Álgebra Linear e Geometria Anaĺıtica. Cónicas e Quádricas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Álgebra Linear e Geometria Anaĺıtica. Cónicas e Quádricas"

Transcrição

1 universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 6 Cónicas e Quádricas

2 Equação geral de uma cónica [6 01] As cónicas são curvas obtidas pela interseção de um plano com um cone. Dados α, β, γ R não simultaneamente nulos e δ, η, µ R, α x 2 + β y γ x y + δ x + η y + µ = 0 [ x ] y }{{} X T α γ } {{ } A γ x β y }{{} X [ + δ ] η }{{} B x + µ = 0 y }{{} X X T A X + B X + µ = 0, com A matriz simétrica 2 2 não nula e B matriz 1 2, é a equação geral que as coordenadas X R 2 dos pontos de uma cónica satisfazem.

3 Equação reduzida de uma elipse [ x ] y 1 0 a b 2 x 1 = 0 y y (0, b) x2 a 2 + y2 b 2 = 1, 0 < a b [6 02] ( a, 0) (a, 0) x (0, b) Caso particular: a = b (=raio) circunferência

4 Equação reduzida de uma hipérbole [ x ] y 1 a b 2 x 1 = 0 y x2 a y2 = 1, a, b > 0 2 b2 [6 03] y (0, b) ( a, 0) (a, 0) x (0, b)

5 Equação reduzida de uma parábola [ x ] y a 0 x y [ ] 0 1 x y = 0 y = ax 2 [6 04] a > 0 a < 0 y y a 1 x 1 x a

6 Diagonalização ortogonal de A [6 05] Pode simplificar-se a equação geral de uma cónica X T A X + B X + µ = 0 efetuando a diagonalização ortogonal da matriz simétrica A. Seja P uma matriz ortogonal tal que P T A P = D = λ 1 0, 0 λ 2 onde os valores próprios λ 1 e λ 2 de A estão ordenados do seguinte modo: λ 1 λ 2, se ambos são não nulos; λ 2 = 0, se um dos valores próprio é nulo.

7 Redução da equação de uma cónica [6 06] Considerando X = P ˆX e ˆB = B P na equação das cónicas, obtém-se ˆX T P T A P ˆX + B P ˆX + µ = ˆX T D ˆX + ˆB ˆX + µ = 0 [ ] ˆx que, para ˆX = e ˆB = [ˆδ ˆη], é equivalente a ŷ [ ˆx ] ŷ λ λ 2 ˆx + [ˆδ ŷ ] ˆx ˆη + µ = 0 ŷ λ 1 ˆx 2 + λ 2 ŷ 2 + ˆδˆx + ˆηŷ + µ = 0, onde o termo cruzado (termo em xy ) foi eliminado. A técnica para eliminar os termos ˆB ˆX ou µ, quando possível, será mostrada nos exemplos. Nota: Se P > 0, esta mudança de variável corresponde a uma rotação.

8 Exemplo 1 [6 07] x 2 + y 2 + 4xy 2x + 2y 6 = 0 com X = X T A X + B X 6 = 0 x, A = 1 2, B = y 2 1 [ ] 2 2. No Exemplo 5 do Capítulo 5 (slide 5-17) efetuou-se a diagonalização ortogonal da matriz simétrica A, tendo-se obtido P T A P = 3 0 com P = 0 1 uma matriz ortogonal

9 Exemplo 1 continuação [6 08] Considerando X = P ˆX, obtém-se Tomando ˆX = [ ] ˆx ŷ ˆX T P T A P ˆX + BP ˆX = 6. e atendendo a que BP = [ 0 2 ] 2, obtém-se 3ˆx 2 ŷ ŷ = 6 3ˆx 2 (ŷ 2 2 2ŷ + 2) = 6 2 3ˆx 2 (ŷ 2) 2 = 4 }{{} x = ˆx ỹ x2 4 3 ỹ2 4 = 1. Esta última é a equação reduzida de uma hipérbole. Nota: A mudança de variável ỹ = ŷ 2 corresponde a uma translação.

10 Exemplo 2 [6 09] 2x 2 + y x + 4y + 18 = 0 2 ( x 2 + 6x + 9 ) 18 + ( y 2 + 4y + 4 ) = 0 2 ( x + 3 ) }{{} 2 + ( y + 2 ) }{{} 2 = 4 x ỹ x ỹ2 4 = 1. Esta última é a equação reduzida de uma elipse.

11 Exemplo 3 [6 10] 2x x + 3y + 15 = 0 2 ( x 2 + 6x + 9 ) y + 15 = 0 2 ( x + 3 ) }{{} 2 + 3( y 1 ) = 0 }{{} x ỹ ỹ = 2 3 x2. Esta é a equação reduzida de uma parábola.

12 Exemplos de equações que não correspondem a curvas [6 11] Exemplo 4: 2x 2 + y x + 4y + 24 = 0 2 ( x 2 + 6x + 9 ) 18 + ( y 2 + 4y + 4 ) = 0 2 (x + 3) 2 + (y + 2) 2 = 2. Esta é a equação de um conjunto vazio. Exemplo 5: 2x 2 + y x + 4y + 22 = 0 2 (x + 3) 2 + (y + 2) 2 = 0. x = 3 e y = 2. Esta é a equação de um ponto.

13 Cónicas degeneradas [6 12] Situações degeneradas que podem ocorrer: 1. x2 a 2 + y2 b 2 = 1 conjunto vazio; 2. x 2 a 2 = 1 conjunto vazio; x 2 a 2 x 2 a 2 + y2 b 2 = 0 um ponto (origem do referencial); x 2 a 2 = 0 duas retas coincidentes (eixo Oy, x = 0); x 2 a 2 = 1 duas retas estritamente paralelas (x = ±a); y2 b 2 = 0 duas retas concorrentes (y = ± b a x).

14 Identificação de cónicas com 2 valores próprios não nulos [6 13] Identificação da cónica representada pela equação λ 1 x 2 + λ 2 y 2 + µ = 0. Caso 1. λ 1 e λ 2 têm o mesmo sinal, ou seja, A > 0 µ e λ 1 têm sinais contrários elipse µ e λ 1 têm o mesmo sinal conjunto vazio µ = 0 um ponto: (0, 0) Caso 2. λ 1 e λ 2 têm sinais contrários, ou seja, A < 0 µ 0 hipérbole µ = 0 duas retas concorrentes: y = ± x λ 1 λ 2

15 Identificação de cónicas com 1 valor próprio não nulo [6 14] Identificação da cónica representada pela equação (onde A = 0) λ 1 x 2 + η y + µ = 0. Caso 1. η 0 parábola Caso 2. η = 0 µ e λ 1 têm o mesmo sinal conjunto vazio µ e λ 1 têm sinais contrários duas retas estritamente paralelas: x = ± µ λ 1 µ = 0 duas retas coincidentes: x = 0 (eixo Oy)

16 Equação geral de uma quádrica [6 15] A equação geral (na forma matricial) de uma quádrica é X T A X + B X + µ = 0, (1) com A matriz simétrica 3 3 não nula, B matriz 1 3, X R 3 e µ R. A partir desta equação geral podem ser obtidas as equações reduzidas das quádricas por um processo análogo ao levado a cabo para as cónicas: 1. rotação dos eixos (diagonalização ortogonal de A) e 2. translação dos eixos. Exercício: Determine as interseções com os planos coordenados (x = 0, y = 0 e z = 0) de todas as quádricas apresentadas nos próximos 5 slides.

17 Equação reduzida do elipsóide [6 16] Equação reduzida de um elipsóide: x 2 a 2 + y2 b 2 + z2 c 2 = 1. Nota: No caso particular a = b = c, tem-se uma esfera.

18 Equações reduzidas dos hiperbolóides [6 17] Equação reduzida de um Equação reduzida de um hiperbolóide de uma folha: hiperbolóide de duas folhas: x 2 a + y2 2 b z2 2 c = 1. x 2 2 a y2 2 b z2 2 c = 1. 2

19 Quádricas degeneradas: o cone [6 18] Equação reduzida de um cone: x 2 a 2 + y2 b 2 z2 c 2 = 0.

20 Equações reduzidas dos parabolóides [6 19] Equação reduzida de um parabolóide eĺıptico: z = x2 a 2 + y2 b 2. Equação reduzida de um parabolóide hiperbólico: z = x2 a 2 y2 b 2.

21 Quádricas degeneradas: os cilindros [6 20] Equação reduzida de Equação reduzida de Equação reduzida de um cilindro eĺıptico: um cilindro hiperbólico: um cilindro parabólico: x 2 a + y2 2 b = 1. x 2 2 a y2 2 b = 1. y = 2 ax2.

22 Exemplo 6 [6 21] com X = 8x 2 8y z xy 4xz 4yz 24 = 0 x y z X T A X = 24, e A = Como os valores próprios de A são 12, 6 e 24, existe P ortogonal tal que P T A P = D =

23 Exemplo 6 continuação [6 22] Considerando X = P ˆX na equação geral, com ˆX = x y, obtém-se z X T AX = 24 ˆX T D ˆX = 24 12ˆx 2 + 6ŷ 2 24ẑ 2 = 24 ˆx2 2 + ŷ2 4 ẑ2 = 1 que é a equação reduzida de um hiperbolóide de uma folha. Nota: As interseções com os eixos coordenados são: ˆx = 0 ŷ2 4 ẑ2 = 1 hipérbole no plano ŷoẑ ŷ = 0 ˆx2 2 ẑ2 = 1 hipérbole no plano ˆxOẑ ẑ = 0 ˆx2 2 + ŷ2 = 1 elipse no plano ˆxOŷ 4

24 Identificação de quádricas com 3 valores próprios não nulos [6 23] Identificação da quádrica representada pela equação λ 1 x 2 + λ 2 y 2 + λ 3 z 2 + µ = 0. Caso 1. λ 1, λ 2 e λ 3 têm o mesmo sinal µ e λ 1 têm sinais contrários elipsóide µ e λ 1 têm o mesmo sinal conjunto vazio µ = 0 ponto (0, 0, 0) Caso 2. λ 1 e λ 2 têm o mesmo sinal que é contrário ao de λ 3 µ e λ 1 têm sinais contrários hiperbolóide de uma folha µ e λ 1 têm o mesmo sinal hiperbolóide de duas folhas µ = 0 cone

25 Identificação de quádricas com 2 valores próprios não nulos [6 24] Identificação da quádrica representada pela equação λ 1 x 2 + λ 2 y 2 + η z + µ = 0. Caso 1. λ 1 e λ 2 têm o mesmo sinal η 0 parabolóide eĺıptico µ e λ 1 têm sinais contrários cilindro eĺıptico η = 0 µ e λ 1 têm o mesmo sinal conjunto vazio Caso 2. λ 1 e λ 2 têm sinal contrário η 0 parabolóide hiperbólico µ = 0 eixo Oz η = 0 µ 0 cilindro hiperbólico µ = 0 dois planos concorrentes y = ± que se intersetam no eixo Oz λ 1 λ 2 x

26 Identificação de quádricas com 1 valor próprio não nulo [6 25] Identificação da quádrica representada pela equação λ 1 x 2 + η y + µ = 0. Caso 1. η 0 cilindro parabólico Caso 2. η = 0 µ e λ 1 têm sinais contrários dois planos estritamente paralelos: x = ± µ λ 1 µ e λ 1 têm o mesmo sinal conjunto vazio µ = 0 dois planos coincidentes: x = 0 (plano yoz) Nota: Na equação λ 1 x 2 + ηy + νz + µ = 0, o termo em z elimina-se com uma oportuna escolha da base do espaço próprio associado a zero.

Questão 2: Considere a hipérbole descrita pela equação 9x 2 16y 2 = 144. vértices, focos e esboce seu gráco.

Questão 2: Considere a hipérbole descrita pela equação 9x 2 16y 2 = 144. vértices, focos e esboce seu gráco. Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto LISTA 8 - Cônicas e Quádricas

Leia mais

x 2 a 2 + y2 c 2 = 1, b 2 + z2 Esta superfície é simétrica relativamente a cada um dos planos coordenados e relativamente

x 2 a 2 + y2 c 2 = 1, b 2 + z2 Esta superfície é simétrica relativamente a cada um dos planos coordenados e relativamente Capítulo 2 Cálculo integral 2.1 Superfícies quádricas Uma superfície quádrica é um subconjunto de R 3 constituído por todos os pontos de R 3 que satisfazem uma equação com a forma A + B + Cz 2 + Dxy +

Leia mais

ALGA 2007/2008 Mest. Int. Eng. Electrotécnica e de Computadores Aplicao do Captulo VI 1 / 12

ALGA 2007/2008 Mest. Int. Eng. Electrotécnica e de Computadores Aplicao do Captulo VI 1 / 12 Aplicação do Capítulo VI à Classificação de Cónicas e Quádricas ALGA 007/008 Mest. Int. Eng. Electrotécnica e de Computadores Aplicao do Captulo VI 1 / 1 A diagonalização de matrizes simétricas reais pode

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso: 5 Geometria Analítica - a Avaliação - 6 de setembro de 0 Justique todas as suas respostas.. Dados os vetores u = (, ) e v = (, ), determine os vetores m e n tais que: { m n = u, v u + v m + n = P roj u

Leia mais

SUPERFÍCIES QUÁDRICAS

SUPERFÍCIES QUÁDRICAS 1 SUPERFÍCIES QUÁDRICAS Dá-se o nome de superfície quádrica ou simplesmente quádrica ao gráfico de uma equação do segundo grau, nas variáveis, e, da forma: A + B + C + D + E + F + G + H + I + K = 0, que

Leia mais

Aula 18 Cilindros quádricos e identificação de quádricas

Aula 18 Cilindros quádricos e identificação de quádricas MÓDULO 2 - AULA 18 Aula 18 Cilindros quádricos e identificação de quádricas Objetivos Estudar os cilindros quádricos, analisando suas seções planas paralelas aos planos coordenados e estabelecendo suas

Leia mais

SEÇÕES CÔNICAS. Figura 1

SEÇÕES CÔNICAS. Figura 1 INSTITUTO DE MATEMÁTICA UFBA DISCIPLINA: MATEMÁTICA BÁSICA II - SEM. 004.1 PROF. GRAÇA LUZIA DOMINGUEZ SANTOS SEÇÕES CÔNICAS Sejam duas retas e e r concorrentes em O, tal que o ângulo α entre e e r é diferente

Leia mais

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)

c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1) Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =

Leia mais

Geometria Analítica. Superfícies. Prof Marcelo Maraschin de Souza

Geometria Analítica. Superfícies. Prof Marcelo Maraschin de Souza Geometria Analítica Superfícies Prof Marcelo Maraschin de Souza Superfícies Quadráticas A equação geral do 2º grau nas três variáveis x,y e z ax 2 + by 2 + cz 2 + 2dxy + 2exz + 2fyz + mx + ny + pz + q

Leia mais

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA

PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA 1 PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA Curso: CST em Sistemas de Telecomunicações, Tecnologia Nome da disciplina: Álgebra Vetorial Código: CEE.002 Carga horária: 67 horas Semestre previsto: 1 Pré-requisito(s):

Leia mais

Superfícies e Curvas no Espaço

Superfícies e Curvas no Espaço Superfícies e Curvas no Espaço Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de deembro de 2001 1 Quádricas Nesta

Leia mais

MAT Poli Cônicas - Parte I

MAT Poli Cônicas - Parte I MAT2454 - Poli - 2011 Cônicas - Parte I Uma equação quadrática em duas variáveis, x e y, é uma equação da forma ax 2 +by 2 +cxy +dx+ey +f = 0, em que pelo menos um doscoeficientes a, b oucénão nulo 1.

Leia mais

3. Algumas classes especiais de superfícies

3. Algumas classes especiais de superfícies 3. ALGUMAS CLASSES ESPECIAIS DE SUPERFÍCIES 77 3. Algumas classes especiais de superfícies Nesta secção descrevemos algumas das classes de superfícies mais simples. Superfícies quádricas As superfícies

Leia mais

4.1 Superfície Cilíndrica

4.1 Superfície Cilíndrica 4.1 Superfície Cilíndrica Uma superfície cilíndrica (ou simplesmente cilindro) é a superfície gerada por uma reta que se move ao longo de uma curva plana, denominada diretriz, paralelamente a uma reta

Leia mais

MAT Poli Roteiro de Estudos sobre as Cônicas

MAT Poli Roteiro de Estudos sobre as Cônicas MAT25 - Poli - 2003 Roteiro de Estudos sobre as Cônicas Martha Salerno Monteiro Departamento de Matemática IME-USP Uma equação quadrática em duas variáveis é uma equação da forma a + by 2 + cxy + dx +

Leia mais

Geometria Analítica. Cônicas. Prof. Vilma Karsburg

Geometria Analítica. Cônicas. Prof. Vilma Karsburg Geometria Analítica Cônicas Prof. Vilma Karsburg Cônicas Sejam duas retas e e g concorrentes em O e não perpendiculares. Considere e fixa e g girar 360 em torno de e, mantendo constante o ângulo entre

Leia mais

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor Identificação de Cônicas Uma equação do segundo grau ax + bxy + cy + dx + ey + f = 0 define de maneira implícita uma curva no plano xy: o conjunto dos pontos (x, y) que satisfazem a equação. Por exemplo,

Leia mais

(b) O centro é O, os focos estão em Oy, o eixo maior mede 10, e a distância focal é 6.

(b) O centro é O, os focos estão em Oy, o eixo maior mede 10, e a distância focal é 6. Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Campo Mourão Wellington José Corrêa Nome: 4 ā Lista de Geometria Analítica e Álgebra Linear No que segue, todas as bases utilizadas

Leia mais

Programa. 3. Curvas no Plano: equação de lugar geométrico no plano; equações reduzidas da elipse,

Programa. 3. Curvas no Plano: equação de lugar geométrico no plano; equações reduzidas da elipse, Programa 1. Vetores no Plano e no Espaço: conceito; adição de vetores; multiplicação de vetor por n real; combinação linear de vetores; coordenadas; produto interno; produto vetorial; produto misto. 2.

Leia mais

Equação Geral do Segundo Grau em R 2

Equação Geral do Segundo Grau em R 2 8 Equação Geral do Segundo Grau em R Sumário 8.1 Introdução....................... 8. Autovalores e autovetores de uma matriz real 8.3 Rotação dos Eixos Coordenados........... 5 8.4 Formas Quadráticas..................

Leia mais

GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu

GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu GGM0016 Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 0/1/01- GGM - UFF Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co

Leia mais

Aula 15 Superfícies quádricas - cones quádricos

Aula 15 Superfícies quádricas - cones quádricos Aula 15 Superfícies quádricas - cones quádricos MÓDULO - AULA 15 Objetivos Definir e estudar os cones quádricos identificando suas seções planas. Analisar os cones quádricos regrados e de revolução. Cones

Leia mais

Geometria Analítica II - Aula

Geometria Analítica II - Aula Geometria Analítica II - Aula 0 94 Aula Coordenadas Cilíndricas e Esféricas Para descrever de modo mais simples algumas curvas e regiões no plano introduzimos anteriormente as coordenadas polares. No espaço

Leia mais

1. Encontre as equações simétricas e paramétricas da reta que:

1. Encontre as equações simétricas e paramétricas da reta que: Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: retas; planos; interseções de retas e planos; posições relativas entre retas e planos; distância

Leia mais

Exercícios de Geometria Analítica - CM045

Exercícios de Geometria Analítica - CM045 Exercícios de Geometria Analítica - CM045 Prof. José Carlos Corrêa Eidam DMAT/UFPR Disponível no sítio people.ufpr.br/ eidam/index.htm 1o. semestre de 2011 Parte 1 Soma e produto escalar 1. Seja OABC um

Leia mais

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016

Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Lista de Exercícios de Cálculo 3 Módulo 1 - Terceira Lista - 02/2016 Parte A 1. Identifique e esboce as superfícies quádricas x 2 + 4y 2 + 9z 2 = 1 x 2 y 2 + z 2 = 1 (c) y = 2x 2 + z 2 (d) x = y 2 z 2

Leia mais

GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA. 03/01/ GGM - UFF Dirce Uesu Pesco

GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA. 03/01/ GGM - UFF Dirce Uesu Pesco GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA 03/01/2013 - GGM - UFF Dirce Uesu Pesco CÔNICAS Equação geral do segundo grau a duas variáveis x e y onde A, B e C não são simultaneamente

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Vetores, Retas e Planos

Álgebra Linear e Geometria Anaĺıtica. Vetores, Retas e Planos universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 3 Vetores, Retas e lanos roduto interno em R n [3 01] Dados os vetores X =

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Geometria Analítica - Aula 19 246 IM-UFF K. Frensel - J. Delgado Aula 20 Vamos analisar a equação Ax 2 + Cy 2 + Dx + Ey + F = 0 nos casos em que exatamente um dos coeficientes A ou C é nulo. 1. Parábola

Leia mais

APLICAÇÕES NA GEOMETRIA ANALÍTICA

APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas

Leia mais

Noção intuitiva. Definições. Definições. Capítulo 1: Vetores Aula 1. Noção intuitiva e definições; Notações. Segmento orientado

Noção intuitiva. Definições. Definições. Capítulo 1: Vetores Aula 1. Noção intuitiva e definições; Notações. Segmento orientado Capítulo 1: Vetores Discussões iniciais; Aula 1 Noção intuitiva e definições; Notações. Noção intuitiva Existem grandezas, chamadas escalares, que são caracterizadas por um número (e a correspondente unidade):

Leia mais

Sumário. VII Geometria Analítica Jorge Delgado Katia Frensel Lhaylla Crissaff

Sumário. VII Geometria Analítica Jorge Delgado Katia Frensel Lhaylla Crissaff 1 Coordenadas no plano 1 1.1 Introdução........................................ 2 1.2 Coordenada e distância na reta............................ 3 1.3 Coordenadas no plano.................................

Leia mais

Lista de Exercícios Geometria Analítica e Álgebra Linear MAT 105

Lista de Exercícios Geometria Analítica e Álgebra Linear MAT 105 Lista de Exercícios Geometria Analítica e Álgebra Linear MAT 105 2 de fevereiro de 2017 Esta lista contém exercícios de [1], [2] e [3]. Os exercícios estão separados por aulas em ordem decrescente de aula.

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares

Álgebra Linear e Geometria Anaĺıtica. Matrizes e Sistemas de Equações Lineares universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 1 Matrizes e Sistemas de Equações Lineares Geometria anaĺıtica em R 3 [1 01]

Leia mais

Tarefa nº_ 2.2. (A) Um ponto (B) Uma reta (C) Um plano (D) Nenhuma das anteriores

Tarefa nº_ 2.2. (A) Um ponto (B) Uma reta (C) Um plano (D) Nenhuma das anteriores Tarefa nº_. MATEMÁTICA Geometria Nome: 11º Ano Data / / 1. Num referencial o.n. Oxyz, qual das seguintes condições define uma recta paralela ao eixo Oz? (A) x = y = 1 (C) z = 1 (B) (x, y, z) = (1,,0) +

Leia mais

GGM Geometria Analítica I 19/04/2012- Turma M1 Dirce Uesu

GGM Geometria Analítica I 19/04/2012- Turma M1 Dirce Uesu GGM0016 Geometria Analítica I 19/04/01- Turma M1 Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co

Leia mais

Equações paramétricas das cônicas

Equações paramétricas das cônicas Aula 1 Equações paramétricas das cônicas Ao estudarmos as retas no plano, vimos que a reta r que passa por dois pontos distintos P 1 = x 1, y 1 ) e P = x, y ) é dada pelas seguintes equações paramétricas:

Leia mais

Ax² + By² + Cz² + Dxy + Exz + Fyz + ax + by + cz + d = 0

Ax² + By² + Cz² + Dxy + Exz + Fyz + ax + by + cz + d = 0 SUPERFÍCIES QUÁDRICAS Naiara Colliselli Tânia Marise Specht Ilário Ruscheinsky RESUMO: Trabalhando-se com superfícies quádricas no plano de coordenadas, pode-se determinar inúmeras formações de superfícies

Leia mais

3.2 Determine a equação da circunferência de raio 5, tangente à reta 3x +4y =16no ponto A (4, 1).

3.2 Determine a equação da circunferência de raio 5, tangente à reta 3x +4y =16no ponto A (4, 1). 3.1 Obtenha a equação e esboce o gráfico da circunferência caracterizada por: (a) Centro C (, 1) eraior =5; (b) Passa pelos pontos A (1, ),B(1, 1) e C (, 3) ; (c) Inscrita no triângulo determinado pelas

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia da Paraíba - Campus Cajazeiras Diretoria de Ensino / Coord. do Curso

Leia mais

Sistemas de equações lineares com três variáveis

Sistemas de equações lineares com três variáveis 18 Sistemas de equações lineares com três variáveis Sumário 18.1 Introdução....................... 18. Sistemas de duas equações lineares........... 18. Sistemas de três equações lineares........... 8

Leia mais

Cônicas são curvas obtidas pela interseção de um plano com um cone circular de duas folhas

Cônicas são curvas obtidas pela interseção de um plano com um cone circular de duas folhas CÔNICAS Cônicas são curvas obtidas pela interseção de um plano com um cone circular de duas folhas Parábola Elipse Hipérbole Circunferência 1.Parábola 1.1 Definição Parábola é o lugar geométrico de todos

Leia mais

Lista de Exercícios Geometria Analítica e Álgebra Linear MAT 105 Turma F

Lista de Exercícios Geometria Analítica e Álgebra Linear MAT 105 Turma F Lista de Exercícios Geometria Analítica e Álgebra Linear MAT 105 Turma F 26 de junho de 2017 Esta lista contém exercícios de [1], [2] e [3]. Os exercícios estão separados em aulas. Aula 1 1. Sejam k e

Leia mais

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO DISCIPLINA: GEOMETRIA ANALÍTICA E ÁLGEBRA VETORIAL CÓDIGO: 2DB.004 VALIDADE: Início: 01/2013 Término: Eixo: Matemática Carga Horária: Total: 75 horas/ 90 horas-aula Semanal: 06 aulas Créditos: 6 Modalidade:

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

0 < c < a ; d(f 1, F 2 ) = 2c

0 < c < a ; d(f 1, F 2 ) = 2c Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,

Leia mais

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0.

3. Achar a equação da esfera definida pelas seguintes condições: centro C( 4, 2, 3) e tangente ao plano π : x y 2z + 7 = 0. Universidade Federal de Uerlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: Superfícies, Quádricas, Curvas e Coordenadas Professor Sato 4 a Lista de exercícios. Determinar

Leia mais

Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - T84 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira

Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - T84 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira Universidade Federal de Ouro Preto Departamento de Matemática MTM11 - T8 Geometria Analítica e Cálculo Vetorial Cônicas - Tiago de Oliveira 1. Determine a equação geral da elipse que satisfaça as condições

Leia mais

UC: Análise Matemática II. Representação geométrica para Integrais Múltiplos - Volumes

UC: Análise Matemática II. Representação geométrica para Integrais Múltiplos - Volumes ETI / EI, 1 o Ano UC: Análise Matemática II Representação geométrica para Integrais Múltiplos - Volumes Elaborado de: Diana Aldea Mendes e Rosário Laureano Departamento de Métodos Quantitativos Fevereiro

Leia mais

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011

Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá. 21 de outubro de 2011 APLICAÇÕES DA DIAGONALIZAÇÃO Álgebra Linear (MAT-27) Ronaldo Rodrigues Pelá IEFF-ITA 21 de outubro de 2011 Roteiro 1 2 3 Roteiro 1 2 3 Introdução Considere a equação de uma cônica: Forma Geral Ax 2 + Bxy

Leia mais

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos º Ano No plano Mediatriz de um segmento de reta [AB] Sendo M o ponto

Leia mais

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA

Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Número da Aula Data da Aula 1 02/09 Sequências Numéricas, definição, exemplos, representação geométrica, convergência e divergência, propriedades,

Leia mais

CÔNICAS E QUÁDRICAS. Álgebra Linear e Geometria Analítica Prof. Aline Paliga

CÔNICAS E QUÁDRICAS. Álgebra Linear e Geometria Analítica Prof. Aline Paliga CÔNICAS E QUÁDRICAS Álgebra Linear e Geometria Analítica Prof. Aline Paliga 11.1 CÔNICAS Pierre de Fermat (1601-1665) estabeleceu o princípio fundamental da Geometria Analítica, segundo o qual, uma equação

Leia mais

FAU UFRJ GEOMETRIA DESCRITIVA II. Apostila de Apoio

FAU UFRJ GEOMETRIA DESCRITIVA II. Apostila de Apoio FAU UFRJ GEOMETRIA DESCRITIVA II Apostila de Apoio Bibliografia: CARVALHO, Benjamin de A. Morfologia e Desenho das Curvas. (Terceira Parte) In: Desenho Geométrico. Rio de Janeiro. Ed. Ao Livro Técnico

Leia mais

APLICAÇÕES DE CÔNICAS NA ENGENHARIA

APLICAÇÕES DE CÔNICAS NA ENGENHARIA O que você deve saber sobre APLICAÇÕES DE CÔNICAS NA ENGENHARIA As equações das curvas chamadas cônicas recebem esse nome devido à sua origem (a intersecção de um cone por um plano) e podem ser determinadas

Leia mais

Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização ª lista - Cônicas

Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização ª lista - Cônicas Instituto de Matemática UFBA Disciplina: Geometria Analítica Mat A01 Última Atualização - 005 1ª lista - Cônicas 1 0 ) Em cada um dos seguintes itens, determine uma equação da parábola a partir dos elementos

Leia mais

Matrizes Semelhantes e Matrizes Diagonalizáveis

Matrizes Semelhantes e Matrizes Diagonalizáveis Diagonalização Matrizes Semelhantes e Matrizes Diagonalizáveis Nosso objetivo neste capítulo é estudar aquelas transformações lineares de R n para as quais existe pelo menos uma base em que elas são representadas

Leia mais

MAT 105- Lista de Exercícios

MAT 105- Lista de Exercícios 1 MAT 105- Lista de Exercícios 1. Determine as áreas dos seguintes polígonos: a) triângulo de vértices (2,3), (5,7), (-3,4). Resp. 11,5 b) triângulo de vértices (0,4), (-8,0), (-1,-4). Resp. 30 c) quadrilátero

Leia mais

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE Unidade B - Cônicas Profª Msc. Débora Bastos IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE 22 12. Cônicas São chamadas cônicas as curvas resultantes do corte de um cone duplo com um plano.

Leia mais

Aula 9 Cônicas - Rotação de sistemas de coordenadas

Aula 9 Cônicas - Rotação de sistemas de coordenadas MÓDULO 1 - AULA 9 Aula 9 Cônicas - Rotação de sistemas de coordenadas Objetivos Entender mudanças de coordenadas por rotações. Identificar uma cônica rotacionada a partir da sua equação geral. Identificar

Leia mais

GEOMETRIA ANALÍTICA 2017

GEOMETRIA ANALÍTICA 2017 GEOMETRIA ANALÍTICA 2017 Tópicos a serem estudados 1) O ponto (Noções iniciais - Reta orientada ou eixo Razão de segmentos Noções Simetria Plano Cartesiano Abcissas e Ordenadas Ponto Médio Baricentro -

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P1: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 014.1 Cronograma para P1: aulas teóricas (segundas e quartas) Aula 01 1 de fevereiro (quarta) Aula 0 17 de fevereiro (segunda) Aula 0 19 de fevereiro (quarta) Referências:

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

Gráco de funções de duas variáveis

Gráco de funções de duas variáveis UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 09 Assunto:Gráco de funções de duas variáveis, funções de três variáveis reais a valores reais, superfícies de nível,funções limitadas Palavras-chaves:

Leia mais

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016

INSTITUTO FEDERAL DE BRASILIA 4ª Lista. Nome: DATA: 09/11/2016 INSTITUTO FEDERAL DE BRASILIA 4ª Lista MATEMÁTICA GEOMETRIA ANALÍTICA Nome: DATA: 09/11/016 Alexandre Uma elipse tem centro na origem e o eixo maior coincide com o eixo Y. Um dos focos é 1 F1 0, 3 e a

Leia mais

7. Determine a equação da parábola que passa pelos pontos P (0, 6), Q(3, 0) e R(4, 10).

7. Determine a equação da parábola que passa pelos pontos P (0, 6), Q(3, 0) e R(4, 10). Lista 3: Cônicas Professora Elisandra Bär de Figueiredo 1. Determine a equação do conjunto de pontos P (x, y) que são equidistantes da reta x = e do ponto (0, ). A seguir construa este conjunto de pontos

Leia mais

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 P L A N O D E E N S I N O DEPARTAMENTO: Matemática DISCIPLINA: Geometria Analítica PROFESSORA: Viviane Maria Beuter SIGLA: GAN0001 CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 CURSO(S): Engenharia

Leia mais

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) =

54 CAPÍTULO 2. GEOMETRIA ANALÍTICA ( ) = 54 CAPÍTULO. GEOMETRIA ANALÍTICA.5 Cônicas O grá co da equação + + + + + = 0 (.4) onde,,,, e são constantes com, e, não todos nulos, é uma cônica. A equação (.4) é chamada de equação geral do grau em e

Leia mais

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 P L A N O D E E N S I N O DEPARTAMENTO: Matemática PROFESSORA: Katiani da Conceição Loureiro katiani.loureiro@udesc.br DISCIPLINA: Geometria Analítica SIGLA: GAN 0001 CARGA HORÁRIA TOTAL: 72 h/a TEORIA:

Leia mais

1 Segmentos orientados e vetores, adição e multiplicação

1 Segmentos orientados e vetores, adição e multiplicação MAP2110 Modelagem e Matemática 1 o Semestre de 2007 Resumo 1 - Roteiro de estudos - 07/05/2007 Espaços vetoriais bi e tri-dimensionais (plano ou espaço bidimensional E 2, e espaço tridimensional E 3 )

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

Curso de Geometria Analítica. Hipérbole

Curso de Geometria Analítica. Hipérbole Curso de Geometria Analítica Abrangência: Graduação em Engenharia e Matemática - Professor Responsável: Anastassios H. Kambourakis Resumo Teórico 03 - Cônicas- Circunferência, Elipse, Hipérbole e Parábola

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA 04 CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA CAPÍTULO 0 TRANSLAÇÃO E ROTAÇÃO DE EIXOS TRANSLAÇÃO DE EIXOS NO R Sejam e O os eixos primitivos, do Sistema Cartesiano de Eixos Coordenados com origem O(0,0).

Leia mais

Características Principais. Introdução à Computação Gráfica Ray Tracing. Ray Casting. Contexto Histórico. Claudio Esperança Paulo Roma Cavalcanti

Características Principais. Introdução à Computação Gráfica Ray Tracing. Ray Casting. Contexto Histórico. Claudio Esperança Paulo Roma Cavalcanti Características Principais Introdução à Computação Gráfica Ray Tracing Claudio Esperança Paulo Roma Cavalcanti Tipicamente implementado em Software Combina um modelo de iluminação com determinação de visibilidade

Leia mais

Geometria Analítica II - Aula 4 82

Geometria Analítica II - Aula 4 82 Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Londrina PLANO DE ENSINO DISCIPLINA/UNIDADE CURRICULAR CÓDIGO PERÍODO

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Londrina PLANO DE ENSINO DISCIPLINA/UNIDADE CURRICULAR CÓDIGO PERÍODO Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Londrina PLANO DE ENSINO CURSO Licenciatura em Química MATRIZ 1 FUNDAMENTAÇÃO LEGAL Resolução n. 180/10-COEPP de 09 de dezembro

Leia mais

Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas

Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas Geometria Analítica Interpretação Geométrica de Sistemas Lineares com 3 Incógnitas 1 Coordenadas no Espaço Vamos introduir um sistema de coordenadas retangulares no espaço. Para isto, escolhemos um ponto

Leia mais

Aula 31 Funções vetoriais de uma variável real

Aula 31 Funções vetoriais de uma variável real MÓDULO 3 - AULA 31 Aula 31 Funções vetoriais de uma variável real Objetivos Conhecer as definições básicas de funções vetoriais de uma variável real. Aprender a parametrizar curvas simples. Introdução

Leia mais

Geometria Analítica e Vetorial - Daniel Miranda, Rafael Grisi, Sinuê Lodovici

Geometria Analítica e Vetorial - Daniel Miranda, Rafael Grisi, Sinuê Lodovici 9 M U DA N Ç A D E C O O R D E N A DA S O RTO G O N A I S N O P L A N O Como sabemos, um sistema de coordenadas Σ no plano é um conjunto de dois vetores linearmente independentes f 1, f 2 (ou seja uma

Leia mais

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas

Matemática. Resolução das atividades complementares. M21 Geometria Analítica: Cônicas Resolução das atividades complementares Matemática M Geometria Analítica: Cônicas p. FGV-SP) Determine a equação da elipse de centro na origem que passa pelos pontos A, 0), B, 0) e C0, ). O centro da elipse

Leia mais

Retratos de Fase de Sistemas Lineares Homogêneos 2 2

Retratos de Fase de Sistemas Lineares Homogêneos 2 2 Retratos de Fase de Sistemas Lineares Homogêneos 2 2 Reginaldo J Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://wwwmatufmgbr/~regi 2 de novembro de 20 2 Eemplo Considere

Leia mais

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução

2. Pré-requisitos do 3. Ciclo. 7. ano PR 7.1. Resolução 7. ano PR 7.1. Dados dois conjuntos A e B fica definida uma função 1ou aplicação2 f de A em B, quando a cada elemento de A se associa um elemento único de B representado por f 1x2. Dada uma função numérica

Leia mais

3.3 Espaço Tridimensional - R 3 - versão α 1 1

3.3 Espaço Tridimensional - R 3 - versão α 1 1 1 3.3 Espaço Tridimensional - R 3 - versão α 1 1 3.3.1 Sistema de Coordenadas Tridimensionais Como vimos no caso do R, para localizar um ponto no plano precisamos de duas informações e assim um ponto P

Leia mais

Instituto de Matemática - UFBA Disciplina: Geometria Analítica - Mat A 01 1 a Lista - Cônicas

Instituto de Matemática - UFBA Disciplina: Geometria Analítica - Mat A 01 1 a Lista - Cônicas Instituto de Matemática - UFBA Disciplina: Geometria Analítica - Mat A 0 a Lista - Cônicas. Em cada um dos seguintes itens, determine uma equação da parábola a partir dos elementos dados: (a) foco F (,

Leia mais

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2 Lista 2: Retas, Planos e Distâncias - Engenharia Mecânica Professora: Elisandra Bär de Figueiredo x = 2 + 2t 1. Determine os valores de m para que as retas r : y = mt z = 4 + 5t sejam: (a) ortogonais (b)

Leia mais

PROGRAMA DE DISCIPLINA

PROGRAMA DE DISCIPLINA PROGRAMA DE DISCIPLINA Disciplina: GEOMETRIA ANALÍTICA Código da Disciplina: NDC222 Curso: Engenharia Civil Semestre de oferta da disciplina: 1º Faculdade responsável: Núcleo de Disciplinas Comuns (NDC)

Leia mais

Tópicos de Geometria

Tópicos de Geometria Tópicos de Geometria 2010/2011 João Caramalho Domingues Licenciatura em Matemática Departamento de Matemática e Aplicações Universidade do Minho Tópicos de Geometria 2010/2011 Parte I Cónicas e quádricas

Leia mais

n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas

n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas Sejam as retas r1, que passa pelo ponto A (x1, y1, z1) e tem a direção de um vetor

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

1. Qual éolugar geométrico dos pontosequidistantes de A = (1,0,0),B = ( 1,1,0),C = (0,2,0) e D = (0,0,0).

1. Qual éolugar geométrico dos pontosequidistantes de A = (1,0,0),B = ( 1,1,0),C = (0,2,0) e D = (0,0,0). Universidade Federal Fluminense PURO Instituto de Ciência e Tecnologia Departamento de Física e Matemática Geometria Analítica e Cálculo Vetorial 7 a Lista de Exercícios 1/2011 Distâncias Observação: Todos

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA 4. Geometria Analítica 4.1. Introdução Geometria Analítica é a parte da Matemática,

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 18. Se f é uma função real de variável real definida por f() = a + b + c, onde a, b e c são números reais negativos, então o gráfico que melhor representa a derivada de f é: A) y B) y C) y D) y E) y Questão

Leia mais

MÓDULO 1 - AULA 21. Objetivos

MÓDULO 1 - AULA 21. Objetivos Aula 1 Hipérbole - continuação Objetivos Aprender a desenhar a hipérbole com compasso e régua com escala. Determinar a equação reduzida da hipérbole no sistema de coordenadas com origem no ponto médio

Leia mais

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação: 1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular

Leia mais

4. Superfícies e sólidos geométricos

4. Superfícies e sólidos geométricos 4. Superfícies e sólidos geométricos Geometria Descritiva 2006/2007 4.1 Classificação das superfícies e sólidos geométricos Geometria Descritiva 2006/2007 1 Classificação das superfícies Linha Lugar das

Leia mais

1 Cônicas Não Degeneradas

1 Cônicas Não Degeneradas Seções Cônicas Reginaldo J. Santos Departamento de Matemática-ICE Universidade Federal de Minas Gerais http://www.mat.ufmg.br/~regi regi@mat.ufmg.br 11 de dezembro de 2001 Estudaremos as (seções) cônicas,

Leia mais

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19).

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19). Capítulo 1 Coordenadas cartesianas 1.1 Problemas Propostos 1.1 Dados A( 5) e B(11), determine: (a) AB (b) BA (c) AB (d) BA 1. Determine os pontos que distam 9 unidades do ponto A(). 1.3 Dados A( 1) e AB

Leia mais