Rodada #1 Raciocínio Lógico

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Rodada #1 Raciocínio Lógico"

Transcrição

1 Rodada #1 Raciocínio Lógico Professor Guilherme Neves Assuntos da Rodada RACIOCIŃIO LOǴICO: 1 Estruturas lógicas. 2 Lógica de argumentação: analogias, inferências, deduções e conclusões. 3 Lógica sentencial (ou proposicional). 3.1 Proposições simples e compostas. 3.2 Tabelas-verdade. 3.3 Equivalências. 3.4 Leis de De Morgan. 3.5 Diagramas loǵicos.4 Lógica de primeira ordem. 5 Princípios de contagem e probabilidade. 6 Operações com conjuntos. 7 Raciocínio lógico envolvendo problemas aritméticos, geométricos e matriciais.

2 a. Teoria em Tópicos 1. Chama-se proposição toda oração declarativa que pode ser valorada em verdadeira ou falsa, mas não as duas. Exemplo: Paris está na Inglaterra (Falso). 2. Sendo oração, deve possuir sujeito e predicado. Portanto, expressões como Os alunos do Ponto dos Concursos não são proposições lógicas, pois não possuem predicado (verbo). 3. Sendo declarativa, não pode ser exclamativa, interrogativa, imperativa ou optativa. Desta forma, as expressões abaixo não são consideradas proposições. i) Que belo dia! (exclamativa) ii) Qual é o seu nome? (interrogativa) iii) Leia isto atenciosamente. (imperativa indica ordem) iv) Que Deus te abençoe. (optativa exprime desejo). 4. Um importante tipo de sentença que não é proposição é a chamada sentença aberta ou função proposicional. Sentença aberta é aquela em que o sujeito é um termo variável. Exemplo: Ele foi aprovado no concurso da Receita Federal em

3 A frase acima não é uma proposição lógica, pois não pode ser classificada em V ou F, já que não sabemos quem é ele. Exemplo: x + 2 = 8 A sentença acima não pode ser classificada em V ou F, pois não sabemos o valor de x. A sentença x + 2 = 8 é, portanto, uma sentença aberta (não é proposição lógica). 5. A partir de proposições dadas, podemos construir novas proposições com o auxílio de operadores lógicos. Os operadores lógicos são o modificador (advérbio não) e os conectivos. 6. O modificador é um operador lógico que troca o valor lógico das proposições. Se temos em mãos uma proposição verdadeira, então, ao aplicarmos o modificador, teremos uma proposição falsa. Da mesma forma, se temos em mãos uma proposição falsa, então, ao aplicarmos o modificador, teremos uma proposição verdadeira. 7. Os símbolos que indicam que uma proposição foi modificada são:. A proposição modificada é chamada de negação da proposição original. Exemplos: Está é uma proposição falsa. Ao aplicarmos o modificador, teremos uma proposição verdadeira. 3

4 Esta frase também pode ser lida das seguintes formas: 8. Quando temos uma proposição simples, devemos modificar o verbo principal para negar a frase. Vejamos outro exemplo: Esta é uma proposição verdadeira. Vamos modificar o verbo e torná-la uma proposição falsa. 9. Uma tabela-verdade dispõe as relações entre os valores lógicos das proposições. Tabelas-verdade são especialmente usadas para determinar os valores lógicos de proposições construídas a partir de proposições simples. Observe a tabela que dispõe as relações entre uma proposição p e a sua negação ~p. p ~ p V F F V 4

5 10. Além do modificador, podemos construir novas proposições utilizando conectivos lógicos. 11. Os conectivos cobrados em provas são Conjunção (e), Disjunção Inclusiva (ou), Disjunção Exclusiva (ou...ou), Condicional (se..., então) e o Bicondicional (...se e somente se...). 12. Caso o problema fale apenas disjunção, consideraremos que se trata da Disjunção Inclusiva. 13. Os conectivos podem estar disfarçados sob expressões equivalentes. Exemplo 1: Fui à praia, mas não estudei = Fui à praia e não estudei. Exemplo 2: Quando vou à praia, não durmo = Se vou à praia, então não durmo. Exemplo 3: Penso, logo existo = Se penso, então existo. 14. A proposição Guilherme e Moraes são professores é uma proposição simples. O sujeito dessa proposição, porém, é composto. A proposição Guilherme é professor e Moraes é professor é uma proposição composta. 15. Cada um dos conectivos é representado por um símbolo. Nome do Conectivo Forma mais comum Símbolo 5

6 Conjunção e Disjunção (Inclusiva) ou Disjunção Exclusiva Ou...ou Condicional Se..., então Bicondicional...se e somente se 16. Como distinguir os símbolos e? Basta colocar uma letra O ao lado dos símbolos. Observe: O / O Em qual das duas situações você consegue ler OU? Na palavra da esquerda! Portanto, aquele símbolo é o ou. Consequentemente o outro é o e. Outro processo mnemônico consiste em colocar um pontinho em cima do símbolo. Vejamos: Em qual das duas situações você consegue ver a letra cursiva i? No símbolo da direita! Portanto, aquele símbolo é o e (mesmo fonema do i ). 17. Para classificar uma proposição composta em V ou F, devemos saber a regra de cada um dos conectivos. 6

7 18. Uma proposição composta pelo conectivo e (conjunção) só é verdadeira quando as duas frases componentes são verdadeiras. Se pelo menos uma das frases componentes for falsa, a proposição composta será falsa. Exemplo: Se a proposição João é pobre for falsa e se a proposição João pratica atos violentos for verdadeira, então a proposição João não é pobre, mas pratica atos violentos será verdadeira. Exemplo: A proposição 2+3 = 5 e a Lua é quadrada é falsa, pois um de seus componentes é falso. 19. Uma proposição composta pelo conectivo ou (disjunção (inclusiva)) só é verdadeira se pelo menos um de seus componentes for verdadeiro. A disjunção só será falsa se os dois componentes forem falsos. Exemplo: A proposição 2+3 = 5 ou a Lua é quadrada é verdadeira, pois pelo menos um de seus componentes é verdadeiro. Exemplo: A proposição Paris está na Inglaterra ou 16=3 é falsa, pois seus dois componentes são falsos. 7

8 20. Observe que o conectivo "ou" tem um sentido inclusivo, ou seja, classificamos como verdadeira a proposição composta pelo ou que possui os dois componentes verdadeiros. 21. Ao utilizar o conectivo Ou...ou... a proposição composta só será verdadeira quando APENAS um dos componentes for verdadeiro. Se as duas frases componentes forem verdadeiras, a composta será falsa. Se as duas frases forem falsas, a composta será falsa. Há exercícios em que a banca enfatiza o conectivo ou...ou... colocando a expressão mas não ambos ao final da frase. Assim, Ou p ou q = Ou p ou q, mas não ambos. 22. Na proposição condicional Se p, então q, a proposição p é o antecedente e a proposição q é o consequente. Exemplo: Se Guilherme é recifense, então é Igor é mineiro. O antecedente é a proposição Guilherme é recifense e o consequente é a proposição Igor é mineiro. 8

9 A proposição Se p, então q pode ser lida como p é condição suficiente para q ou como q é condição necessária para p. 23. Uma proposição composta pelo conectivo Se..., então... só é falsa quando ocorre VF, ou seja, quando o antecedente é verdadeiro e o consequente é falso. Em qualquer outra possibilidade (VV, FV, FF) a composta será verdadeira. Exemplos: 24. O que precisamos saber é apenas isso: se ocorrer VF, ou seja, se o antecedente for verdadeiro e o consequente for falso, a proposição composta pelo se..., então é falsa. Em todos os outros casos a proposição composta será verdadeira. V V V V F F 9

10 F V V F F V 25. Uma proposição composta pelo conectivo...se e somente se... (bicondicional) é verdadeira quando os dois componentes têm valores iguais, ou seja, VV ou FF. Se os componentes têm valores opostos (VF ou FV), a composta será falsa. 26. O conectivo se e somente se corresponde à conjunção (e) de dois condicionais (se...,então...). Em outras palavras, as proposições P se e somente se Q e Se P, então Q e se Q, então Q querem dizer a mesma coisa (são equivalentes). Exemplo: São equivalentes as proposições Hoje é Natal se e somente se hoje é 25/12 e Se hoje é Natal, então hoje é 25/12 e se hoje é 25/12, então hoje é Natal. A proposição p se e somente se q pode ser lida como p é condição necessária e suficiente para q ou q é condição necessária e suficiente para p. 10

11 27. Podemos resumir tudo o que foi dito sobre conectivos com a seguinte tabelaverdade. V V V V F V V V F F V V F F F V F V V V F F F F F F V V 28. Para facilitar o processo mnemônico, podemos fixar as regras que tornam as compostas verdadeiras. Conjunção As duas proposições p, q devem ser verdadeiras Disjunção Inclusiva Ao menos uma das proposições p, q deve ser verdadeira. Não pode ocorrer o caso de as duas serem falsas. Disjunção Exclusiva Apenas uma das proposições pode ser verdadeira. A proposição composta será falsa se os dois componentes forem verdadeiros ou se os dois componentes forem falsos. Condicional Não pode acontecer o caso de o antecedente ser verdadeiro e o consequente ser falso. Ou seja, não pode acontecer V(p)=V e V(q)=F. Em uma linguagem informal, dizemos que não pode acontecer VF, nesta ordem. Bicondicional Os valores lógicos das duas proposições devem ser iguais. 11

12 Ou as duas são verdadeiras, ou as duas são falsas. 29. O número de linhas da tabela-verdade de uma proposição composta com n proposições simples é 2 n. Para uma proposição simples p, o número de linhas da tabela-verdade é 2, pois, pelas leis do pensamento a proposição psó pode assumir um dos dois valores lógicos: V ou F. p V F Para duas proposições p e q, o número de linhas da tabela-verdade é 2 2 = 4. SEMPRE que você for construir uma tabela-verdade envolvendo 2 proposições, começaremos com a seguinte disposição. p q V V V F F V F F Para 3 proposições p, q e r,o número de linhas da tabela-verdade é 2 3 = 8. SEMPRE que você for construir uma tabela-verdade envolvendo 3 proposições, começaremos com a seguinte disposição. 12

13 p q r V V V V V F V F V V F F F V V F V F F F V F F F Cada linha da tabela (fora a primeira que contém as proposições) representa uma valoração. 30. Tautologia é uma proposição composta que é verdadeira independentemente dos valores das proposições simples que a compõem. Vamos considerar três proposições quaisquer p, q e r. Assim, qualquer tabela-verdade envolvendo apenas estas três proposições terá linhas. Desta forma, vamos construir a tabela-verdade da proposição ( p r) (~ q r). E o que significa construir a tabela-verdade desta proposição? 13

14 Significa dispor em uma tabela todas as possibilidades de valoração para esta proposição. Ou seja, estamos preocupados em responder quando é que esta proposição é verdadeira e quando é que ela é falsa. Para tal tarefa, devemos começar com a seguinte disposição: p q r V V V V V F V F V V F F F V V F V F F F V F F F Neste começo de tabela, estão dispostas todas as possibilidades de valorações destas 3 proposições. Observe que há um padrão na construção deste início. Na primeira coluna, temos 4 V seguidos de 4 F. Na segunda coluna temos 2 V seguidos de 2 F alternadamente. Por fim, na terceira coluna temos V e F que se alternam. Pois bem toda tabela-verdade envolvendo três proposições começa assim. Queremos construir a tabela-verdade da proposição ( p r) (~ q r). 14

15 Observe que não aparece a proposição propriamente dia e sim a sua negação. Portanto, o primeiro passo é construir a negação de. Lembre-se que se uma proposição é verdadeira, a sua negação é falsa e reciprocamente. p q r ~ q V V V F V V F F V F V V V F F V F V V F F V F F F F V V F F F V Valores opostos!! Vamos obedecer a ordem de preferência. Vamos construir as proposições compostas que estão dentro dos parênteses. Comecemos por. Devemos conectar a proposição com a proposição através do conectivo e. Lembre-se que uma proposição composta pelo e só é verdadeira quando os dois componentes são verdadeiros. Vamos selecionar as linhas em que ambas e são verdadeiras. Todas as outras possibilidades tornam a composta falsa. p q r ~ q p r 15

16 V V V F V V V F F F V F V V V V F F V F F V V F F F V F F F F F V V F F F F V F Vamos agora construir a segunda proposição composta que está dentro de parênteses:. Lembre-se que uma proposição composta pelo conectivo ou é verdadeira quando pelo menos um dos dois componentes for verdadeiro. Vamos nos focar apenas nas linhas em que pelo menos uma das duas ou for verdadeira. p q r ~ q p r ~ q r V V V F V V V V F F F F V F V V V V V F F V F V F V V F F V 16

17 F V F F F F F F V V F V F F F V F V Observe que tanto na linha 2 quanto na linha 6 as duas proposições são falsas, e portanto, a composta construída é falsa nestes casos. Podemos agora, finalmente construir a composta ( p r) (~ q r). Lembre-se que há apenas um caso em que a composta pelo se..., então é falsa: quando o primeiro componente for verdadeiro e o segundo componente falso. Vamos olhar apenas as duas últimas colunas. Vejamos cada linha de per si: 1ª linha: V V (o condicional é verdadeiro). 2ª linha: F F (o condicional é verdadeiro). 3ª linha: V V (o condicional é verdadeiro). 4ª linha: F V (o condicional é verdadeiro). 5ª linha: F V (o condicional é verdadeiro). 6ª linha: F F (o condicional é verdadeiro). 7ª linha: F V (o condicional é verdadeiro). 8ª linha: F V (o condicional é verdadeiro). Desta forma: p q r ~ q p r ~ q r ( p r) (~ q r) 17

18 V V V F V V V V V F F F F V V F V V V V V V F F V F V V F V V F F V V F V F F F F V F F V V F V V F F F V F V V Concluímos que a proposição composta ( p r) (~ q r) é sempre verdadeira, independentemente dos valores atribuídos às proposições. Dizemos então que a proposição ( p r) (~ q r) é uma tautologia (ou proposição logicamente verdadeira). 31. Contradição é uma proposição composta que é falsa independentemente dos valores das proposições simples que a compõem. Para verificar se uma proposição é uma contradição, devemos construir a sua tabelaverdade. 32. Contingência é uma proposição composta que assume valores V ou F a depender dos valores das proposições componentes. 18

19 Para verificar se uma proposição é uma contingência, devemos construir a sua tabelaverdade. 33. Grosso modo, duas proposições são logicamente equivalentes quando elas dizem a mesma coisa. Por exemplo: Eu joguei o lápis. O lápis foi jogado por mim. As duas proposições acima têm o mesmo significado. Elas querem dizer a mesma coisa!! Quando uma delas for verdadeira, a outra também será. Quando uma delas for falsa, a outra também será. Dizemos, portanto, que elas são logicamente equivalentes. Em símbolos, escrevemos. 34. Para mostrar que duas proposições são equivalentes, devemos construir as tabelas-verdade e verificar se elas possuem as mesmas valorações em todas as linhas. Exemplo: Mostre que são equivalentes as proposições, e. Precisamos apenas construir a tabela-verdade. p q ~ q ~ p p q ~ q ~ p ~ p q V V F F V V V V F V F F F F F V F V V V V 19

20 F F V V V V V Como os valores lógicos das três proposições são iguais, elas são ditas logicamente equivalentes. 35. As proposições equivalentes do tópico anterior são responsáveis por 99% das questões de concurso sobre este assunto. Portanto, não se preocupe. Você não precisará construir uma tabela para resolver a questão da sua prova (afirmo isso com 99% de probabilidade de acertar. Rs...). Portanto, memorize as seguintes equivalências: 36. A equivalência permite construir uma proposição composta pelo se...,então... a partir de outra proposição composta pelo se...,então. Para tanto, basta negar os dois componentes e trocar a ordem. Exemplo: São equivalentes as proposições Se bebo, então não dirijo e Se dirijo, então não bebo. 37. A equivalência permite construir uma proposição composta pelo ou a partir de uma composta pelo se...,então.... Para tanto, basta negar o primeiro componente. Exemplo: São equivalentes as proposições Penso, logo existo e Não penso ou existo. 20

21 38. Para negar uma proposição composta pelo conectivo ou, deve-se negar os componentes e trocar o conectivo por e. Exemplo: A negação de Corro ou não durmo é Não corro e durmo. 39. Para negar uma proposição composta pelo conectivo e, deve-se negar os componentes e trocar o conectivo por ou. Exemplo: A negação de Corro e não durmo é Não corro ou durmo. 40. Para negar uma proposição composta pelo Se...,então... : copie o antecedente, negue o consequente e troque o conectivo por e. Em outras palavras, copie a primeira parte, negue a segunda e troque por e. Exemplo: A negação de Penso, logo existo é Penso e não existo. 41. Proposições quantificadas são aquelas utilizam expressões como Todo, Nenhum, Algum. Observação: Algum = Existe = Pelo menos um = Existe um = Existe pelo menos um = Existe algum 42. Uma proposição do tipo Todo...é... é chamada de Proposição Universal Afirmativa (U.A.) Exemplo de U.A.: Todo recifense é pernambucano. 21

22 43. Uma proposição do tipo Todo...não é... é chamada de Proposição Universal Negativa (U.N.). A Universal Negativa também pode ser representada por Nenhum...é.... Exemplo de U.N.: Todo brasileiro não é uruguaio = Nenhum brasileiro é uruguaio. 44. Uma proposição do tipo Algum...é... é chamada de Proposição Particular Afirmativa (P.A.) Exemplo de P.A.: Algum recifense é pernambucano. 45. Uma proposição do tipo Algum... não é... é chamada de Proposição Particular Negativa (P.N.) Exemplo de P.N.: Algum carioca não é pernambucano. 46. Resumo das proposições quantificadas. Proposição universal afirmativa Todo recifense é pernambucano. Proposição universal negativa Nenhum recifense é pernambucano. Proposição particular afirmativa Algum recifense é pernambucano. Proposição particular negativa Algum recifense não é 22

23 pernambucano. 47. Como negar proposições quantificadas? Se for Particular, troca por Universal (e vice-versa). Se Afirmativa, troca por Negativa. Afirmação Particular afirmativa ( algum... ) Universal negativa ( nenhum... ou todo... não... ) Universal afirmativa ( todo... ) Particular negativa ( algum... não ) Negação Universal negativa ( nenhum... ou todo... não... ) Particular afirmativa ( algum... ) Particular negativa ( algum... não ) Universal afirmativa ( todo... ) Observe que se a proposição original utiliza o quantificador UNIVERSAL, a sua negação terá um quantificador PARTICULAR. Se a proposição original tem um quantificador PARTICULAR, sua negação utilizará o quantificador UNIVERSAL. Verifique ainda que se a proposição original é AFIRMATIVA, sua negação será NEGATIVA. Se a proposição original é NEGATIVA, sua negação será AFIRMATIVA. Vejamos alguns exemplos: p : Algum político é honesto. p : Existe político honesto. A proposição dada é uma PARTICULAR AFIRMATIVA. Sua negação será uma 23

24 UNIVERSAL NEGATIVA. ~ p : Nenhum político é honesto. ~ p : Todo político não é honesto. q : Nenhum brasileiro é europeu. q : Todo brasileiro não é europeu. A proposição dada é uma UNIVERSAL NEGATIVA. Sua negação será uma PARTICULAR AFIRMATIVA. ~ q : Algum brasileiro é europeu. ~ q : Existe brasileiro que é europeu. r : Todo concurseiro é persistente. A proposição dada é uma UNIVERSAL AFIRMATIVA. Sua negação será uma PARTICULAR NEGATIVA. ~ r : Algum concurseiro não é persistente. 24

25 ~ r : Existe concurseiro que não é persistente. t : Algum recifense não é pernambucano. t : Existe recifense que não é pernambucano. A proposição dada é uma PARTICULAR NEGATIVA. Sua negação será uma UNIVERSAL AFIRMARTIVA. ~ t : Todo recifense é pernambucano. 48. Como saberemos se uma questão qualquer se refere à negação? De três maneiras: i) A questão explicitamente pede a negação de uma proposição dada. ii) A questão fornece uma proposição verdadeira e pede uma falsa. iii) A questão fornece uma proposição falsa e pede uma verdadeira. 49. O estudo das proposições categóricas (que utilizam quantificadores) pode ser feito utilizando os diagramas de Euler-Venn. É habitual representar um conjunto por uma linha fechada e não entrelaçada. 25

26 50. Relembremos o significado, na linguagem de conjuntos, de cada uma das proposições categóricas. Todo A é B Todo elemento de A também é elemento de B. Nenhum A é B A e B são conjuntos disjuntos, ou seja, não possuem elementos comuns. Algum A é B Os conjuntos A e B possuem pelo menos 1 elemento em comum. Algum A não é B O conjunto A tem pelo menos 1 elemento que não é elemento de B. 51. Todo A é B A proposição categórica Todo A é B é equivalente a: A é subconjunto de B. A é parte de B. A está contido em B. B contém A. B é universo de A. B é superconjunto de A. 26

27 Se sabemos que a proposição Todo A é B é verdadeira, qual será o valor lógico das demais proposições categóricas? Algum A é B é necessariamente verdadeira. Nenhum A é B é necessariamente falsa. Algum A não é B é necessariamente falsa. 52. Algum A é B A proposição categórica Algum A é B equivale a Algum B é A. Se algum A é B é uma proposição verdadeira, qual será o valor lógico das demais proposições categóricas? Nenhum A é B é necessariamente falsa. Todo A é B e Algum A não é B são indeterminadas. Observe que quando afirmamos que Algum A é B estamos dizendo que existe pelo menos um elemento de A que também é elemento de B. 53. Nenhum A é B A proposição categórica Nenhum A é B equivale a: Nenhum B é A. 27

28 Todo A não é B. Todo B não é A. A e B são conjuntos disjuntos. Se nenhum A é B é uma proposição verdadeira, qual será o valor lógico das demais proposições categóricas? Todo A é B é necessariamente falsa. Algum A não é B é necessariamente verdadeira. Algum A é B é necessariamente falsa. 54. Algum A não é B Observe que Algum A não é B não equivale a Algum B não é A. Por exemplo, dizer que Algum brasileiro não é pernambucano não equivale a dizer que Algum pernambucano não é brasileiro. Se algum A não é B é uma proposição verdadeira, qual será o valor lógico das demais proposições categóricas? Nenhum A é B é indeterminada, pois poderia haver elementos na interseção dos conjuntos A e B. Algum A é B é indeterminada,pois pode haver ou não elementos na interseção dos conjuntos A e B. Todo A é B é necessariamente falsa. 28

29 b. Revisão 1 (Questões) CESPE/UnB 2016 POLÍCIA CIENTÍFICA DE PE Considere as seguintes proposições para responder às duas próximas questões. P1: Se há investigação ou o suspeito é flagrado cometendo delito, então há punição de criminosos. P2: Se há punição de criminosos, os níveis de violência não tendem a aumentar. P3: Se os níveis de violência não tendem a aumentar, a população não faz justiça com as próprias mãos. 01. A quantidade de linhas da tabela verdade associada à proposição P1 é igual a a)

30 b) 2. c) 4. d) 8. e) Assinale a opção que apresenta uma negação correta da proposição P1. a) Se não há punição de criminosos, então não há investigação ou o suspeito não é flagrado cometendo delito. b) Há punição de criminosos, mas não há investigação nem o suspeito é flagrado cometendo delito. c) Há investigação ou o suspeito é flagrado cometendo delito, mas não há punição de criminosos. d) Se não há investigação ou o suspeito não é flagrado cometendo delito, então não há punição de criminosos. e) Se não há investigação e o suspeito não é flagrado cometendo delito, então não há punição de criminosos. CESPE/UnB 2016 ANALISTA - INSS Julgue os itens a seguir, relativos a raciocínio lógico e operações com conjuntos. 03. A sentença Bruna, acesse a internet e verifique a data da aposentadoria do Sr. Carlos! é uma proposição composta que pode ser escrita na forma. 30

31 04. Para quaisquer proposições p e q, com valores lógicos quaisquer, a condicional será, sempre, uma tautologia. 05. Caso a proposição simples Aposentados são idosos tenha valor lógico falso, então o valor lógico da proposição Aposentados são idosos, logo eles devem repousar será falso. 06. Dadas as proposições simples p: Sou aposentado e q: Nunca faltei ao trabalho, a proposição composta Se sou aposentado e nunca faltei ao trabalho, então não sou aposentado deverá ser escrita na forma usando-se os conectivos lógicos. CESPE/UnB 2016 TÉCNICO - INSS Com relação a lógica proposicional, julgue os itens subsequentes. 07. Supondo-se que p seja a proposição simples João é fumante, que q seja a proposição simples João não é saudável e que, então o valor lógico da proposição João não é fumante, logo ele é saudável será verdadeiro. 08. Considerando-se as proposições simples Cláudio pratica esportes e Cláudio tem uma alimentação balanceada, é correto afirmar que a proposição Cláudio pratica esportes ou ele não pratica esportes e não tem uma alimentação balanceada é uma tautologia. 31

32 09. Na lógica proposicional, a oração Antônio fuma 10 cigarros por dia, logo a probabilidade de ele sofrer um infarto é três vezes maior que a de Pedro, que não é fumante representa uma proposição composta. c. Revisão 2 (Questões) CESPE/UnB 2016 DPU Um estudante de direito, com o objetivo de sistematizar o seu estudo, criou sua própria legenda, na qual identificava, por letras, algumas afirmações relevantes quanto a disciplina estudada e as vinculava por meio de sentenças (proposições). No seu vocabulário particular constava, por exemplo: P: Cometeu o crime A. Q: Cometeu o crime B. R: Será punido, obrigatoriamente, com a pena de reclusão no regime fechado. S: Poderá optar pelo pagamento de fiança. 32

33 Ao revisar seus escritos, o estudante, apesar de não recordar qual era o crime B, lembrou que ele era inafiançável. Tendo como referência essa situação hipotética, julgue os itens que se seguem. 10. Caso as proposições R e S se refiram a mesma pessoa e a um único crime, então, independentemente das valorações de R e S como verdadeiras ou falsas, a proposição será sempre falsa. 11. A proposição Caso tenha cometido os crimes A e B, não será necessariamente encarcerado nem poderá pagar fiança pode ser corretamente simbolizada na forma. 12. A sentença será sempre verdadeira, independentemente das valorações de P e Q como verdadeiras ou falsas. 13. A sentença é verdadeira. 14. A sentença é falsa. 33

34 QUESTÃO 15 CESPE/UnB TRE/MT A negação da proposição: Se o número inteiro m > 2 é primo, então o número m é ímpar" pode ser expressa corretamente por: a) O número inteiro m > 2 é não primo e o número m é ímpar". b) Se o número inteiro m > 2 não é primo, então o número m não é ímpar". c) Se o número m não é ímpar, então o número inteiro m > 2 não é primo". d) Se o número inteiro m > 2 não é primo, então o número m é ímpar". e) O número inteiro m > 2 é primo e o número m não é ímpar". QUESTÃO 16 CESPE/UnB TRE/MT Considerando três variáveis (A, B e C), tais que A = 12, B = 15 e C = 3, bem como a notação para operadores lógicos, assinale a opção que apresenta uma expressão cujo valor lógico é verdadeiro. a) (A + B) > 30 ou (A + B - 5) = (A + C) b) (A C) e (A + B) = C c) (A > B) e (C + B) < A d) (A + C) > B e) B A

35 CESPE/UnB 2015 TCE/RN Em campanha de incentivo a regularização da documentação de imóveis, um cartório estampou um cartaz com os seguintes dizeres: O comprador que não escritura e não registra o imóvel não se torna dono desse imóvel. A partir dessa situação hipotética e considerando que a proposição P: Se o comprador não escritura o imóvel, então ele não o registra seja verdadeira, julgue os itens seguintes. 17. A proposição P e logicamente equivalente a proposição O comprador escritura o imóvel, ou não o registra. 18. Se A for o conjunto dos compradores que escrituram o imóvel, e B for o conjunto dos que o registram, então B será subconjunto de A. 19. A proposição do cartaz e logicamente equivalente a Se o comprador não escritura o imóvel ou não o registra, então não se torna seu dono. 20. Um comprador que tiver registrado o imóvel, necessariamente, o escriturou. 35

36 d. Revisão 3 (Questões) CESPE/UnB 2015 TCE/RN Em campanha de incentivo a regularização da documentação de imóveis, um cartório estampou um cartaz com os seguintes dizeres: O comprador que não escritura e não registra o imóvel não se torna dono desse imóvel. A partir dessa situação hipotética e considerando que a proposição P: Se o comprador não escritura o imóvel, então ele não o registra seja verdadeira, julgue os itens seguintes. 21. A negação da proposição P pode ser expressa corretamente por Se o comprador escritura o imóvel, então ele o registra. 22. Considerando-se a veracidade da proposição P, e correto afirmar que, após a eliminação das linhas de uma tabela-verdade associada a proposição do cartaz do cartório que impliquem a falsidade da proposição P, a tabela-verdade resultante terá seis linhas. CESPE/UnB STJ Mariana e uma estudante que tem grande apreço pela matemática, apesar de achar essa uma área muito difícil. Sempre que tem tempo suficiente para estudar, Mariana e aprovada nas disciplinas de matemática que cursa na faculdade. Neste semestre, 36

37 Mariana esta cursando a disciplina chamada Introdução a Matemática Aplicada. No entanto, ela não tem tempo suficiente para estudar e não será aprovada nessa disciplina. A partir das informações apresentadas nessa situação hipotética, julgue os itens a seguir, acerca das estruturas lógicas. 23. Designando por p e q as proposições Mariana tem tempo suficiente para estudar e Mariana será aprovada nessa disciplina, respectivamente, então a proposição Mariana não tem tempo suficiente para estudar e nãoserá aprovada nesta disciplina e equivalente a. 24. Considerando-se como p a proposição Mariana acha a matemática uma área muito difícil de valor lógico verdadeiro e como q a proposição Mariana tem grande apreço pela matemática de valor lógico falso, então o valor lógico de é falso. CESPE/UnB 2015 MEC Considerando que as proposições lógicas sejam representadas por letras maiúsculas e utilizando os conectivos lógicos usuais, julgue os itens a seguir a respeito de lógica proposicional. 37

38 25. A sentença A aprovação em um concurso e consequência de um planejamento adequado de estudos pode ser simbolicamente representada pela expressão lógica em que P e Q são proposições adequadamente escolhidas. 26. A sentença A vida e curta e a morte e certa pode ser simbolicamente representada pela expressão lógica, em que P e Q são proposições adequadamente escolhidas. 27. A sentença Somente por meio da educação, o homem pode crescer, amadurecer e desenvolver um sentimento de cidadania pode ser simbolicamente representada pela expressão lógica, em que P, Q e R são proposições adequadamente escolhidas. CESPE/UnB 2015 MEC 38

39 A figura acima apresenta as colunas iniciais de uma tabela-verdade, em que P, Q e R representam proposições lógicas, e V e F correspondem, respectivamente, aos valores lógicos verdadeiro e falso. Com base nessas informações e utilizando os conectivos lógicos usuais, julgue os itens subsecutivos. 28. A última coluna da tabela-verdade referente a proposição lógica quando representada na posição horizontal e igual a 29. A última coluna da tabela-verdade referente a proposição lógica quando representada na posição horizontal e igual a 39

40 QUESTÃO 30 CESPE/UnB 2015 MPOG Considerando a proposição P: Se João se esforçar o bastante, então João conseguirá o que desejar, julgue o item a seguir. A negação da proposição P pode ser corretamente expressa por João não se esforçou o bastante, mas, mesmo assim, conseguiu o que desejava. e. Gabarito D C E C E C E E C E E C E E E

41 E C C E C E C C E E C E C E E 41

42 f. Breves comentários às questões QUESTÃO 01 - CESPE/UnB 2016 POLÍCIA CIENTÍFICA DE PE Três proposições simples compõem a proposição P1, a saber: p: há investigação q: o suspeito é flagrado cometendo delito. r: há punição de criminosos. O total de linhas da tabela verdade associada é 2 n = 2 3 = 8. QUESTÃO 02 - CESPE/UnB 2016 POLÍCIA CIENTÍFICA DE PE Comentário em vídeo CESPE/UnB 2016 ANALISTA - INSS 03. A sentença dada é imperativa e exclamativa. Portanto, a sentença não é uma proposição. 04. Comentário em vídeo. 05. Comentário em vídeo. 42

43 06. Comentário em vídeo. CESPE/UnB 2016 TÉCNICO - INSS 07. Não sabemos os valores lógicos das proposições p e q. Portanto, não há como determinar o valor lógico de João não é fumante, logo ele é saudável. 08. Comentário em vídeo. 09. Logo tem o mesmo significado que Se..., então.... CESPE/UnB 2016 DPU 10. Comentário em vídeo. 11. Comentário em vídeo. 12. Comentário em vídeo. 13. Comentário em vídeo. 14. Comentário em vídeo. 43

44 QUESTÃO 15 CESPE/UnB TRE/MT A negação de Se p, então q é p e não-q, ou seja, devemos copiar o antecedente e negar o consequente. A correta negação é O número inteiro m>2 é primo e o número m não é ímpar. QUESTÃO 16 CESPE/UnB TRE/MT Comentário em vídeo. CESPE/UnB 2015 TCE/RN 17. Para transformar uma proposição composta pelo se..., então... para ou, negue a primeira parte da proposição e copie a segunda parte. 18. Comentário em vídeo. 19. Comentário em vídeo. 20. Comentário em vídeo. 21. NUNCA negue uma proposição composta pelo se...,então... com outra proposição composta pelo se...,então.... A correta negação de Se p, então q é p e não-q. Em outras 44

45 palavras, copie a primeira parte, coloque e e negue a segunda parte. A correta negação da proposição P é O comprador não escritura o imóvel e ele o registra. 22. Comentário em vídeo. CESPE/UnB 2015 STJ 23. O item está certo, pois estamos conectando as negações de p e de q através do conectivo e. 24. A proposição p é verdadeira e a proposição q também é verdadeira (já que q é falsa). Desta maneira, a proposição é verdadeira. Lembre-se que uma proposição composta pelo se...,então... só é falsa quando ocorre VF (nesta ordem). CESPE/UnB 2015 MEC 25. Comentário em vídeo. 26. Neste caso, a proposição P é A vida é curta e proposição Q é a morte é certa. O símbolo adotado está correto, pois representa o conectivo e. 27. Comentário em vídeo. 45

46 CESPE/UnB 2015 MEC 28. Comentário em vídeo 29. Comentário em vídeo QUESTÃO 30 CESPE/UnB 2015 MPOG A negação de Se p, então q é p e não-q. A correta negação da proposição P é João se esforçou o bastante e João não conseguiu o que desejava. Poderíamos também ter substituído o conectivo e pela palavra mas obtendo João se esforçou o bastante, mas João não conseguiu o que desejava. 46

Rodada #1 Raciocínio Lógico

Rodada #1 Raciocínio Lógico Rodada #1 Raciocínio Lógico Professor Guilherme Neves Assuntos da Rodada RACIOCIŃIO LOǴICO: 1 Estruturas lógicas. 2 Lógica de argumentação: analogias, inferências, deduções e conclusões. 3 Lógica sentencial

Leia mais

Rodada #01 Raciocínio Lógico

Rodada #01 Raciocínio Lógico Rodada #01 Raciocínio Lógico Professor Guilherme Neves Assuntos da Rodada RACIOCÍNIO LÓGICO: Conjuntos e suas operações. Números naturais, inteiros, racionais e reais e suas operações. Representação na

Leia mais

Rodada #1 Raciocínio Lógico

Rodada #1 Raciocínio Lógico Rodada #1 Raciocínio Lógico Professor Guilherme Neves Assuntos da Rodada Estrutura lógica de relações arbitrárias entre pessoas, lugares, objetos ou eventos fictícios; deduzir novas informações das relações

Leia mais

Rodada #01 Raciocínio Lógico

Rodada #01 Raciocínio Lógico Rodada #01 Raciocínio Lógico Professor Guilherme Neves Assuntos da Rodada MATEMÁTICA 1. Operações com números reais. 2. Mínimo múltiplo comum e máximo divisor comum. 3. Razão e proporção. 4. Porcentagem.

Leia mais

Rodada #01 Raciocínio Lógico

Rodada #01 Raciocínio Lógico Rodada #01 Raciocínio Lógico Professor Guilherme Neves Assuntos da Rodada Estrutura lógica de relações arbitrárias entre pessoas, lugares, objetos ou eventos fictícios; deduzir novas informações das relações

Leia mais

Rodada #1 Raciocínio Lógico

Rodada #1 Raciocínio Lógico Rodada #1 Raciocínio Lógico Professor Guilherme Neves Assuntos da Rodada 1. Estruturas Lógicas. 2. Lógica de Argumentação. 3. Diagramas Lógicos. 4. Trigonometria. 5. Matrizes, Determinantes e Solução de

Leia mais

RECEITA FEDERAL ANALISTA

RECEITA FEDERAL ANALISTA SENTENÇAS OU PROPOSIÇÕES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (V), ou só como

Leia mais

Raciocínio Lógico. Negação da Conjunção e Disjunção Inclusiva (Lei de Morgan) Professor Edgar Abreu.

Raciocínio Lógico. Negação da Conjunção e Disjunção Inclusiva (Lei de Morgan) Professor Edgar Abreu. Raciocínio Lógico Negação da Conjunção e Disjunção Inclusiva (Lei de Morgan) Professor Edgar Abreu www.acasadoconcurseiro.com.br Raciocínio Lógico NEGAÇÃO DE UMA PROPOSIÇÃO COMPOSTA Agora vamos aprender

Leia mais

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 3

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 3 Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 3 www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal Tudo bem com vocês? Em breve teremos o concurso do TCM/RJ e sabemos

Leia mais

INSS 2016 Técnico CESPE

INSS 2016 Técnico CESPE INSS 2016 Técnico CESPE Art. 21. A alíquota de contribuição dos segurados contribuinte individual e facultativo será de 20 por cento sobre o respectivo salário-de-contribuição. Considerando o art. 21 da

Leia mais

Raciocínio Lógico Matemático Professora Elionora Azevedo. TRF 1ª região

Raciocínio Lógico Matemático Professora Elionora Azevedo. TRF 1ª região Raciocínio Lógico Matemático Professora Elionora Azevedo TRF 1ª região RACIOCÍNIO ANALÍTICO: 1 Raciocínio analítico e a argumentação. 1.1 O uso do senso crítico na argumentação. 1.2 Tipos de argumentos:

Leia mais

RACIOCÍNIO LOGICO- MATEMÁTICO. Prof. Josimar Padilha

RACIOCÍNIO LOGICO- MATEMÁTICO. Prof. Josimar Padilha RACIOCÍNIO LOGICO- MATEMÁTICO Prof. Josimar Padilha Um jogo é constituído de um tabuleiro com 4 filas (colunas) numeradas de 1 a 4 da esquerda para direita e de 12 pedras 4 de cor amarela, 4 de cor verde

Leia mais

MARATONA INSS. Prof. Josimar Padilha

MARATONA INSS. Prof. Josimar Padilha MARATONA INSS Prof. Josimar Padilha Mariana é uma estudante que tem grande apreço pela matemática, apesar de achar essa uma área muito difícil. Sempre que tem tempo suficiente para estudar, Mariana é aprovada

Leia mais

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 4

Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 4 Aula demonstrativa Apresentação... 2 Modelos de questões resolvidas IBFC... 4 1 Apresentação Olá, pessoal Tudo bem com vocês? Finalmente saiu o edital do TCM/RJ Para quem ainda não me conhece, meu nome

Leia mais

42) (TÉCNICO-TRE-GO/MARÇO DE 2015-CESPE) A

42) (TÉCNICO-TRE-GO/MARÇO DE 2015-CESPE) A 42) (TÉCNICO-TRE-GO/MARÇO DE 2015-CESPE) A proposição Quando um indivíduo consome álcool ou tabaco em excesso ao longo da vida, sua probabilidade de infarto do miocárdio aumenta em 40% pode ser corretamente

Leia mais

CAPÍTULO I. Lógica Proposicional

CAPÍTULO I. Lógica Proposicional Lógica Proposicional CAPÍTULO I Lógica Proposicional Sumário: 1. Lógica proposicional 2. Proposição 2.1. Negação da proposição 2.2. Dupla negação 2.3. Proposição simples e composta 3. Princípios 4. Classificação

Leia mais

Campos Sales (CE),

Campos Sales (CE), UNIERSIDADE REGIONAL DO CARIRI URCA PRÓ-REITORIA DE ENSINO E GRADUAÇÃO PROGRAD UNIDADE DESCENTRALIZADA DE CAMPOS SALES CAMPI CARIRI OESTE DEPARTAMENTO DE MATEMÁTICA DISCIPLINA: Tópicos de Matemática SEMESTRE:

Leia mais

Aula 00. Raciocínio Lógico para Técnico do INSS. Raciocínio Lógico Professor: Guilherme Neves. Prof.

Aula 00. Raciocínio Lógico para Técnico do INSS. Raciocínio Lógico Professor: Guilherme Neves.  Prof. Aula 00 Raciocínio Lógico Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Aula 00 Aula Demonstrativa Raciocínio Lógico para INSS Apresentação... 3 Modelos de Questões Comentadas - CESPE... 4

Leia mais

DÉCIO SOUSA RACIOCÍNIO LÓGICO

DÉCIO SOUSA RACIOCÍNIO LÓGICO DÉCIO SOUSA RACIOCÍNIO LÓGICO 01 - (CESPE/ANVISA/Técnico Administrativo) Considerando os símbolos normalmente usados para representar os conectivos lógicos, julgue o item seguinte, relativos a lógica proposicional

Leia mais

Aula 00. Raciocínio Lógico para PCDF. Matemática e Raciocínio Lógico Professor: Guilherme Neves. Prof.

Aula 00. Raciocínio Lógico para PCDF. Matemática e Raciocínio Lógico Professor: Guilherme Neves.  Prof. Aula 00 Matemática e Raciocínio Lógico Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal! Em breve teremos o concurso para Polícia Civil do Distrito Federal. A banca organizadora

Leia mais

(Lógica) Negação de Proposições, Tautologia, Contingência e Contradição.

(Lógica) Negação de Proposições, Tautologia, Contingência e Contradição. aula 07 (Lógica) Negação de Proposições, Tautologia, Contingência e Contradição. Professor: Renê Furtado Felix E-mail: rffelix70@yahoo.com.br Site: http://www.renecomputer.net/pdflog.html Negação de Proposições

Leia mais

RACIOCÍNIO LÓGICO PARA IBGE Aula 02 Parte 1 Prof. Guilherme Neves

RACIOCÍNIO LÓGICO PARA IBGE Aula 02 Parte 1 Prof. Guilherme Neves Olá! Antes de começarmos o assunto desta aula, vamos resolver algumas questões da FGV referentes aos assuntos da aula passada. 01. (Pref. de Osasco 2014/FGV) Marcos afirmou: Todos os medicamentos que estão

Leia mais

RACIOCÍNIO LÓGICO. Raciocínio Lógico Ficha 1 Prof. Nelson Carnaval

RACIOCÍNIO LÓGICO. Raciocínio Lógico Ficha 1 Prof. Nelson Carnaval RACIOCÍNIO LÓGICO Lógica proposicional Chama-se proposição toda sentença declarativa que pode ser classificada em verdadeira ou falsa, mas não as duas. Letras são usualmente utilizadas para denotar proposições.

Leia mais

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE

INSTITUTO FEDERAL FARROUPILHA CÂMPUS ALEGRETE 1 1. LÓGICA SETENCIAL E DE PRIMEIRA Conceito de proposição ORDEM Chama-se proposição todo o conjunto de palavras ou símbolos que exprimem um pensamento de sentido completo, seja este verdadeiro ou falso.

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO SENTENÇAS OU PROPOSIÇÕES MODIICADORES São os elementos que expressam uma idéia, mesmo que absurda. Estudaremos apenas as proposições declarativas, que podem ser classificadas ou só como verdadeiras (),

Leia mais

Anotações LÓGICA PROPOSICIONAL DEFEITOS DO RACIOCÍNIO HUMANO PROPOSIÇÕES RICARDO ALEXANDRE - CURSOS ON-LINE RACIOCÍNIO LÓGICO AULA 01 DEFINIÇÃO

Anotações LÓGICA PROPOSICIONAL DEFEITOS DO RACIOCÍNIO HUMANO PROPOSIÇÕES RICARDO ALEXANDRE - CURSOS ON-LINE RACIOCÍNIO LÓGICO AULA 01 DEFINIÇÃO RACIOCÍNIO LÓGICO AULA 01 LÓGICA PROPOSICIONAL DEFINIÇÃO A Lógica estuda o pensamento como ele deveria ser, sem a influência de erros ou falácias. As falácias em torno do raciocínio humano se devem a atalhos

Leia mais

Matemática Régis Cortes. Lógica matemática

Matemática Régis Cortes. Lógica matemática Lógica matemática 1 INTRODUÇÃO Neste roteiro, o principal objetivo será a investigação da validade de ARGUMENTOS: conjunto de enunciados dos quais um é a CONCLUSÃO e os demais PREMISSAS. Os argumentos

Leia mais

Aula 00. Matemática, Estatística e Raciocínio Lógico para PCDF. Matemática e Raciocínio Lógico Professor: Guilherme Neves

Aula 00. Matemática, Estatística e Raciocínio Lógico para PCDF. Matemática e Raciocínio Lógico Professor: Guilherme Neves Aula 00 Matemática e Raciocínio Lógico Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal! Saiu o edital da Polícia Civil do Distrito Federal. A banca organizadora será

Leia mais

AULA 01: LÓGICA DE PROPOSIÇÕES

AULA 01: LÓGICA DE PROPOSIÇÕES AULA 01: LÓGICA DE PROPOSIÇÕES SUMÁRIO PÁGINA 1. Teoria 02 2. Resolução de questões 29 3. Lista das questões apresentadas na aula 81 4. Gabarito 106 Olá! Hoje começamos o estudo do seguinte assunto: Proposições

Leia mais

Raciocínio lógico matemático

Raciocínio lógico matemático Raciocínio lógico matemático Unidade 2: Introdução à lógica Seção 2.3 Equivalências, contradições e tautologias 1 Proposições compostas Composta de duas ou mais proposições simples Tanto a primeira como

Leia mais

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1

MD Lógica de Proposições Quantificadas Cálculo de Predicados 1 Lógica de Proposições Quantificadas Cálculo de Predicados Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br http://www.dcc.ufmg.br/~loureiro MD Lógica de Proposições Quantificadas Cálculo de Predicados

Leia mais

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico.

Ao utilizarmos os dados do problema para chegarmos a uma conclusão, estamos usando o raciocínio lógico. CENTRO UNVERSITÁRIO UNA NOÇÕES DE RACIOCÍNIO LÓGICO Professor: Rodrigo Eustáquio Borges A disciplina Lógica Matemática tem como objetivo capacitar o aluno a reconhecer e aplicar os conceitos fundamentais

Leia mais

Lógica formal. A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação IV) Simbolização 1. Simples 2.

Lógica formal. A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação IV) Simbolização 1. Simples 2. Lógica formal A) Sentenças I) Expressão II) Subdivisão 1. Aberta 2. Fechada III) Representação I) Simbolização 1. Simples 2. Composta B)Leis do pensamento I) Princípio da Identidade II) Principio do não-contraditório

Leia mais

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza

Lógica Formal. Matemática Discreta. Prof Marcelo Maraschin de Souza Lógica Formal Matemática Discreta Prof Marcelo Maraschin de Souza Implicação As proposições podem ser combinadas na forma se proposição 1, então proposição 2 Essa proposição composta é denotada por Seja

Leia mais

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula /

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula / 1 www.romulopassos.com.br / www.questoesnasaude.com.br GRATUITO RACIOCÍNIO LÓGICO - EBSERH Professor Paulo Henrique PH Aula 02 R A C I O C Í N I O L Ó G I C O E B S E R H a u l a 0 2 Página 1 2 www.romulopassos.com.br

Leia mais

LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014

LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 LISTA 01 RACIOCÍNIO LÓGICO TRIBUNAIS 2014 1) Determinar o valor verdade da proposição (p q) r, sabendo-se que AL (p) =, AL (q) = e AL (r) =. Proposições são afirmações que podem ser julgadas como verdadeira

Leia mais

PROVA RESOLVIDA TJ/SP RACIOCÍNIO LÓGICO. Professor Guilherme Neves.

PROVA RESOLVIDA TJ/SP RACIOCÍNIO LÓGICO. Professor Guilherme Neves. TJ/SP - 2017 RACIOCÍNIO LÓGICO Professor Guilherme Neves www.pontodosconcursos.com.br www.pontodosconcursos.com.br Professor Guilherme Neves 1 91. Uma negação lógica para a afirmação João é rico, ou Maria

Leia mais

Apostilas OBJETIVA Ano X - Concurso Público Conteúdo

Apostilas OBJETIVA Ano X - Concurso Público Conteúdo Conteúdo Introdução Estruturas lógicas. 2 Lógica de argumentação: analogias, inferências, deduções e conclusões. 3 Lógica sentencial (ou proposicional). 3.1 Proposições simples e compostas. 3.2 Tabelas-verdade.

Leia mais

Aula 1 Aula 2. Ana Carolina Boero. Página:

Aula 1 Aula 2. Ana Carolina Boero.   Página: Elementos de lógica e linguagem matemática E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Linguagem matemática A linguagem matemática

Leia mais

Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3

Proposições. Belo Horizonte é uma cidade do sul do Brasil = 4. A Terra gira em torno de si mesma. 5 < 3 Proposições Lógicas Proposições O principal conceito usado nos estudos da lógica matemática é o de uma proposição. Uma proposição é essencialmente uma afirmação, transmite pensamentos completos, afirmando

Leia mais

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL

RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL RACIOCÍNIO LÓGICO LÓGICA PROPOSICIONAL Atualizado em 12/11/2015 LÓGICA PROPOSICIONAL Lógica é a ciência que estuda as leis do pensamento e a arte de aplicá-las corretamente na investigação e demonstração

Leia mais

O erro dessa questão foi traduzir o nem como ou não, quando na verdade o correto é traduzir o nem como e não :

O erro dessa questão foi traduzir o nem como ou não, quando na verdade o correto é traduzir o nem como e não : Resolução da Prova de Raciocínio Lógico da DPU (Nível Superior) de 2016, aplicada em 24/01/2016. Um estudante de direito, com o objetivo de sistematizar o seu estudo, criou sua própria legenda, na qual

Leia mais

Aula 1 Teoria com resolução de questões FGV

Aula 1 Teoria com resolução de questões FGV Aula 1 Teoria com resolução de questões FGV AULA 01 Olá futuro servidor do TRT 12, Meu nome é Fabio Paredes, sou professor de Raciocínio Lógico Matemático e terei o prazer de ajudá-los nesta árdua missão

Leia mais

Proposições simples e compostas

Proposições simples e compostas Revisão Lógica Proposições simples e compostas Uma proposição é simples quando declara algo sem o uso de conectivos. Exemplos de proposições simples: p : O número 2 é primo. (V) q : 15 : 3 = 6 (F) r :

Leia mais

Fundamentos 1. Lógica de Predicados

Fundamentos 1. Lógica de Predicados Fundamentos 1 Lógica de Predicados Predicados e Quantificadores Estudamos até agora a lógica proposicional Predicados e Quantificadores Estudamos até agora a lógica proposicional A lógica proposicional

Leia mais

FUNDAÇÃO UNIVERSIDADE DO TOCANTINS TADS 2008/1 1º PERÍODO MP1 1º ETAPA 11/07/2008 MATEMÁTICA PARA COMPUTAÇÃO 2008/1

FUNDAÇÃO UNIVERSIDADE DO TOCANTINS TADS 2008/1 1º PERÍODO MP1 1º ETAPA 11/07/2008 MATEMÁTICA PARA COMPUTAÇÃO 2008/1 FUNDAÇÃO UNIVERSIDADE DO TOCANTINS TADS 2008/1 1º PERÍODO MP1 1º ETAPA 11/07/2008 MATEMÁTICA PARA COMPUTAÇÃO 2008/1 Dados de identificação do Aluno: Nome: Login: Cidade: CA: Data da Prova: / / ORIENTAÇÃO

Leia mais

Compreender estruturas lógicas é, antes de tudo, compreender o que são proposições.

Compreender estruturas lógicas é, antes de tudo, compreender o que são proposições. Caros alunos, Antes de darmos início a nossa aula demonstrativa, vamos às apresentações pessoais e profissionais: meu nome é Letícia Protta, sou agente administrativo do Ministério do Trabalho e Emprego,

Leia mais

Concurso Público Conteúdo

Concurso Público Conteúdo Concurso Público 2016 Conteúdo Estrutura lógica de relações arbitrárias entre pessoas, lugares, objetos ou eventos fictícios; deduzir novas informações das relações fornecidas e avaliar as condições usadas

Leia mais

Alex Lira. Olá, pessoal!!!

Alex Lira. Olá, pessoal!!! Olá, pessoal!!! Seguem abaixo os meus comentários das questões de Lógica que foram cobradas na prova para o cargo de Agente da Polícia Federal, elaborada pelo Cespe, realizada no último final de semana.

Leia mais

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65

Lógica. Fernando Fontes. Universidade do Minho. Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Lógica Fernando Fontes Universidade do Minho Fernando Fontes (Universidade do Minho) Lógica 1 / 65 Outline 1 Introdução 2 Implicações e Equivalências Lógicas 3 Mapas de Karnaugh 4 Lógica de Predicados

Leia mais

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO

Leia mais

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam.

Vimos que a todo o argumento corresponde uma estrutura. Por exemplo ao argumento. Se a Lua é cúbica, então os humanos voam. Matemática Discreta ESTiG\IPB 2012/13 Cap1 Lógica pg 10 Lógica formal (continuação) Vamos a partir de agora falar de lógica formal, em particular da Lógica Proposicional e da Lógica de Predicados. Todos

Leia mais

Prova de Agente de Polícia Federal 2012 (CESPE) Solução e Comentários de Raciocínio Lógico Professor Valdenilson. Caderno de Questões Tipo I

Prova de Agente de Polícia Federal 2012 (CESPE) Solução e Comentários de Raciocínio Lógico Professor Valdenilson. Caderno de Questões Tipo I Prova de Agente de Polícia Federal 01 (CESPE) Solução e Comentários de Raciocínio Lógico Professor Valdenilson Caderno de Questões Tipo I Texto 1. Um jovem, ao ser flagrado no aeroporto portando certa

Leia mais

Lógica Matemática. Prof. Gerson Pastre de Oliveira

Lógica Matemática. Prof. Gerson Pastre de Oliveira Lógica Matemática Prof. Gerson Pastre de Oliveira Programa da Disciplina Proposições e conectivos lógicos; Tabelas-verdade; Tautologias, contradições e contingências; Implicação lógica e equivalência lógica;

Leia mais

Para provar uma implicação se p, então q, é suficiente fazer o seguinte:

Para provar uma implicação se p, então q, é suficiente fazer o seguinte: Prova de Implicações Uma implicação é verdadeira quando a verdade do seu antecedente acarreta a verdade do seu consequente. Ex.: Considere a implicação: Se chove, então a rua está molhada. Observe que

Leia mais

1 TEORIA DOS CONJUNTOS

1 TEORIA DOS CONJUNTOS 1 TEORIA DOS CONJUNTOS Definição de Conjunto: um conjunto é uma coleção de zero ou mais objetos distintos, chamados elementos do conjunto, os quais não possuem qualquer ordem associada. Em outras palavras,

Leia mais

1. = F; Q = V; R = V.

1. = F; Q = V; R = V. ENADE 2005 e 2008 Nas opções abaixo, representa o condicional material (se...então...), v representa a disjunção (ou um, ou outro, ou ambos) e ~ representa a negação (não). Com o auxílio de tabelas veritativas,

Leia mais

Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar. Noções de Lógica

Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar. Noções de Lógica Nome: Data: Semestre: Curso: TADS Disciplina: Matemática Aplicada à Computação Professor: Shalimar Villar Noções de Lógica Proposição: É uma sentença declarativa, seja ela expressa de forma afirmativa

Leia mais

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios...

Lógica Texto 11. Texto 11. Tautologias. 1 Comportamento de um enunciado 2. 2 Classificação dos enunciados Exercícios... Lógica para Ciência da Computação I Lógica Matemática Texto 11 Tautologias Sumário 1 Comportamento de um enunciado 2 1.1 Observações................................ 4 2 Classificação dos enunciados 4 2.1

Leia mais

(Questões de provas resolvidas e comentadas) Carlos R. Torrente

(Questões de provas resolvidas e comentadas) Carlos R. Torrente (Questões de provas resolvidas e comentadas) Carlos R. Torrente Dados Internacionais de Catalogação na Publicação (CIP) (Câmara Brasileira do Livro, SP, Brasil) Torrente, Carlos Roberto Raciocínio lógico

Leia mais

Unidade: Proposições Logicamente Equivalentes. Unidade I:

Unidade: Proposições Logicamente Equivalentes. Unidade I: Unidade: Proposições Logicamente Equivalentes Unidade I: 0 Unidade: Proposições Logicamente Equivalentes Nesta unidade, veremos a partir de nossos estudos em tabelas-verdade as proposições logicamente

Leia mais

Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças.

Como primeira e indispensável parte da Lógica Matemática temos o Cálculo Proporcional ou Cálculo Sentencial ou ainda Cálculo das Sentenças. NE-6710 - SISTEMAS DIGITAIS I LÓGICA PROPOSICIONAL, TEORIA CONJUNTOS. A.0 Noções de Lógica Matemática A,0.1. Cálculo Proposicional Como primeira e indispensável parte da Lógica Matemática temos o Cálculo

Leia mais

RACIOCÍNIO LÓGICO. Edição junho 2017

RACIOCÍNIO LÓGICO. Edição junho 2017 RACIOCÍNIO LÓGICO 85 QUESTÕES DE PROVAS DE CONCURSOS POR ASSUNTOS Edição junho 2017 TODOS OS DIREITOS RESERVADOS. É vedada a reprodução total ou parcial deste material, por qualquer meio ou processo. A

Leia mais

Lógica. Cálculo Proposicional. Introdução

Lógica. Cálculo Proposicional. Introdução Lógica Cálculo Proposicional Introdução Lógica - Definição Formalização de alguma linguagem Sintaxe Especificação precisa das expressões legais Semântica Significado das expressões Dedução Provê regras

Leia mais

RACIOCÍNIO LÓGICO. Quantas dessas proposições compostas são FALSAS? a) Nenhuma. b) Apenas uma. c) Apenas duas. d) Apenas três. e) Quatro.

RACIOCÍNIO LÓGICO. Quantas dessas proposições compostas são FALSAS? a) Nenhuma. b) Apenas uma. c) Apenas duas. d) Apenas três. e) Quatro. RACIOCÍNIO LÓGICO 01. Uma proposição é uma sentença fechada que possui sentido completo e à qual se pode atribuir um valor lógico verdadeiro ou falso. Qual das sentenças apresentadas abaixo se trata de

Leia mais

Lógica Proposicional Parte 2

Lógica Proposicional Parte 2 Lógica Proposicional Parte 2 Como vimos na aula passada, podemos usar os operadores lógicos para combinar afirmações criando, assim, novas afirmações. Com o que vimos, já podemos combinar afirmações conhecidas

Leia mais

Aula 00. Matemática e Raciocínio Lógico para IBAMA. Matemática e Raciocínio Lógico Professor: Guilherme Neves

Aula 00. Matemática e Raciocínio Lógico para IBAMA. Matemática e Raciocínio Lógico Professor: Guilherme Neves Aula 00 Matemática e Raciocínio Lógico Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Aula 00 Aula Demonstrativa Matemática e Raciocínio Lógico para IBAMA Apresentação... 3 Negação de Proposições

Leia mais

Lógica Matemática UNIDADE I. Professora: M.Sc. Juciara do Nascimento César

Lógica Matemática UNIDADE I. Professora: M.Sc. Juciara do Nascimento César Lógica Matemática UNIDADE I Professora: M.Sc. Juciara do Nascimento César 1 A Lógica na Cultura Helênica A Lógica foi considerada na cultura clássica e medieval como um instrumento indispensável ao pensamento

Leia mais

Introdução a computação

Introdução a computação Introdução a computação 0 Curso Superior de Tecnologia em Gestão da Tecnologia da Informação Coordenador: Emerson dos Santos Paduan Autor(a): Daniel Gomes Ferrari São Paulo - 2016 1 Sumário 1. Lógica Matemática...

Leia mais

Raciocínio Lógico para ANALISTA TÉCNICO EM MATERIAL E PATRIMÔNIO CÂMARA DOS DEPUTADOS Aula Demonstrativa Professor: Karine Waldrich

Raciocínio Lógico para ANALISTA TÉCNICO EM MATERIAL E PATRIMÔNIO CÂMARA DOS DEPUTADOS Aula Demonstrativa Professor: Karine Waldrich Aula 00 Raciocínio Lógico para ANALISTA TÉCNICO EM MATERIAL E PATRIMÔNIO CÂMARA DOS DEPUTADOS Aula Demonstrativa Professor: Karine Waldrich www.pontodosconcursos.com.br 1 Aula 00 Aula Demonstrativa Oi,

Leia mais

Afirmações Matemáticas

Afirmações Matemáticas Afirmações Matemáticas Na aula passada, vimos que o objetivo desta disciplina é estudar estruturas matemáticas, afirmações sobre elas e como provar essas afirmações. Já falamos das estruturas principais,

Leia mais

TESTES RESOLVIDOS. É uma sentença aberta. Nada podemos afirmar, não conhecemos o conteúdo da frase. Não é uma proposição.

TESTES RESOLVIDOS. É uma sentença aberta. Nada podemos afirmar, não conhecemos o conteúdo da frase. Não é uma proposição. LÓGICA PROPOSICIONAL 1. PROPOSIÇÃO CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas. Por exemplo: 2 é um número primo. Resposta: É uma

Leia mais

LÓGICA. CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas.

LÓGICA. CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas. LÓGICA 1. PROPOSIÇÃO CONCEITO DE PROPOSIÇÃO Uma proposição é toda a oração que pode ser classificada como verdadeira ou falsa, não ambas. Por exemplo: 2 é um número primo. Resposta: É uma proposição verdadeira

Leia mais

Considerando a proposição Se Paulo não foi ao banco, ele está sem dinheiro, julgue os itens seguintes.

Considerando a proposição Se Paulo não foi ao banco, ele está sem dinheiro, julgue os itens seguintes. 01 Q368661 Raciocínio Lógico Fundamentos de Lógica Ano: 2014 Banca: CESPE Órgão: CADEProva: Nível Médio BETA Considerando os conectivos lógicos usuais e que as letras maiúsculas representem proposições

Leia mais

Com base nesse conteúdo, planejei o curso da seguinte maneira: Aula Conteúdo Data. Aula 00 Demonstrativa. Já disponível

Com base nesse conteúdo, planejei o curso da seguinte maneira: Aula Conteúdo Data. Aula 00 Demonstrativa. Já disponível Raciocínio Lógico p/ POLITEC-MT agrega alguns assuntos da matemática básica estudada no ensino médio. Vamos dar uma olhada no conteúdo: RACIOCÍNIO LÓGICO 1. Estruturas lógicas. 2. Lógica sentencial ou

Leia mais

Algoritmos e Programação I

Algoritmos e Programação I Algoritmos e Programação I Operadores Relacionais, Lógicos e Aritméticos Prof. Fernando Maia da Mota mota.fernandomaia@gmail.com CPCX/UFMS Fernando Maia da Mota 1 Expressões Uma expressão relacional, ou

Leia mais

AULA 01: Lógica (Parte 1)

AULA 01: Lógica (Parte 1) AULA 01: Lógica (Parte 1) Raciocínio Lógico p/ M. Cidades (NM) SUMÁRIO PÁGINA 1. Conceitos Básicos de Lógica 1 2. Tautologia, Contradição e Contingência 22 3. Implicação Lógica 28 4. Equivalência Lógica

Leia mais

Lóg L ica M ca at M em e ática PROF.. J EAN 1

Lóg L ica M ca at M em e ática PROF.. J EAN 1 Lógica Matemática PRO. JEAN 1 LÓGICA MATEMÁTICA - CONTEÚDO Definição de Termo e Proposição alor Lógico Proposição Simples e Proposição Composta Conectivos Tabela-erdade 2 LÓGICA MATEMÁTICA INTRODUÇÃO ao

Leia mais

RACIOCÍNIO LÓGICO PARA ANS PROFESSOR: GUILHERME NEVES

RACIOCÍNIO LÓGICO PARA ANS PROFESSOR: GUILHERME NEVES Aula 3 Proposições... 2 Leis do Pensamento... 4 Modificador... 12 Proposições simples e compostas... 13 Conjunção p q... 14 Disjunção Inclusiva... 17 Disjunção Exclusiva p v q... 19 Condicional p... 19

Leia mais

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula /

GRATUITO RACIOCÍNIO LÓGICO - EBSERH. Professor Paulo Henrique PH Aula / 1 www.romulopassos.com.br / www.questoesnasaude.com.br GRATUITO RACIOCÍNIO LÓGICO - EBSERH Professor Paulo Henrique PH Aula 03 R A C I O C Í N I O L Ó G I C O E B S E R H a u l a 0 2 Página 1 2 www.romulopassos.com.br

Leia mais

DNIT RACIOCÍNIO LÓGICO-QUANTITATIVO PROFESSORA: KARINE WALDRICH

DNIT RACIOCÍNIO LÓGICO-QUANTITATIVO PROFESSORA: KARINE WALDRICH AULA 1 1. Aula 1: Estruturas Lógicas. Lógica de argumentação: analogias, inferências, deduções e conclusões. Lógica sentencial (ou proposicional): proposições simples e compostas; tabelas-verdade; equivalências;

Leia mais

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa.

. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira ou falsa. Tema 1 Lógica e Teoria dos Conjuntos 1. Proposições e valores lógicos. Um termo ou designação é uma expressão que nomeia ou designa um ente.. Uma proposição é toda a expressão p susceptível de ser verdadeira

Leia mais

Lógica das Proposições

Lógica das Proposições Lógica das Proposições Transcrição - Podcast 1 Professor Carlos Mainardes Olá eu sou Carlos Mainardes do blog Matemática em Concursos, e esse material que estou disponibilizando trata de um assunto muito

Leia mais

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca LÓGICA PROPOSICIONAL Belo Horizonte/MG

Leia mais

Filosofia (aula 10) Dimmy Chaar Prof. de Filosofia. SAE

Filosofia (aula 10) Dimmy Chaar Prof. de Filosofia. SAE Filosofia (aula 10) Prof. de Filosofia SAE leodcc@hotmail.com Lógica Tipos de Argumentação Dedução parte-se do Universal para o Particular Tipos de Argumentação Dedução parte-se do Universal para o Particular;

Leia mais

Aula 00. Raciocínio Lógico. Raciocínio Lógico para ANVISA Aula Demonstrativa Professor: Karine Waldrich

Aula 00. Raciocínio Lógico. Raciocínio Lógico para ANVISA Aula Demonstrativa Professor: Karine Waldrich Aula 00 Raciocínio Lógico para ANVISA Aula Demonstrativa Professor: Karine Waldrich www.pontodosconcursos.com.br 1 Aula 00 Aula Demonstrativa Oi, tudo bem? Meu nome é Karine Waldrich. Nasci em Blumenau,

Leia mais

Cálculo proposicional

Cálculo proposicional O estudo da lógica é a análise de métodos de raciocínio. No estudo desses métodos, a lógica esta interessada principalmente na forma e não no conteúdo dos argumentos. Lógica: conhecimento das formas gerais

Leia mais

Aula 1 Conjuntos Numéricos

Aula 1 Conjuntos Numéricos 1 FUNDAMENTOS DA MATEMÁTICA Aula 1 Conjuntos Numéricos Professor Luciano Nóbrega UNIDADE 1 2 EMENTA Basicamente, veremos: U1 Conjuntos Numéricos. Regra de três (simples e compostas). Funções de 1º e 2º

Leia mais

PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA

PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA Concurso Público 2016 Conteúdo Teoria dos conjuntos. Razão e proporção. Grandezas proporcionais. Porcentagem. Regras de três simples. Conjuntos numéricos

Leia mais

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática

Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Universidade Aberta do Brasil - UFPB Virtual Curso de Licenciatura em Matemática Argumentação em Matemática Prof. Lenimar Nunes de Andrade e-mail: numerufpb@gmail.com ou lenimar@mat.ufpb.br versão 1.0

Leia mais

Métodos para a construção de algoritmo

Métodos para a construção de algoritmo Métodos para a construção de algoritmo Compreender o problema Identificar os dados de entrada e objetos desse cenário-problema Definir o processamento Identificar/definir os dados de saída Construir o

Leia mais

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues

Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues Exercícios e Respostas Lógica Matemática Prof. Jacson Rodrigues As respostas encontram-se em itálico. 1. Quais das frases a seguir são sentenças? a. A lua é feita de queijo verde. erdadeira, pois é uma

Leia mais

QUESTÕES REVISÃO DE VÉSPERA FUNAI

QUESTÕES REVISÃO DE VÉSPERA FUNAI QUESTÕES REVISÃO DE VÉSPERA FUNAI RACIOCÍNIO LÓGICO Prof. Josimar Padilha EDITAL: RACIOCÍNIO LÓGICO E QUANTITATIVO: 1. Lógica e raciocínio lógico: problemas envolvendo lógica e raciocínio lógico. 2. Proposições:

Leia mais

Matemática discreta e Lógica Matemática

Matemática discreta e Lógica Matemática AULA 1 - Lógica Matemática Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1 Lógica Sentenças, representação

Leia mais

Raciocínio lógico matemático

Raciocínio lógico matemático Raciocínio lógico matemático Unidade 2: Introdução à lógica Seção 2.1: O que é a lógica? 1 Lógica Parte da filosofia que trata das formas do pensamento em geral e das operações intelectuais que visam determinar

Leia mais

LÓGICA APLICADA A COMPUTAÇÃO

LÓGICA APLICADA A COMPUTAÇÃO LÓGICA APLICADA A COMPUTAÇÃO 2009.3 Aquiles Burlamaqui Conteúdo Programático Unidade I Linguagens Formais Linguagens Formais Sigma Álgebras Relação entre Linguagens Formais e Sigma Álgebras Sigma Domínios

Leia mais

Analista TRT 10 Região / CESPE 2013 /

Analista TRT 10 Região / CESPE 2013 / Ao comentar sobre as razões da dor na região lombar que seu paciente sentia, o médico fez as seguintes afirmativas. P1: Além de ser suportado pela estrutura óssea da coluna, seu peso é suportado também

Leia mais

SMA Elementos de Matemática Notas de Aulas

SMA Elementos de Matemática Notas de Aulas Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação SMA 341 - Elementos de Matemática Notas de Aulas Ires Dias Sandra Maria Semensato de Godoy São Carlos 2009 Sumário 1 Noções

Leia mais

ANÁLISE MATEMÁTICA I. Curso: EB

ANÁLISE MATEMÁTICA I. Curso: EB ANÁLISE MATEMÁTICA I (com Laboratórios) Curso: EB Lógica - Resumo Ana Matos DMAT Noções básicas de Lógica Consideremos uma linguagem, com certos símbolos. Chamamos expressão a qualquer sequência de símbolos.

Leia mais

Enunciados Quantificados Equivalentes

Enunciados Quantificados Equivalentes Lógica para Ciência da Computação I Lógica Matemática Texto 15 Enunciados Quantificados Equivalentes Sumário 1 Equivalência de enunciados quantificados 2 1.1 Observações................................

Leia mais