de % de defeituosos para 1 amostra DOCUMENTO OFICIAL DO ASSISTENTE DO MINITAB Este documento é de uma série de papéis que explicam a pesquisa conduzida por estatísticos da Minitab para desenvolver os métodos e as verificações de dados usadas

Leia mais

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e

Leia mais

Distribuições Amostrais e Estimação Pontual de Parâmetros

Distribuições Amostrais e Estimação Pontual de Parâmetros Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 2012/02 1 Introdução 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição

Leia mais

PERT PERT PERT PERT PERT PERT. O CPM assume que as estimativas de tempo para um projeto são certas (determinísticas);

PERT PERT PERT PERT PERT PERT. O CPM assume que as estimativas de tempo para um projeto são certas (determinísticas); O CPM assume que as estimativas de tempo para um projeto são certas (determinísticas); A duração de cada atividade na prática, contudo, pode ser diferente daquela prevista no projeto; Existem muitos fatores

Leia mais

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total.

INSTRUÇÕES. O tempo disponível para a realização das duas provas e o preenchimento da Folha de Respostas é de 5 (cinco) horas no total. INSTRUÇÕES Para a realização desta prova, você recebeu este Caderno de Questões. 1. Caderno de Questões Verifique se este Caderno de Questões contém a prova de Conhecimentos Específicos referente ao cargo

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) 2a AULA 02/03/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 2a aula (02/03/2015) MAE229 1 / 16

Leia mais

Aula 7 Intervalos de confiança

Aula 7 Intervalos de confiança Aula 7 Intervalos de confiança Nesta aula você aprenderá um método muito importante de estimação de parâmetros. Na aula anterior, você viu que a média amostral X é um bom estimador da média populacional

Leia mais

Medidas de Dispersão ou variabilidade

Medidas de Dispersão ou variabilidade Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou

Leia mais

TÉCNICAS DE AMOSTRAGEM

TÉCNICAS DE AMOSTRAGEM TÉCNICAS DE AMOSTRAGEM Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Definições e Notação Estimação Amostra Aleatória

Leia mais

Cruzamento de Dados. Lorí Viali, Dr. DESTAT/FAMAT/PUCRS

Cruzamento de Dados. Lorí Viali, Dr. DESTAT/FAMAT/PUCRS Cruzamento de Dados Lorí Viali, Dr. DESTAT/FAMAT/PUCRS viali@pucrs.br http://www.pucrs.br/famat/viali Distribuições Conjuntas (Tabelas de Contingência) Distribuição Conjunta Suponha que se queira analisar

Leia mais

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média TESTES DE HIPÓTESES Conceitos, Testes de 1 proporção, Testes de 1 média 1 Testes de Hipóteses População Conjectura (hipótese) sobre o comportamento de variáveis Amostra Decisão sobre a admissibilidade

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

Introdução aos Proc. Estocásticos - ENG 430

Introdução aos Proc. Estocásticos - ENG 430 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 34 1 Motivação 2 Conceitos

Leia mais