Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço

Tamanho: px
Começar a partir da página:

Download "Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço"

Transcrição

1 Universidade Federal de Alagoas Instituto de Ciências e Biológicas e da Saúde BIOB-3 Biomatemática Prof. Marcos Vinícius Carneiro Vital 1. Começando pelos exemplos. - Existem vários exemplos reais de situações que podem ser expressas por funções exponenciais. Vamos, então, começar a pensar em alguns destes exemplos, para mais adiante definir exatamente do que se trata esta função Divisão celular. - Como cresce uma população de bactérias? Ou uma cultura de células em uma placa de petri? Ou mesmo um tumor crescendo dentro de um organismo? - Em todas estas situações, sabemos que o que acontece está associado ao fenômeno de divisão celular: uma célula se divide, dando origem a outras duas; estas agora podem, cada uma, dar origem a outras duas, e assim sucessivamente. - O resultado é um crescimento que chamamos de exponencial, no qual quanto maior a quantidade de células, maior o incremento na próxima geração. É bem diferente de um aumento linear, por exemplo. - Matematicamente, podemos representar esta situação da seguinte maneira: N = 2 t, t ε IN - N representa o tamanho da população (neste caso, o número de células), e t representa o tempo, sendo que cada unidade de tempo representa o tempo necessário para que ocorra uma divisão celular. Por fim, o domínio da variável t está restrito aos números naturais (, 1, 2, 3,...).

2 - Para compreendermos completamente o funcionamento desta função, basta substituir alguns valores de t, observar os valores de N equivalentes e traçar um gráfico: Crescimento em porcentagem. - Durante nossa segunda aula, aprendemos a lidar com porcentagens para lidarmos, por exemplo, com aumentos sucessivos do peso de um animal. - O aumento de peso de um animal no final de um intervalo de tempo (, 1, 2, 3, 4,...) segue a seqüência: - w, wq, wq 2, wq 3, wq 4,... - Onde q = 1 + (p/1) - Este exemplo nos apresenta uma seqüência: uma função na qual o domínio é o conjunto dos números naturais IN, e a imagem um conjunto de valores ordenados correspondente. - Neste caso, temos a função: y = wq n, n ε IN 1.3. Meia vida. - Mudando para um exemplo completamente diferente, um outro exemplo prático com uma função exponencial vem da física, e do conceito de decaimento radioativo. - A idéia, em resumo, é a seguinte: um elemento radioativo decai com o tempo, transformando-se em um elemento não radioativo. O tempo necessário para que metade dos átomos de um conjunto transforme-se em seus equivalentes não-radioativos, é chamado de meia vida.

3 - O isótopo radioativo de carbono conhecido como carbono 14, por exemplo, tem grande interesse para nós biólogos, pois permite a datação de objetos de madeira com milhares de anos de idade! - Nitrogênio atmosférico é convertido neste isótopo radioativo, que é absorvido pelas plantas; sua meia-vida é de 56 anos, quando metade dos átomos transforma-se em Carbono A representação matemática é de novo uma função exponencial, mas que neste caso tem um expoente negativo (lembre-se de que a n = 1 a n): N = N x 2 -t, t ε IN - No caso do C 14, cada unidade de t equivale a 56 anos. Graficamente, temos uma redução da quantidade de C 14 (expresso em proporção) ao longo do tempo: 2. Função exponencial. - Agora que já visualizamos alguns exemplos práticos de crescimento e até de decréscimo exponencial, podemos finalmente observar a forma generalizada da função e compreendê-la sem problemas: y = aq x, q >, x ε IR - Neste caso, a variável independente é o expoente de uma seqüência, diferente do que acontece com as funções que já vimos antes: - Função linear: y = ax + b - Função potência: y = ax n

4 3. Seqüências. - Uma seqüência é um caso particular de uma função, no qual o domínio consiste de números inteiros consecutivos e a imagem de valores ordenados correspondentes. - Seqüência geométricas: - aq n-1, aq n, aq n+1 valor anterior e do posterior. - Sequências aritméticas: - Os valores intermediários são sempre a média geométrica do - b, a + b, 2a + b, 3a + b,... valor anterior e do posterior. 4. Funções inversas - a(n-1) + b, an + b, a(n +1) + b - Os valores intermediários são sempre a média aritmética do - Literalmente, invertemos quem são as variáveis: o x se torna dependente e o y se torna independente. - Exemplo: para o crescimento celular, representado pela função N = 2 t (ou seja, y = 2 x ), eu posso me perguntar em qual momento do tempo nós nos encontramos quando temos uma dada quantidade de células. - Ou seja, é dado o valor de y e queremos saber o valor de x! Estamos invertendo a lógica de quem é a variável dependente e de quem é independente. Exercício 1 Estudando em laboratório o crescimento da bactéria Escherichia coli, um pesquisador conseguiu determinar seu tempo de duplicação (o tempo necessário para uma célula se dividir, dando origem a dois indivíduos) em 3 minutos. Assuma uma situação na qual o crescimento de uma população desta bactéria ocorra sem limites (ou seja, os recursos são ilimitados) e responda:

5 1.1. Qual a equação que descreve o crescimento de E. coli em relação ao tempo nesta situação? Se o crescimento ocorre de forma que cada bactéria dá origem a outras duas, então precisamos de uma equação na qual o tamanho populacional em um determinado momento no tempo seja igual ao dobro do tamanho de meia hora atrás (já que meia hora é o tempo necessário para termos uma nova geração). Como o intervalo de tempo é sempre de meia hora, podemos pensar no tempo como uma variável que começa como e que assume números inteiros positivos. Desta forma, o tempo 1 seria equivalente a meia hora após o começo do crescimento, o tempo 5 seria equivalente a duas horas e meia, e assim por diante. A função capaz de descrever a situação descrita acima é a exponencial. Sua forma geral é: y = aq x. Neste caso, podemos chamar y de N (para representar o tamanho da população), e x de t (para representar o tempo, em períodos de meia hora). O valor de a é o ponto inicial da função (ou seja, o tamanho inicial da população), o valor de y quando o x é zero, e neste caso vamos chamá-lo N. N = N 2 t 1.2. Quantas bactérias devemos encontrar em uma cultura que começou com 3 indivíduos e cresceu por 5 horas? Aqui só precisamos substituir valores na função que descrevemos acima. Se ela começou com 3 indivíduos, então este é o nosso N. Se ela cresceu por cinco horas, então 1 unidades de tempo se passaram, e nosso valor de t é 1. N = 3 21 = 372 indivíduos 1.3. Esboce o gráfico do crescimento desta bactéria a partir da função que você descreveu na questão 1.1 para o domínio {x x 5}, considerando apenas os valores inteiros de x e uma população inicial de apenas 1 indivíduo. Se a população inicial é de um indivíduo, nosso N é 1, e desaparece da função. Para esboçar este gráfico, basta calcular os valores de N para cada t, de a 5. O gráfico deverá ficar mais ou menos assim:

6 Exercício Imagine um fragmento de mata atlântica de 15 km 2 e que perde, anualmente, 15% de sua área por desmatamento Qual a equação que descreve o tamanho do fragmento ao longo do tempo? Estamos novamente lidando com uma função exponencial, mas com um caso particular que trata de porcentagens. A lógica é a mesma do exercício anterior, com a diferença de que temos que pensar no q da função exponencial como um fator que representa a porcentagem - que neste caso é de decréscimo. Nosso primeiro passo é, então, calcular o valor de q. Se vocês retornarem ao início da disciplina e derem uma olhada na fórmula geral para se calcular uma porcentagem, verão que ela é uma função exponencial na qual o valor de q é (1 + p/1). Como temos um decréscimo percentual, isto quer dizer que o nosso p é negativo, e que neste caso q = (1 + p/1) = (1 15/1) =,85 Sabemos que o tamanho inicial é de 15 km 2. A equação, então será: y = a q x y = 15,85 x 2.2. Esboce o gráfico desta equação para o domínio D = {x x 5}, considerando apenas valores inteiros de x. Basta calcular a equação acima, substituindo o x com os valores, 1, 2, 3, 4 e 5. Como a equação não é linear, devemos substituir todos os valores, e não apenas um ponto inicial e outro final. O gráfico fica assim:

7 Exercício O isótopo radioativo de carbono C 14 (chamado de carbono 14 ) tem uma meia-vida de 56 anos, e é bastante útil na determinação da idade de fósseis de plantas e artefatos arqueológicos que contenham partes de madeira. A meia-vida representa o período de tempo necessário para que metade dos átomos de um conjunto sofra decaimento radioativo, tornando-se C 12, neste caso Qual a equação que determina a quantidade de átomos de C 14 em uma amostra de fóssil de planta ao longo do tempo? Considere que a amostra possui, inicialmente, 15 moles de C 14. Temos uma função exponencial que mostra um decréscimo na quantidade de carbono em uma amostra de fóssil. Como o que esperamos, neste caso, é que a quantidade de carbono cai pela metade a cada período de 56 anos, temos duas maneiras diferentes de representar a função: podemos usar um expoente negativo ou tratar a questão toda como um decréscimo percentual. Matematicamente, não há diferença alguma entre os dois tratamentos, e vou apresentar ambos apenas para fins didáticos. Solução com decréscimo percentual: Esta é a solução que considero mais intuitiva: basta pensar que temos um decréscimo de 5% a cada ciclo de tempo. Se temos um decréscimo de 5%, isto significa um valor de q: q = (1+p/1) = (1 5/1) = 1-,5 =,5 A equação é exponencial, então: y = a q x y = a,5 x O valor inicial da quantidade de carbono é de 15 moles, então: y = 15,5 x

8 Ou, se preferirmos a notação usando N e t: Solução com expoente negativo: N = 15,5 t Nesta solução, que é a maneira mais comum de mostrar o decaimento radioativo, basta lembrarmos-nos desta regrinha de potências: Então podemos escrever a equação assim: a n = 1 a n N = 15 x 2 -t 3.2. Quanto de C 14 deveria ser encontrado naquele mesmo fóssil após se passarem 28 anos? Basta substituir os valores na equação, com atenção para o fato de que t é medido em períodos de 56 anos. Então, precisamos primeiro encontrar o valor de t contido nestes 28 anos. É uma simples divisão: t = = 5 Substituindo: y = 15,5 x y = 15,5 5 y =,469 moles de C 14 Exercício 4 Estudando a população de um inseto praga dentro de um silo de armazenamento de grãos, um pesquisador estimou a sua abundância total em 8 indivíduos. Ele então aplicou um inseticida que deveria causar a mortalidade de 7% da população de insetos por dia de uso contínuo Qual a equação que descreve a abundância de insetos por dia de uso do inseticida? q = (1 7 1 ) =.3 y = 8.3 x

9 Abundância de insetos 4.2. Esboce o gráfico desta equação para o domínio D = {x x 5}, considerando apenas valores inteiros de x. Exercício 5 Estudando a população de uma espécie de primata ameaçada de extinção, um pesquisador estimou que seu tamanho total estava diminuindo em 17% por ano. Considere uma população inicial de 55 indivíduos, e responda: 5.1. Qual a equação descreve o tamanho desta população em função do tempo? Nesta questão, apenas para os resultados ficarem coerentes com a ideia de número de indivíduos, arredondei todos os resultados relevantes para o número inteiro abaixo. y = a q x Então: q = (1 + Tempo (dias) p 17 ) = (1 1 1 ) =,83 y = 55,83 x 5.2. Quantos indivíduos devem ser encontrados nesta população após 1 anos? y = 55,83 1 = 85 indivíduos (arredondado)

10 Número de indivíduos 5.3. Esboce o gráfico desta função para o domínio D = {x x 5}. Substituindo os valores (e arredondando): x y Tempo (anos)

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço Universidade Federal de Alagoas Instituto de Ciências e Biológicas e da Saúde BIOB-003 Biomatemática Prof. Marcos Vinícius Carneiro Vital 1. Funções inversas. - O ponto de partida é o ponto de parada da

Leia mais

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço 1. Introdução Universidade Federal de Alagoas Instituto de Ciências e Biológicas e da Saúde BIOB-003 Biomatemática Prof. Marcos Vinícius Carneiro Vital - Agora que já entendemos o que é uma derivada, podemos

Leia mais

- Vamos começar fixando o valor de a em 1, e atribuindo alguns valores diferentes para n, com o domínio D = {x x 0}.

- Vamos começar fixando o valor de a em 1, e atribuindo alguns valores diferentes para n, com o domínio D = {x x 0}. Universidade Federal de Alagoas Instituto de Ciências e Biológicas e da Saúde BIOB- Biomatemática Prof. Marcos Vinícius Carneiro Vital 1. Definição. - Uma função potência é apenas ligeiramente diferente

Leia mais

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço Universidade Federal de Alagoas Instituto de Ciências e Biológicas e da Saúde BIOB-3 Biomatemática Prof. Marcos Vinícius Carneiro Vital 1. Uma função linear especial. 1.1. Absorção de potássio. - Para

Leia mais

2.1 Visualizando - Visualize um gráfico com uma função linear, y = ax + b - Neste caso, a taxa de crescimento é o valor de a, já que sabemos que:

2.1 Visualizando - Visualize um gráfico com uma função linear, y = ax + b - Neste caso, a taxa de crescimento é o valor de a, já que sabemos que: 1. O que é uma taxa? Universidade Federal de Alagoas Instituto de Ciências e Biológicas e da Saúde BIOB-003 Biomatemática Prof. Marcos Vinícius Carneiro Vital - Em poucas palavras, podemos descrever uma

Leia mais

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço Universidade Federal de Alagoas Instituto de Ciências e Biológicas e da Saúde BIOB-003 Biomatemática Prof. Marcos Vinícius Carneiro Vital - Por si só, boa parte do conteúdo desta aula pode parecer mais

Leia mais

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço

Biomatemática - Prof. Marcos Vinícius Carneiro Vital (ICBS UFAL) - Material disponível no endereço Universidade Federal de Alagoas Instituto de Ciências e Biológicas e da Saúde BIOB-003 Biomatemática Prof. Marcos Vinícius Carneiro Vital 1. Como prever a natureza? (ou: apresentando uma função) 1.1. Visão

Leia mais

Material Teórico - Módulo de Função Exponencial. Equações Exponenciais. Primeiro Ano - Médio

Material Teórico - Módulo de Função Exponencial. Equações Exponenciais. Primeiro Ano - Médio Material Teórico - Módulo de Função Exponencial Equações Exponenciais Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 3 de novembro de 018 No material da aula

Leia mais

Guia de Atividades para Introduzir Equações Diferenciais Ordinárias usando o Software Powersim

Guia de Atividades para Introduzir Equações Diferenciais Ordinárias usando o Software Powersim Guia de Atividades para Introduzir Equações Diferenciais Ordinárias usando o Software Powersim Nestas atividades temos como objetivo abordar a definição, solução e notação de uma equação diferencial e,

Leia mais

Guia de Atividades 2

Guia de Atividades 2 Guia de Atividades 2 Atividade A Nesta atividade você trabalhará com a planilha intitulada iodo.sxc, que se encontra no material de apoio do Teleduc. As duas primeiras colunas desta planilha apresentam

Leia mais

por Carbono 14 Prof. Alexandre Alves Universidade São Judas Tadeu Cálculo Diferencial e Integral 1 - EEN 17 de março de 2009

por Carbono 14 Prof. Alexandre Alves Universidade São Judas Tadeu Cálculo Diferencial e Integral 1 - EEN 17 de março de 2009 Aplicação de Função Exponencial: A Datação por Carbono 14 Prof. Alexandre Alves Universidade São Judas Tadeu Cálculo Diferencial e Integral 1 - EEN 17 de março de 2009 1 Introdução Uma importante técnica

Leia mais

3. Limites e Continuidade

3. Limites e Continuidade 3. Limites e Continuidade 1 Conceitos No cálculo de limites, estamos interessados em saber como uma função se comporta quando a variável independente se aproxima de um determinado valor. Em outras palavras,

Leia mais

Eletromagnetismo: radiação eletromagnética

Eletromagnetismo: radiação eletromagnética 29 30 31 32 RADIAÇÕES NUCLEARES Como vimos nos textos anteriores, o interior da matéria no domínio atômico, inacessível ao toque e olhar humano, é percebido e analisado somente através das radiações eletromagnéticas

Leia mais

CEDERJ MÉTODOS DETERMINÍSTICOS I - EP13

CEDERJ MÉTODOS DETERMINÍSTICOS I - EP13 CEDERJ MÉTODOS DETERMINÍSTICOS I - EP13 Prezado Aluno, O principal tópico deste EP é um tema muito importante para administradores e economistas. Trata-se de algo que os estatísticos chamam de regressão

Leia mais

Aula 00 Aula Demonstrativa

Aula 00 Aula Demonstrativa Aula 00 Aula Demonstrativa Apresentação... Relação das questões comentadas... 10 Gabarito... 1 www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal! Tudo bem com vocês? Esta é a aula demonstrativa

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

Equações exponenciais

Equações exponenciais A UA UL LA Equações exponenciais Introdução Vamos apresentar, nesta aula, equações onde a incógnita aparece no expoente. São as equações exponenciais. Resolver uma equação é encontrar os valores da incógnita

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 1 POTENCIAÇÃO

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 1 POTENCIAÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Gabriela Brião / Marcello Amadeo Aluno(a): Turma: POTENCIAÇÃO LISTA 1 POTENCIAÇÃO Dados dois números naturais, a e n (com n > 1), a expressão

Leia mais

Conjuntos. Notações e Símbolos

Conjuntos. Notações e Símbolos Conjuntos A linguagem de conjuntos é interessante para designar uma coleção de objetos. Quando os estatísticos selecionam indivíduos de uma população eles usam a palavra amostra, frequentemente. Todas

Leia mais

AmigoPai. Matemática. Exercícios de Equação de 2 Grau

AmigoPai. Matemática. Exercícios de Equação de 2 Grau AmigoPai Matemática Exercícios de Equação de Grau 1-Mai-017 1 Equações de Grau 1. (Resolvido) Identifique os coeficientes da seguinte equação do segundo grau: 3x (x ) + 17 = 0 O primeiro passo é transformar

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

EQUAÇÕES BIQUADRADAS

EQUAÇÕES BIQUADRADAS EQUAÇÕES BIQUADRADAS Acredito que só pelo nome dar pra você ter uma idéia de como seja uma equação biquadrada, Se um time é campeão duas vezes, dizemos ele é bicampeão, se uma equação é do grau quando

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

MÉDIA ARITMÉTICA SIMPLES E PODERADA EXERCÍCIOS DE FIXAÇÃO

MÉDIA ARITMÉTICA SIMPLES E PODERADA EXERCÍCIOS DE FIXAÇÃO MÉDIA ARITMÉTICA SIMPLES E PODERADA EXERCÍCIOS DE FIXAÇÃO 1) E0628 Em uma fábrica, a média salarial das mulheres é R$ 880,00; para os homens, a média salarial é R$ 1.020,00. Sabe-se, também, que a média

Leia mais

1 Congruências e aritmética modular

1 Congruências e aritmética modular 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Matemática E Intensivo V. 1

Matemática E Intensivo V. 1 GABARITO Matemática E Intensivo V. Exercícios 0) 5 0) 5 Seja o termo geral = 3n, então: Par =, temos: a = 3. = 3 = Par =, temos: a = 3. = 6 = 5 Par = 3, temos: a 3 = 3. 3 = 9 = 8 Então a + a + a 3 = +

Leia mais

Aula 31 Funções vetoriais de uma variável real

Aula 31 Funções vetoriais de uma variável real MÓDULO 3 - AULA 31 Aula 31 Funções vetoriais de uma variável real Objetivos Conhecer as definições básicas de funções vetoriais de uma variável real. Aprender a parametrizar curvas simples. Introdução

Leia mais

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 1 Modelo malthusiano O Modelo Malthusiano

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 1 Modelo malthusiano O Modelo Malthusiano O Modelo Malthusiano Para começar nosso estudo de modelos matemáticos para populações, vamos estudar o modelo mais simples para mudanças no tamanho de uma população, que chamaremos de modelo malthusiano.

Leia mais

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1?

1. O que podemos dizer sobre a imagem da função. f : Z Z, f(x) = x 2 + x + 1? 1 Congruências e aritmética modular Vamos considerar alguns exemplos de problemas sobre números inteiros como motivação para o que se segue. 1. O que podemos dizer sobre a imagem da função f : Z Z, f(x)

Leia mais

Exponencial: Equação e Função (Operações Básicas)

Exponencial: Equação e Função (Operações Básicas) Exponencial: Equação e Função (Operações Básicas) Profª: Helen Savi Mondo de Oliveira Setembro 2014 Um pouco sobre a história O primeiro indício do uso de equações está relacionado, aproximadamente, ao

Leia mais

QUÍMICA MÓDULO 18 RELAÇÕES NUMÉRICAS. Professor Edson Cruz

QUÍMICA MÓDULO 18 RELAÇÕES NUMÉRICAS. Professor Edson Cruz QUÍMICA Professor Edson Cruz MÓDULO 18 RELAÇÕES NUMÉRICAS INTRODUÇÃO Precisamos compreender que houve uma necessidade de se definir uma nova unidade de massa para átomos e moléculas. É importante que você

Leia mais

O Modelo Malthusiano modelo malthusiano

O Modelo Malthusiano modelo malthusiano O Modelo Malthusiano Para começar nosso estudo de modelos matemáticos para populações, vamos estudar o modelo mais simples para mudanças no tamanho de uma população, que chamaremos de modelo malthusiano.

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CERCIERJ CONSÓRCIO CEDERJ MATEMÁTICA 1 ANO - 4 BIMESTRE PLANO DE TRABALHO

FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CERCIERJ CONSÓRCIO CEDERJ MATEMÁTICA 1 ANO - 4 BIMESTRE PLANO DE TRABALHO FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CERCIERJ CONSÓRCIO CEDERJ MATEMÁTICA 1 ANO - 4 BIMESTRE PLANO DE TRABALHO FUNÇÃO EXPONENCIAL CURSISTA: ROBSON DOS SANTOS PRAXEDE TUTOR: MARCELO RODRIGUES OUTUBRO

Leia mais

Gráficos, Proporções e Variações Proporcionais

Gráficos, Proporções e Variações Proporcionais Texto complementar n 1 Gráficos, Proporções e Variações Proporcionais 1. Introdução. No estudo de um fenômeno físico são realizadas experiências onde são medidas diversas grandezas ao mesmo tempo. A relação

Leia mais

Sequência divergente: toda sequência que não é convergente.

Sequência divergente: toda sequência que não é convergente. 1.27. Sequências convergentes. 1.27.1 Noção de sequência convergente: uma sequência é dita convergente quando os termos dessa sequência, conforme o aumento do n, se aproximam de um número constante. Esse

Leia mais

A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem.

A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem. Probabilidade A probabilidade é um estudo matemático que visa prever a chance de determinados acontecimentos de fato acontecerem. Experimento Aleatório É aquele experimento que quando repetido em iguais

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Módulo 1 Unidade 10 Sistemas de equações lineares Para Início de conversa... Já falamos anteriormente em funções. Dissemos que são relações entre variáveis independentes e dependentes. Às vezes, precisamos

Leia mais

Funções Reais a uma Variável Real

Funções Reais a uma Variável Real Funções Reais a uma Variável Real 1 Introdução As funções são utilizadas para descrever o mundo real em termos matemáticos, é o que se chama de modelagem matemática para as diversas situações. Podem, por

Leia mais

Equações Lineares de 1 a Ordem - Aplicações

Equações Lineares de 1 a Ordem - Aplicações Equações Lineares de 1 a Ordem - Aplicações Maria João Resende www.professores.uff.br/mjoao 2016-2 M. J. Resende (UFF) www.professores.uff.br/mjoao 2016-2 1 / 14 Modelos Matemáticos Chamamos de modelo

Leia mais

Suponhamos que tenha sido realizado um. estudo que avalia dois novos veículos do mercado: o Copa e o Duna. As pesquisas levantaram os seguintes dados:

Suponhamos que tenha sido realizado um. estudo que avalia dois novos veículos do mercado: o Copa e o Duna. As pesquisas levantaram os seguintes dados: A U A UL LA Acelera Brasil! Suponhamos que tenha sido realizado um estudo que avalia dois novos veículos do mercado: o Copa e o Duna. As pesquisas levantaram os seguintes dados: VEÍCULO Velocidade máxima

Leia mais

Resolvendo sistemas. Nas aulas anteriores aprendemos a resolver

Resolvendo sistemas. Nas aulas anteriores aprendemos a resolver A UA UL LA Resolvendo sistemas Introdução Nas aulas anteriores aprendemos a resolver equações de 1º grau. Cada equação tinha uma incógnita, em geral representada pela letra x. Vimos também que qualquer

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos

Leia mais

NÚMEROS INTEIROS E CRIPTOGRAFIA UFRJ

NÚMEROS INTEIROS E CRIPTOGRAFIA UFRJ NÚMEROS INTEIROS E CRIPTOGRAFIA UFRJ GABARITO LISTA 6: ALGORITMO CHINÊS DO RESTO 1. Ver gabarito das questões do livro. 2. Aplique o Algoritmo de Fermat para encontrar 999367 = 911 1097. Como 911 e 1097

Leia mais

AULA 4: EQUIVALÊNCIA DE TAXAS

AULA 4: EQUIVALÊNCIA DE TAXAS MATEMÁTICA FINANCEIRA PROF. ELISSON DE ANDRADE Blog: www.profelisson.com.br AULA 4: EQUIVALÊNCIA DE TAXAS Exercícios resolvidos e comentados Proibida reprodução e/ou venda não autorizada. REVISÃO: COMO

Leia mais

TÓPICOS DE MATEMÁTICA II. O Curso está dividido em três unidades, temos que concluir todas.

TÓPICOS DE MATEMÁTICA II. O Curso está dividido em três unidades, temos que concluir todas. TÓPICOS DE MATEMÁTICA II Roosevelt Imperiano da Silva Palavras iniciais Caros alunos, vamos iniciar o curso da disciplina Tópicos de Matemática II. Neste curso estudaremos os conjuntos numéricos e suas

Leia mais

1). Tipos de equações. 3). Etapas na resolução algébrica de equações numéricas. 4). Os dois grandes cuidados na resolução de equações

1). Tipos de equações. 3). Etapas na resolução algébrica de equações numéricas. 4). Os dois grandes cuidados na resolução de equações 1). Tipos de equações LIÇÃO 7 Introdução à resolução das equações numéricas Na Matemática, nas Ciências e em olimpíadas, encontramos equações onde a incógnita pode ser número, função, matriz ou outros

Leia mais

Campus Caçapava do Sul Curso de Licenciatura em Ciências Exatas Programa Institucional de Bolsas de Iniciação a Docência Subprojeto Matemática

Campus Caçapava do Sul Curso de Licenciatura em Ciências Exatas Programa Institucional de Bolsas de Iniciação a Docência Subprojeto Matemática Campus Caçapava do Sul Curso de Licenciatura em Ciências Exatas Programa Institucional de Bolsas de Iniciação a Docência Subprojeto Matemática Bolsista: Leriana Afonso Plano de Aula Conceitos/Conteúdos:

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Diferencial e Integral I GEOMETRIA ANALÍTICA Coordenadas de pontos no plano cartesiano Distâncias entre pontos Sejam e dois pontos no plano cartesiano A distância entre e é dada pela expressão

Leia mais

... Onde usar os conhecimentos os sobre s?...

... Onde usar os conhecimentos os sobre s?... Manual de IV Matemática SEQÜÊNCIA OU SUCESSÃO Por que aprender Progr ogressõe ssões? s?... O estudo das Progressões é uma ferramenta que nos ajuda a entender fenômenos e fatos do cotidiano, desde situações

Leia mais

Progressões geométricas

Progressões geométricas A UA UL LA Acesse: http://fuvestibular.com.br/ Progressões geométricas Introdução Nesta aula, vamos abordar outra importante seqüência: a progressão geométrica. É possível que você já tenha ouvido alguém

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL Planificação 7º ano 2010/2011 Página 1 DOMÍNIO TEMÁTICO: NÚMEROS

Leia mais

Soluções dos Problemas do Capítulo 3

Soluções dos Problemas do Capítulo 3 48 Temas e Problemas Soluções dos Problemas do Capítulo 3. A cada período de 5 anos, a população da cidade é multiplicada por,0. Logo, em 0 anos, ela é multiplicada por,0 4 =,084. Assim, o crescimento

Leia mais

Ministério da Educação Universidade Tecnológica Federal do Paraná. Campus Apucarana Departamento Acadêmico de Matemática

Ministério da Educação Universidade Tecnológica Federal do Paraná. Campus Apucarana Departamento Acadêmico de Matemática Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Apucarana Departamento Acadêmico de Matemática Edital 21-2013/PROGRAD Apoio à Produção de Recursos Educacionais Digitais Autores:

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA. Fundação CECIERJ Consórcio CEDERJ. Matemática do 3º Ano 3º Bimestre Plano de Trabalho 1

FORMAÇÃO CONTINUADA EM MATEMÁTICA. Fundação CECIERJ Consórcio CEDERJ. Matemática do 3º Ano 3º Bimestre Plano de Trabalho 1 FORMAÇÃO CONTINUADA EM MATEMÁTICA Fundação CECIERJ Consórcio CEDERJ Matemática do 3º Ano 3º Bimestre 2014 Plano de Trabalho 1 Conjunto dos Números Complexos Tarefa: 001 PLANO DE TRABALHO 1 Cursista: CLÁUDIO

Leia mais

Números Inteiros Algoritmo da Divisão e suas Aplicações

Números Inteiros Algoritmo da Divisão e suas Aplicações Números Inteiros Algoritmo da Divisão e suas Aplicações Diferentemente dos números reais (R), o conjunto dos inteiros (Z) não é fechado para a divisão. Esse não-fechamento faz com que a divisão entre inteiros

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

RESPOSTAS DA LISTA 5 (alguns estão com a resolução ou o resumo da resolução):

RESPOSTAS DA LISTA 5 (alguns estão com a resolução ou o resumo da resolução): Lista de Matemática Básica I - RESPOSTAS) RESPOSTAS DA LISTA alguns estão com a resolução ou o resumo da resolução): Resposta: < < < < < 8 Justificativa: observe que Também observe que: e são simétricos;

Leia mais

MAT Aula 14/ 30/04/2014. Sylvain Bonnot (IME-USP)

MAT Aula 14/ 30/04/2014. Sylvain Bonnot (IME-USP) MAT 0143 Aula 14/ 30/04/2014 Sylvain Bonnot (IME-USP) 2014 1 Resumo: 1 Site: http://www.ime.usp.br/~sylvain/courses.html 2 Derivada de sen, cos 3 Regra da cadeia 4 Funções inversas 5 Derivada da função

Leia mais

Aula demonstrativa Apresentação... 2 Relação das Questões Comentadas... 8 Gabaritos... 11

Aula demonstrativa Apresentação... 2 Relação das Questões Comentadas... 8 Gabaritos... 11 Aula demonstrativa Apresentação... Relação das Questões Comentadas... 8 Gabaritos... 11 1 Apresentação Olá pessoal! Saiu o edital para o TJ-SP. A banca organizadora é a VUNESP e esta é a aula demonstrativa

Leia mais

Exemplos de Aplicações das Funções Exponencial e Logarítmica em Biologia (com uma introdução às equações diferenciais)

Exemplos de Aplicações das Funções Exponencial e Logarítmica em Biologia (com uma introdução às equações diferenciais) Exemplos de Aplicações das Funções Exponencial e Logarítmica em Biologia (com uma introdução às equações diferenciais) Vejamos o seguinte exemplo retirado do livro de Kaplan e Glass (veja a bibliografia

Leia mais

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.

1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)

Leia mais

2. Conversões de base

2. Conversões de base 0 2. Conversões de base Antes de começar a programar é preciso entender como o computador representa a informação. E quando falamos em informação estamos falando basicamente de números, pois os caracteres,

Leia mais

a a = a² Se um número é multiplicado por ele mesmo várias vezes, temos uma a a a = a³ (a elevado a 3 ou a ao cubo) 3 fatores

a a = a² Se um número é multiplicado por ele mesmo várias vezes, temos uma a a a = a³ (a elevado a 3 ou a ao cubo) 3 fatores Operações com potências A UUL AL A Quando um número é multiplicado por ele mesmo, dizemos que ele está elevado ao quadrado, e escrevemos assim: Introdução a a = a² Se um número é multiplicado por ele mesmo

Leia mais

Estas caixas são interessantes, para aumenta-las, cada vez soma-se um número ímpar, em sequência: 1 1+3= = = =25

Estas caixas são interessantes, para aumenta-las, cada vez soma-se um número ímpar, em sequência: 1 1+3= = = =25 Pitágoras Bombons e tabuleiros. Pitágoras ficou muito conhecido pelo teorema que leva seu nome, talvez esse seja o teorema mais conhecido da matemática. O teorema de Pitágoras. De acordo com este teorema,

Leia mais

Integral Definida. a b x. a=x 0 c 1 x 1 c 2 x 2. x n-1 c n x n =b x

Integral Definida. a b x. a=x 0 c 1 x 1 c 2 x 2. x n-1 c n x n =b x Integral definida Cálculo de área Teorema Fundamental do cálculo A integral definida origina-se do problema para determinação de áreas. Historicamente, como descrito na anteriormente, constitui-se no método

Leia mais

Já parou para pensar sobre a utilização dos logaritmos? Para que eles servem?

Já parou para pensar sobre a utilização dos logaritmos? Para que eles servem? UMA NOÇÃO SOBRE LOGARÍTMOS Já parou para pensar sobre a utilização dos logaritmos? Para que eles servem? Vejamos o seguinte: Na América Latina, a população cresce a uma taxa de 3% ao ano, aproximadamente.

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Inequação do Segundo Grau Iva Emanuelly Pereira Lima - Engenharia Civil Na aula de hoje... Introdução e Exemplos de Inequação do Segundo Grau; Solucionando

Leia mais

MATEMÁTICA Sequência & Progressões 1. Professor Marcelo Gonsalez Badin

MATEMÁTICA Sequência & Progressões 1. Professor Marcelo Gonsalez Badin MATEMÁTICA Sequência & Progressões 1 Professor Marcelo Gonsalez Badin Seqüência Série Sucessão {2, 3, 5, 10} = {3, 10, 2, 5} Num conjunto não importa a ordem na qual os elementos são apresentados Conjunto

Leia mais

Capítulo 2- Funções. Dado dois conjuntos não vazios e e uma lei que associa a cada elemento de um único elemento de, dizemos que é uma função de em.

Capítulo 2- Funções. Dado dois conjuntos não vazios e e uma lei que associa a cada elemento de um único elemento de, dizemos que é uma função de em. Conceitos Capítulo 2- Funções O termo função foi primeiramente usado para denotar a dependência entre uma quantidade e outra. A função é usualmente denotada por uma única letra,,,... Definição: Dado dois

Leia mais

Curso: Análise e Desenvolvimento de Sistemas

Curso: Análise e Desenvolvimento de Sistemas Curso: Análise e Desenvolvimento de Sistemas Disciplina: Calculo para Tecnologia (Equação de 1o e 2o graus, Porcentagem, razão e proporção. Regra de três, Logaritmo, Funções Trigométricas ) Prof. Wagner

Leia mais

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira

TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira TE231 Capitulo 2 Zeros de Funções; Prof. Mateus Duarte Teixeira Sumário 1. Como obter raízes reais de uma equação qualquer 2. Métodos iterativos para obtenção de raízes 1. Isolamento das raízes 2. Refinamento

Leia mais

CADERNO DE EXERCÍCIOS 3C

CADERNO DE EXERCÍCIOS 3C CADERNO DE EXERCÍCIOS 3C Ensino Fundamental Matemática Questão Conteúdo 1 Interpretação gráfica. Razão. Porcentagem. Habilidade da Matriz da EJA/FB H52 H36 H14 2 Sistema de equações do 1º grau. H38 H44

Leia mais

Fundamentos de Arquiteturas de Computadores

Fundamentos de Arquiteturas de Computadores Fundamentos de Arquiteturas de Computadores Cristina Boeres Instituto de Computação (UFF) Conversões Entre Bases Numéricas Material de Fernanda Passos (UFF) Conversões Entre Bases Numéricas FAC 1 / 42

Leia mais

ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 1ª Série EM

ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 1ª Série EM ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 1ª Série EM REVISÃO 1) Uma pesquisa mostrou que 33% dos entrevistados lêem o jornal A, 29% lêem o jornal B,

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo LCE0130 Cálculo Diferencial e Integral Taciana Villela Savian Sala 304, pav. Engenharia, ramal 237 tvsavian@usp.br tacianavillela@gmail.com

Leia mais

ESTRUTURAS DE REPETIÇÃO - PARTE 2

ESTRUTURAS DE REPETIÇÃO - PARTE 2 AULA 16 ESTRUTURAS DE REPETIÇÃO - PARTE 2 16.1 A seqüência de Fibonacci Um problema parecido, mas ligeiramente mais complicado do que o do cálculo do fatorial (veja as notas da Aula 14), é o do cálculo

Leia mais

Aula 7: Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k

Aula 7: Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k Aula 7: Representações de Números Inteiros: Sinal e Magnitude e Representação em Excesso de k Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF)

Leia mais

Sessão 1: Generalidades

Sessão 1: Generalidades Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2018.1 Gabarito Questão 01 [ 1,25 ::: (a)=0,50; (b)=0,75 ] Isótopos radioativos de um elemento químico estão sujeitos a um processo de decaimento

Leia mais

O Decaimento Radioativo (6 aula)

O Decaimento Radioativo (6 aula) O Decaimento Radioativo (6 aula) O decaimento Radioativo Famílias Radioativas Formação do Material Radioativo O Decaimento Radioativo Quando um átomo instável emite partículas a, b, ou radiação g, ele

Leia mais

Planificação a médio e longo prazo. Matemática B. 11º Ano de escolaridade. Total de aulas previstas: 193. Ano letivo 2015/2016

Planificação a médio e longo prazo. Matemática B. 11º Ano de escolaridade. Total de aulas previstas: 193. Ano letivo 2015/2016 Planificação a médio e longo prazo Matemática B 11º Ano de escolaridade. Total de aulas previstas: 193 Ano letivo 2015/2016 Professor responsável: Paulo Sousa I O programa Matemática B do 11º Ano - Página

Leia mais

Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos

Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos Conjuntos e Relações Capítulo Neste capítulo você deverá: Identificar e escrever os tipos de conjuntos, tais como, conjunto vazio, unitário, finito, infinito, os conjuntos numéricos, a reta numérica e

Leia mais

A equação da reta. são números conhecidos. Seja então (x, y) um ponto qualquer dessa reta. e y 2. , x 2

A equação da reta. são números conhecidos. Seja então (x, y) um ponto qualquer dessa reta. e y 2. , x 2 A equação da reta A UUL AL A Vamos, nesta aula, retomar o assunto que começamos a estudar nas Aulas 9 e 30: a equação da reta. Aprenderemos hoje outra forma de obter a equação da reta e veremos diversas

Leia mais

Material Teórico - Módulo de Função Exponencial. Inequações Exponenciais. Primeiro Ano - Médio

Material Teórico - Módulo de Função Exponencial. Inequações Exponenciais. Primeiro Ano - Médio Material Teórico - Módulo de Função Exponencial Inequações Exponenciais Primeiro Ano - Médio Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Generalidades sobre inequações Recordemos

Leia mais

RESOLUÇÃO DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA Considere a soma. S n = n 2 n 1

RESOLUÇÃO DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA Considere a soma. S n = n 2 n 1 DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA 1 1. Considere a soma S n = 1 2 0 + 2 2 1 + 3 2 2 + + n 2 n 1. Mostre, por indução finita, que S n = (n 1)2 n + 1. Indique claramente a base da indução, a

Leia mais

Dada uma função contínua a(t) definida num intervalo I = [0, T ], considere o problema x = a(t) x, x(0) = x 0. (1) Solução do Problema. 0 a(s) ds.

Dada uma função contínua a(t) definida num intervalo I = [0, T ], considere o problema x = a(t) x, x(0) = x 0. (1) Solução do Problema. 0 a(s) ds. Lei Exponencial Dada uma função contínua a(t) definida num intervalo I = [, T ], considere o problema x = a(t) x, x() = x. (1) Solução do Problema O problema (1) admite uma única solução, que é explicitamente

Leia mais

MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli

MINICURSO. Uso da Calculadora Científica Casio Fx. Prof. Ms. Renato Francisco Merli MINICURSO Uso da Calculadora Científica Casio Fx Prof. Ms. Renato Francisco Merli Sumário Antes de Começar Algumas Configurações Cálculos Básicos Cálculos com Memória Cálculos com Funções Cálculos Estatísticos

Leia mais

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015

Cálculo Numérico. Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 Cálculo Numérico Santos Alberto Enriquez-Remigio FAMAT-UFU 2015 1 Capítulo 1 Solução numérica de equações não-lineares 1.1 Introdução Lembremos que todo problema matemático pode ser expresso na forma de

Leia mais

Química Geral e Experimental II: Cinética Química. Prof. Fabrício Ronil Sensato

Química Geral e Experimental II: Cinética Química. Prof. Fabrício Ronil Sensato Química Geral e Experimental II: Cinética Química Prof. Fabrício Ronil Sensato Resolução comentada de exercícios selecionados. Versão v2_2005 2 1) Para a reação em fase gasosa N 2 + 3H 2 2NH 3, 2) A decomposição,

Leia mais

Matéria: Raciocínio Lógico-Matemático Concurso: Policial Rodoviário Federal - PRF 2019 Professor: Alex Lira

Matéria: Raciocínio Lógico-Matemático Concurso: Policial Rodoviário Federal - PRF 2019 Professor: Alex Lira Concurso: Policial Rodoviário Federal - PRF 2019 Professor: Alex Lira Prova comentada: Policial Rodoviário Federal PRF 2019 Raciocínio Lógico-Matemático SUMÁRIO CONTEÚDO PROGRAMÁTICO PREVISTO NO EDITAL...

Leia mais

Funções potência da forma f (x) =x n, com n N

Funções potência da forma f (x) =x n, com n N Folha 1 Matemática Básica Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Funções potência da forma f (x) =x n, com n N Parte 08 Parte 8 Matemática Básica 1

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 11 28 de maio de 2010 Aula 11 Pré-Cálculo 1 A função raiz quadrada f : [0, + ) [0, + ) x y

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

AULA 7- FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS VERSÃO 1 - MAIO DE 2018

AULA 7- FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS VERSÃO 1 - MAIO DE 2018 CURSO DE BIOMEDICINA CENTRO DE CIÊNCIAS DA SAÚDE UNIVERSIDADE CATÓLICA DE PETRÓPOLIS MATEMÁTICA AULA 7- FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS VERSÃO 1 - MAIO DE 2018 Professor: Luís Rodrigo E-mail: luis.goncalves@ucp.br

Leia mais

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de :

Para simplificar a notação, também usamos denotar uma sequência usando apenas a imagem de : Sequências Uma sequência é uma função f de em, ou seja. Para todo número natural i associamos um número real por meio de uma determinada regra de formação. A sequencia pode ser denotada por: Ou, por meio

Leia mais

Fundação CECIERJ/Consórcio CEDERJ Formação Continuada em Matemática Tarefa 2: Plano de Trabalho

Fundação CECIERJ/Consórcio CEDERJ Formação Continuada em Matemática Tarefa 2: Plano de Trabalho Fundação CECIERJ/Consórcio CEDERJ Formação Continuada em Matemática Tarefa 2: Plano de Trabalho Matemática 1 Ano - 4º Bimestre/2014 Trigonometria na circunferência Cursista: Soraya de Oliveira Coelho Tutor:

Leia mais

Matemática I Tecnólogo em Construção de Edifícios e Tecnólogo em Refrigeração e Climatização

Matemática I Tecnólogo em Construção de Edifícios e Tecnólogo em Refrigeração e Climatização 35 Funções A função é um modo especial de relacionar grandezas. Por eemplo, como escrevemos o deslocamento de um móvel em movimento retilíneo variado dependendo do tempo? E se o móvel está em movimento

Leia mais

Módulo de Progressões Geométricas. 1 a série E.M. Professores Tiago Miranda e Cleber Assis

Módulo de Progressões Geométricas. 1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Progressões Geométricas Definição e Lei de Formação 1 a série E.M. Professores Tiago Miranda e Cleber Assis Progressões Geométrica Definição e Lei de Formação 1 Exercícios Introdutórios Exercício

Leia mais

Múltiplos, Divisores e Primos II - Aula 07

Múltiplos, Divisores e Primos II - Aula 07 Múltiplos, Divisores e Primos II - Aula 07 Após a apresentação dos conceitos de divisor e múltiplo, é possível se perguntar se existem números que possuem o mesmo divisor ou o mesmo múltiplo. A ideia desse

Leia mais