n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas

Tamanho: px
Começar a partir da página:

Download "n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas"

Transcrição

1 n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas Sejam as retas r1, que passa pelo ponto A (x1, y1, z1) e tem a direção de um vetor v 1 = (a1, b1, c1), e r2, que passa pelo ponto A2 (x2, y2, z2) e tem a direção de um vetor v 2 = (a2, b2, c2) Chama-se ângulo de duas retas r1 e r2 o menor ângulo de um vetor diretor de r1 e de um vetor diretor de r2. Logo, sendo θ este ângulo, temse: cos θ = v 1. v 2 v 1 v 2 Em coordenadas: Relembrando: Seno Cosseno Tangente

2 Exercício: 1. Calcular o ângulo entre as retas: x = 3 + t r1: y = t r2: x + 2 = y z = 1 2 t = z 1 R: 60 graus a) Primeiro temos que achar quem são os vetores que definem as direções das retas r1 e r2: v 1 = (1, 1, - 2) e v 2 = ( - 2, 1, 1) Aplicando a fórmula: cos θ = v 1. v 2 v 1 v 2 cos θ = (1,1, 2).( 2,1,1 ) v 1 v 2 Resposta: cos θ = 1 2 = 60 graus

3 Condição de paralelismo de duas retas Para que duas retas r1 e r2 sejam paralelas, o vetor v 1 de r1 deve ser igual a uma variável que multiplica o vetor v 2 de r2. Logo: v 1 = m v 2 ou a 1 a 2 = b 1 b 2 = c 1 c 2 Ou seja, qualquer reta r2, paralela a r1, tem parâmetros diretores (a2, b2, c2), proporcionais aos parâmetros diretores (a1, b1, c1), de r1. Exemplo: 1. Verifique se a reta r1 que passa pelos pontos A1 ( -3, 4, 2) e B1 (5, -2, 4) e a reta r2 que passa pelos pontos A2 ( - 1, 2, -3) e B2 (- 5, 5, - 4) são paralelas. R: São

4 2. Verifique se as retas r1 e r2 são paralelas. R: São y = 2x 3 r 1 : { z = 4x + 5 y = 2x + 1 e r 2 : { z = 4x Resoluções: 1. Verifique se a reta r1 que passa pelos pontos A1 ( -3, 4, 2) e B1 (5, -2, 4) e a reta r2 que passa pelos pontos A2 ( - 1, 2, -3) e B2 (- 5, 5, - 4) são paralelas. A1 B1 = (8, - 6, 2) A2 B2 = (- 4, 3, - 1) 8 = 6 = logo: - 2 = - 2 = -2 R: São 2. Verifique se as retas são paralelas: y = 2x 3 r 1 : { z = 4x + 5 y = 2x + 1 e r 2 : { z = 4x x = y+3 2 e x = z 5 4 Logo, r 1 (1, 2, 4) x = y 1 2 e x = z 4 Logo, r 2 (1, 2, 4) 1 = 2 = = 1= 1 R: São

5 Condição de ortogonalidade entre duas retas Para que duas retas r1 e r2 sejam ortogonais o produto interno/ou escalar entre os vetores deve ser igual a zero. v 1. v 2 = 0 (a1, b1, c1 ). (a2, b2, c2 ) = 0 Ou, a1 a2 + b1 b2 + c1 c2 = 0 Usamos o termo: ortogonal quando as retas não estão no mesmo plano perpendicular quando as retas estão no mesmo plano Exemplo: 1. Dada a reta r: (x1, y1, z1) = (1, 1, 1 ) + t (2, 1, -3) e a reta s: (x2, y2, z2) = (0, 1, 0) + t (-1, 2, 0), verifique se são ortogonais. R: São ortogonais. 2. Sejam as retas t e k, verifique se são ortogonais. t: { x 3 8 y = 3 = z e k: { x 3 = y = z 3 4 R: São ortogonais. Representação: 1.

6 Condição de coplanaridade de duas retas A reta r1, que passa por um ponto A1 (x1, y1, z1) e tem a direção de um vetor v 1 = (a1, b1, c1) e a reta r2, que passa por um ponto A2 (x2, y2, z2) e tem a direção de um vetor v 2 = (a2, b2, c2) são coplanares se os vetores v 1, v 2 e A 1 2 forem coplanares, isto é, se for nulo o produto misto: ( v 1, v 2, A ) 1 2 a 1 b 1 c 1 ( v 1, v 2, A ) 1 2 = a 2 b 2 c 2 = 0 x 2 x 1 y 2 y 1 z 2 z 1

7 Exemplo: 1. Determine o valor de m para que as retas r1 e r2 sejam coplanares: R: m = 3 y = mx + 2 r 1 : { z = 3x 1 x = t e r 2 : { y = 1 + 2t z = 2t 2. Verifique se as retas r e s são coplanares: r: { x 2 2 = y 3 = z 5 4 e s: { x+ 5 1 = y = z 6 3 R: As retas r e s são coplanares. Resoluções: 1. Determine o valor de m para que as retas r1 e r2 sejam complanares: y = mx + 2 r 1 : { z = 3x 1 x = t e r 2 : { y = 1 + 2t z = 2t r 1 : x = y 2 m e x = z Logo: x = y 2 = z + 1 m 3 Ponto de r 1 : A (0, 2, -1) e v 1 = (1, m, 3) r 2 : Ponto de r 2 : B (0, 1, 0) e v 2 = (1, 2, 2) AB = B A = (0, 1, 0 ) ( 0, 2, -1) = (0, - 1, 1)

8 1 m 3 (v 1, v, 2 ) AB = m 1 2 = (v 1, v, 2 ) AB = m = 0 3 m = 0 m = 3 Para m = -3 as retas são coplanares, ou seja, o produto misto é igual a zero. 2. Verifique se as retas r e s são coplanares: r: { x 2 2 = y 3 = z 5 4 e s: { x+ 5 1 = y = z 6 3 Ponto de r: A (2, 0, 5) e v 1 = (2, 3, 4) Ponto de s: B (- 5, - 3, 6 ) e v 2 = ( 1, 1, 3) AB = B A = (- 5, - 3, 6 ) (2, 0, 5) = (- 7, - 3, 1) (v 1, v, 2 ) AB = = (v 1, v, 2 ) AB = = = 0 R: As retas r e s são coplanares.

9 Intersecção entre retas O ponto de intersecção entre duas retas é o ponto I (x, y, z), tal que suas coordenadas satisfazem o sistema formado pelas equações de r1 e r2, isto é, I (x, y, z) é a solução do sistema. Exemplo: 1. Dadas duas retas r1 e r2 coplanares e não paralelas, logo, são concorrentes, então, calcule o ponto de interseção: y = 3x + 2 r 1 : { z = 3x 1 x = t e r 2 : { y = 1 + 2t z = 2t r 1 : {x = y 2 3 = z e r 2 : { x 1 = y 1 2 v r1 = (1, 3, 3) e v r2 = ( 1, 2, 2) A r1 = (0, 2, 1) e B r2 = (0, 1, 0) = z 2 y = 3x + 2 z = 3x 1 x = t y = 1 + 2t { z = 2t Eliminando t nas 3 últimas equações: x = - t então t = - x Logo, y = 3x + 2 z = 3x 1 x = t y = 1 + 2( x) y = 1 2x { z = 2( x) z = 2x Mas, z = 2 x e z = - 3 x + 2 logo, x = 1

10 Então, z = 2 e y = - 1 Logo, o ponto de interseção é I = (1, -1, 2)

11 2. Calcular o ponto de interseção entre as retas: a. r: { y = 3x 1 z = 2x + 1 e s: { y=4x 2 z=3x b. r: { y = 2x 3 z = 4x 10 e s: {x = y 7 3 = z 12 7 Exercícios resolvidos: 2. Calcular o ponto de interseção entre as retas: a. r: { y = 3x 1 z = 2x + 1 e s: { y=4x 2 z=3x 1) y = 3 x 1 2) z = 2 x + 1 3) y = 4 x - 2 4) z = 3 x Logo, de 1 e 3: 3 x 1 = 4 x 2 x = 1 (5) 5 em 4: z = 3 (1) z = 3 5 em 3: y = 4 (1) - 2 y = 2 O ponto de interseção entre as retas r e s é: I (1, 2, 3) b. r: { y = 2x 3 z = 4x 10 e s: {x = y 7 3 = z 12 7 Achando as reduzidas da reta s: - 3 x = y 7 y = - 3 x x = z 12 z = - 7 x + 12

12 1) y = 2 x 3 2) z = 4 x ) y = - 3 x + 7 4) z = - 7 x + 12 Logo, de 1 e 3: 2 x 3 = - 3 x x = 10 x = 2 (5) 5 em 4: z = - 7 (2) + 12 z = = em 3: y = - 3 (2) + 7 y = 1 O ponto de interseção entre as retas r e s é: I (2, 1, -2) Retomada das equações da reta: Equação geral de uma reta A equação geral é da forma: ax + by + c = 0 Aplicando a regra de Sarrus para obter o discriminante de uma matriz quadrada de ordem 3 x 3, temos que ter no mínimo 2 pares ordenados (x, y) dos possíveis pontos alinhados. Exemplo: Dado um ponto e o vetor diretor da reta. AP = t v AP = P A = (x x 1, y y 1, z z 1 ) v = (a, b, c) x x 1 y y 1 z z 1 a b c 1 1 1

13 Vetorial: P = A + t v (x, y, z) = (x 1, y 1, z 1 ) + t (a, b, c) x = x 1 + a t Paramétricas: y = y 1 + b t { z = z 1 + c t Simétricas: x x 1 a = y y 1 b = z z 1 c Reduzida: 1º achar as equações simétricas, depois deixar y em função de x e z, ou, de acordo com a variável independente indicada. Colinearidade entre três pontos: A 1 2 = m A 1 3 x 1 y 1 z 1 m = x 2 x 1 = y 2 y 1 = z 2 z 1 ou = 0 x 2 y 2 z 2 = 0 x 3 x 1 y 3 y 1 z 3 z 1 x 3 y 3 z 3 Ângulo entre duas retas: cos θ = v 1.v 2 v 1 v 2 Paralelismo entre duas retas: Ortogonalidade entre duas retas: v 1. v 2 = 0 a1 a2 + b1 b2 + c1 c2 = 0 v 1 = m v 2 a 1 a 2 = b 1 b 2 = c 1 c 2

14 Coplanaridade: a 1 b 1 c 1 ( v 1, v 2, A ) 1 2 = a 2 b 2 c 2 = 0 x 2 x 1 y 2 y 1 z 2 z 1 Coplanaridade entre pontos: A, B, C e D u AB, AC, AD = (u, v, w ) = v = 0 w Interseção entre duas retas: se forem coplanares e não paralelas, logo, são concorrentes em um ponto de interseção. Relembrando: Se r1 e r2 forem paralelas, serão coplanares, logo ( v 1, v 2, A ) 1 2 = 0 Se r1 e r2 não forem paralelas e forem coplanares, então elas são concorrentes Se o determinante de ( v 1, v 2, A ) as retas r1 e r2 são reversas Duas retas no espaço R 3 podem ser: paralelas, concorrentes ou reversas.

15 Duas retas são paralelas se elas não possuem interseção e estão em um mesmo plano. Duas retas são concorrentes se elas têm um ponto em comum. As retas perpendiculares são retas concorrentes que formam entre si um ângulo reto. Duas retas são ditas reversas quando uma não tem interseção com a outra e elas não são paralelas. Isto significa que elas estão em planos diferentes. Referências Bibliográficas BOULOS, P. e CAMARGO, I. de. Geometria analítica: um tratamento vetorial. São Paulo: McGraw- Hill, NUNES, Luiz Fernando. Notas de aula: Matemática 1. Professor do Departamento de Matemática da Universidade Tecnológica Federal do Paraná UTFPR. STEINBRUCH, A. e WINTERLE, P. Geometria analítica. São Paulo: Pearson-Makron Books, VALLADARES, R. J. C. Geometria analítica do plano e do espaço. Rio de Janeiro: LTC, 1990.

n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta

n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta n. 17 ESTUDO DA RETA: equações Uma direção e um ponto determinam uma reta Dois pontos determinam uma reta Equação geral de uma reta Para determinar a equação geral de uma reta utilizamos os conceitos relacionados

Leia mais

n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações

n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações Vetor normal (ortogonal) a uma reta - R plano: (x, y) Considere a reta r do plano cartesiano, de equação ax + by

Leia mais

n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Como o versor é um vetor unitário, temos que v = 1

n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Como o versor é um vetor unitário, temos que v = 1 n. 9 VERSOR_EXPRESSÃO CARTESIANA_PARALELISMO_COPLANARIDADE_ COLINEARIDADE Definição Dado um vetor u 0, chama-se versor do vetor u, um vetor unitário, paralelo e de mesmo sentido que u. Logo, se considerarmos

Leia mais

n. 20 EQUAÇÃO GERAL DO PLANO O plano π pode ser definido como o conjunto de todos os pontos P (x, y, z) do

n. 20 EQUAÇÃO GERAL DO PLANO O plano π pode ser definido como o conjunto de todos os pontos P (x, y, z) do n. 20 EQUAÇÃO GERAL DO PLANO Seja A (x 1, y 1, z 1 ) um ponto que pertence ao plano π e n = a i + b j + c k, sendo n (0, 0, 0) um vetor ortogonal ao plano. O plano π pode ser definido como o conjunto de

Leia mais

n. 12 PRODUTO VETORIAL ou PRODUTO EXTERNO

n. 12 PRODUTO VETORIAL ou PRODUTO EXTERNO n. 12 PRODUTO VETORIAL ou PRODUTO EXTERNO O produto vetorial é uma operação binária sobre vetores em um espaço vetorial. Seu resultado difere do produto escalar por ser também um vetor, ao invés de um

Leia mais

Geometria Analítica. Estudo da Reta. Prof Marcelo Maraschin de Souza

Geometria Analítica. Estudo da Reta. Prof Marcelo Maraschin de Souza Geometria Analítica Estudo da Reta Prof Marcelo Maraschin de Souza Reta Considere um ponto A(x 1, y 1, z 1 ) e um vetor não-nulo v = a, b, c. Só existe uma reta r que passa por A e tem a direção de v.

Leia mais

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2

n. 15 ÁREA DE UM TRIÂNGULO Logo, a área do triângulo é obtida calculando-se a metade da área do S = 1 2 n. 15 ÁREA DE UM TRIÂNGULO Do cálculo da área do paralelogramo temos: S ABCD = u x v Logo, a área do triângulo é obtida calculando-se a metade da área do paralelogramo, portanto S ABC = 1 u x v Assim,

Leia mais

A Reta. Docente Pedro Macário de Moura

A Reta. Docente Pedro Macário de Moura A Reta Docente Pedro Macário de Moura A Matemática é a única linguagem que temos em comum com a natureza. Hawking. A Matemática é a honra do espírito 2 Equação Vetorial da Reta Seja r uma reta que passa

Leia mais

GA - Retas no espaço euclidiano tridimensional

GA - Retas no espaço euclidiano tridimensional 1 GA - Retas no espaço euclidiano tridimensional Prof. Fernando Carneiro, IME-UERJ Rio de Janeiro, Março de 014 Conteúdo 1 O que é reta Equação paramétrica de uma reta.1 Exemplos...........................

Leia mais

Componente Curricular: ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA PLANO DE CURSO

Componente Curricular: ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA PLANO DE CURSO C U R S O D E E N G E N H A R IA C IVIL Autorizado pela Portaria nº 276, de 30/05/15 DOU de 31/03/15 Componente Curricular: ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA Código: Pré-requisito: ----- Período Letivo:

Leia mais

I Lista Introodução a Planos

I Lista Introodução a Planos Colegiado de Engenharia Elétrica Prof. Pedro Macário de Moura Pedro.mmoura@univasf.edu.br Geometria Analítica 201.2 Discente CPF Turma I Lista Introodução a Planos 01. Determine a equação do plano que

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

01. Determinar as equações da reta que passa pelo ponto A( 2, 3, 2) e tem a. = 2x. v são: b c

01. Determinar as equações da reta que passa pelo ponto A( 2, 3, 2) e tem a. = 2x. v são: b c 01. Determinar as equações da reta que passa pelo ponto A(, 3, ) e tem a direção do vetor v = 3 i + k. a = 3 As componentes do vetor v são: b = 0. c = Tendo em vista que b = 0, a reta se acha num plano

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015 MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base

Leia mais

Disciplina: Álgebra Linear e Geometria Analítica

Disciplina: Álgebra Linear e Geometria Analítica Disciplina: Álgebra Linear e Geometria Analítica Vigência: a partir de 2002/1 Período letivo: 1 semestre Carga horária Total: 60 h Código: S7221 Ementa: Geometria Analítica: O Ponto, Vetores, A Reta, O

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Álgebra Linear e Geometria Analítica Prof. Aline Paliga EMENTA Vetores Dependência Linear Bases Produto Escalar Produto Vetorial Produto Misto Coordenadas Cartesianas

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO CURSOS Bacharelados e Licenciaturas MATRIZ SA (Informação do Sistema Acadêmico) FUNDAMENTAÇÃO LEGAL Resolução

Leia mais

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 P L A N O D E E N S I N O DEPARTAMENTO: Matemática DISCIPLINA: Geometria Analítica PROFESSORA: Viviane Maria Beuter SIGLA: GAN0001 CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 CURSO(S): Engenharia

Leia mais

Geometria Analítica - Retas e Planos

Geometria Analítica - Retas e Planos Geometria Analítica - Retas e Planos Cleide Martins DMat - UFPE Turmas E1 e E3 Cleide Martins (DMat - UFPE) Ângulos Turmas E1 e E3 1 / 10 Objetivos 1 Estudar ângulos entre retas, entre planos e entre retas

Leia mais

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 P L A N O D E E N S I N O DEPARTAMENTO: Matemática PROFESSORA: Ivanete Zuchi Siple DISCIPLINA: Álgebra I SIGLA: ALG1001 CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 CURSO(S): turma não exclusiva

Leia mais

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0

P L A N O D E E N S I N O. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a PRÁTICA: 0 P L A N O D E E N S I N O DEPARTAMENTO: Matemática PROFESSORA: Katiani da Conceição Loureiro katiani.loureiro@udesc.br DISCIPLINA: Geometria Analítica SIGLA: GAN 0001 CARGA HORÁRIA TOTAL: 72 h/a TEORIA:

Leia mais

MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva.

MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva. MAT 11 - VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 015 LISTA Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva. 1. Sejam A = (1, 1, 1), B = (0, 0, 1) e r : X = (1, 0, 0) + λ(1, 1,

Leia mais

PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL

PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL Resolução

Leia mais

DISCIPLINA: Geometria Analítica e Álgebra Linear SIGLA: ALGA001 T/A. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a

DISCIPLINA: Geometria Analítica e Álgebra Linear SIGLA: ALGA001 T/A. CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72 h/a P L A N O D E E N S I N O DEPARTAMENTO: Matemática PROFESSOR: Rafael Camargo Rodrigues de Lima DISCIPLINA: Geometria Analítica e Álgebra Linear SIGLA: ALGA001 T/A CARGA HORÁRIA TOTAL: 72 h/a TEORIA: 72

Leia mais

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS CONSELHO DE GRADUAÇÃO DISCIPLINA: GEOMETRIA ANALÍTICA E ÁLGEBRA VETORIAL CÓDIGO: 2DB.004 VALIDADE: Início: 01/2013 Término: Eixo: Matemática Carga Horária: Total: 75 horas/ 90 horas-aula Semanal: 06 aulas Créditos: 6 Modalidade:

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear AULA 1 - Matrizes Prof. Dr. Hércules A. Oliveira UTFPR - Universidade Tecnológica Federal do Paraná, Ponta Grossa Departamento Acadêmico de Matemática Ementa 1. Matrizes 2. Determinantes 3. Sistemas de

Leia mais

RELEMBRANDO... CÁLCULO DA MATRIZ INVERSA:

RELEMBRANDO... CÁLCULO DA MATRIZ INVERSA: RELEMBRANDO... CÁLCULO DA MATRIZ INVERSA: determinantes Se o determinante da matriz é diferente de zero existe a inversa, logo: det M 0 M -1 1 =. M det M Quem é M? É a matriz adjunta, que é a matriz transposta

Leia mais

PLANEJAMENTO SEMESTRAL PERÍODO LETIVO 2018/01

PLANEJAMENTO SEMESTRAL PERÍODO LETIVO 2018/01 PLANEJAMENTO SEMESTRAL PERÍODO LETIVO 2018/01 1. IDENTIFICAÇÃO Nome da Atividade de ensino: SNP33D05/1 GEOMETRIA ANALÍTICA Curso de Oferecimento: LICENCIATURA PLENA EM MATEMÁTICA Caráter: Obrigatório Pré-requisitos:

Leia mais

Lista 5. Em toda a lista, as coordenadas referem-se a um sistema de coordenadas fixo (O; i, j, k)

Lista 5. Em toda a lista, as coordenadas referem-se a um sistema de coordenadas fixo (O; i, j, k) UFPR - Universidade Federal do Paraná Departamento de Matemática CM045 - Geometria Analítica Prof. José Carlos Eidam Lista 5 Em toda a lista, as coordenadas referem-se a um sistema de coordenadas fixo

Leia mais

Cálculo Vetorial. Estudo da Reta Prof. Vasco Ricardo Aquino da Silva

Cálculo Vetorial. Estudo da Reta Prof. Vasco Ricardo Aquino da Silva Cálculo Vetorial Estudo da Reta Prof. Vasco Ricardo Aquino da Silva 1. Equação Vetorial da Reta r Consideremos a reta r que passa pelo ponto vetor não nulo e tem a direção do Sendo um ponto qualquer (variável)

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba PLANO DE ENSINO CURSOS Bacharelados e Licenciaturas MATRIZ SA (Informação do Sistema Acadêmico) FUNDAMENTAÇÃO LEGAL Resolução

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Bacharelado em Meteorologia 1604 / Física. Ênfase

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Bacharelado em Meteorologia 1604 / Física. Ênfase Curso 1701 - Bacharelado em Meteorologia 1604 / 1605 - Física Ênfase Identificação Disciplina 0007003A - Cálculo Vetorial e Geometria Analítica Docente(s) Maria Ednéia Martins Salandim Unidade Faculdade

Leia mais

Lista 4 com respostas

Lista 4 com respostas Lista 4 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2018 Exercício 1. Estude a posição relativa das retas r e s. (a) r : X = (1, 1, 1) + λ( 2, 1, 1), s : (b) r : { { x y z = 2

Leia mais

Lista de Exercícios de Cálculo 3 Primeira Semana

Lista de Exercícios de Cálculo 3 Primeira Semana Lista de Exercícios de Cálculo 3 Primeira Semana Parte A 1. Se v é um vetor no plano que está no primeiro quadrante, faz um ângulo de π/3 com o eixo x positivo e tem módulo v = 4, determine suas componentes.

Leia mais

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY IDENTIFICAÇÃO PLANO DE ENSINO Curso: Engenharia Mecânica Período/Módulo: 1º Período Disciplina/Unidade Curricular: Geometria Analítica Código:

Leia mais

Planos no Espaço. Laura Goulart. 28 de Agosto de 2018 UESB. Laura Goulart (UESB) Planos no Espaço 28 de Agosto de / 31

Planos no Espaço. Laura Goulart. 28 de Agosto de 2018 UESB. Laura Goulart (UESB) Planos no Espaço 28 de Agosto de / 31 Planos no Espaço Laura Goulart UESB 28 de Agosto de 2018 Laura Goulart (UESB) Planos no Espaço 28 de Agosto de 2018 1 / 31 Equação Vetorial do Plano Um dos axiomas de Geometria Espacial nos diz que três

Leia mais

n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS

n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS n. 35 AUTOVALORES e AUTOVETORES ou VALORES e VETORES PRÓPRIOS ou VALORES CARACTERÍSTICOS e VETORES CARACTERÍSTICOS Aplicações: estudo de vibrações, dinâmica populacional, estudos referentes à Genética,

Leia mais

Geometria analítica - Programação linear

Geometria analítica - Programação linear Ga - Programação linear 1 Geometria analítica - Programação linear Período de 014.1 - Prof. Fernando Carneiro Rio de Janeiro, Junho de 014 1 Introdução Estudaremos as retas no plano euclidiano bidimensional

Leia mais

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>.

Figura disponível em: <http://soumaisenem.com.br/fisica/conhecimentos-basicos-e-fundamentais/grandezas-escalares-egrandezas-vetoriais>. n. 7 VETORES vetor é um segmento orientado; são representações de forças, as quais incluem direção, sentido, intensidade e ponto de aplicação; o módulo, a direção e o sentido caracterizam um vetor: módulo

Leia mais

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru

Plano de Ensino. Identificação. Câmpus de Bauru Curso 2902 / 2903B - Bacharelado em Química Ambiental Tecnológica 2802 - Bacharelado em Sistemas de Informação Ênfase Identificação Disciplina 0007101A - Geometria Analítica e Álgebra Linear Docente(s)

Leia mais

Lista 4 com respostas

Lista 4 com respostas Lista 4 com respostas Professora Nataliia Goloshchapova MAT0 - semestre de 05 Exercício. Estude a posição relativa das retas r e s. (a) r : X = (,, ) + λ(,, ), s : (b) r : x y z = x y = 5 x + y z = 0,

Leia mais

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1). GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Vetores, Retas e Planos

Álgebra Linear e Geometria Anaĺıtica. Vetores, Retas e Planos universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 3 Vetores, Retas e lanos roduto interno em R n [3 01] Dados os vetores X =

Leia mais

MINISTÉRIO DA EDUCAÇÃO

MINISTÉRIO DA EDUCAÇÃO IDENTIFICAÇÃO Unidade Curricular: Geometria Analitica MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS

Leia mais

Ga no plano 1. GA no plano. Prof. Fernando Carneiro Rio de Janeiro, Outubro de u v = aa + bb.

Ga no plano 1. GA no plano. Prof. Fernando Carneiro Rio de Janeiro, Outubro de u v = aa + bb. Ga no plano 1 GA no plano Prof. Fernando Carneiro Rio de Janeiro, Outubro de 015 1 Introdução Estudaremos as retas no plano euclidiano bidimensional e uma interessante aplicação, que recebe o nome de programação

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geometria Analítica e Álgebra Linear Vetores no Espaço Professor: Luiz Fernando Nunes, Dr. 019/Sem_01 Índice Vetores no Espaço Tridimensional... 1.1 Definição... 1. Operações com vetores...

Leia mais

Geometria Analítica l - MAT Lista 6 Profa. Lhaylla Crissaff

Geometria Analítica l - MAT Lista 6 Profa. Lhaylla Crissaff Geometria Analítica l - MAT 0016 Lista 6 Profa. Lhaylla Crissaff 1. Encontre as equações paramétricas e cartesiana do plano π que passa pelos pontos A = (1, 0, ), B = (1,, 3) e C = (0, 1, ).. Prove que

Leia mais

Lista 3.2: Retas - Planos e Distâncias PARTE 1: RETAS. 1. Verificar se os pontos P 1 (5, 5,6) e P 2 (4, 1,12) pertencem à reta r : x 3 1 = y + 1

Lista 3.2: Retas - Planos e Distâncias PARTE 1: RETAS. 1. Verificar se os pontos P 1 (5, 5,6) e P 2 (4, 1,12) pertencem à reta r : x 3 1 = y + 1 Curso:Licenciatura em Matemática Professor: Luis Gustavo Longen Lista 3.: Retas - Planos e Distâncias PARTE 1: RETAS 1. Verificar se os pontos P 1 (5, 5,6) e P (4, 1,1) pertencem à reta r : x 3 1 = y +

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO. CURSO Engenharia Elétrica MATRIZ 548

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO. CURSO Engenharia Elétrica MATRIZ 548 Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Medianeira PLANO DE ENSINO CURSO Engenharia Elétrica MATRIZ 548 FUNDAMENTAÇÃO LEGAL Processo N 00/11, aprovado pela Resolução n.

Leia mais

Da aula passada... Posição relativa entre duas retas no espaço: { paralelas concorrentes COPLANARES. NÃO COPLANARES = reversas

Da aula passada... Posição relativa entre duas retas no espaço: { paralelas concorrentes COPLANARES. NÃO COPLANARES = reversas Simulados Na semana passada foi divulgado o primeiro simulado de gaal: vetores e produto escalar. Hoje será divulgado o segundo simulado: retas, planos e produto vetorial. Procure Monitoria GAAL 2013/1

Leia mais

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA Álgebra Linear e Geometria Analítica Prof. Aline Paliga EMENTA Vetores Dependência Linear Bases Produto Escalar Produto Vetorial Produto Misto Coordenadas Cartesianas

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U Credenciamento Portaria MEC 3.613, de 08.11.2004 - D.O.U. 09.11.2004. MATEMÁTICA, LICENCIATURA / Geometria Analítica Unidade de aprendizagem Organizando a matemática e a vida através de linhas e colunas

Leia mais

1. Encontre as equações simétricas e paramétricas da reta que:

1. Encontre as equações simétricas e paramétricas da reta que: Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: retas; planos; interseções de retas e planos; posições relativas entre retas e planos; distância

Leia mais

EQUAÇÕES DE RETAS E PLANOS

EQUAÇÕES DE RETAS E PLANOS UNIVERSIDADE FEDERAL DO RIO GRANDE - FURG INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E FÍSICA - IMEF FABÍOLA AIUB SPEROTTO DAIANE SILVA DE FREITAS EQUAÇÕES DE RETAS E PLANOS NO ESPAÇO 1 Edição Rio Grande 2018

Leia mais

, a equação. x, y x, y k. u, u, k. x, y 2, 3 k. 1, 2, k. Exemplo: Determina uma equação reduzida da reta que tem declive 3 e ordenada na origem 2.

, a equação. x, y x, y k. u, u, k. x, y 2, 3 k. 1, 2, k. Exemplo: Determina uma equação reduzida da reta que tem declive 3 e ordenada na origem 2. Escola Secundária de lberto Sampaio Ficha Formativa de Matemática Geometria I Inclinação e declive de uma reta no plano; ângulo de duas retas; retas perpendiculares. º no Equação vetorial da reta: Dado

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Geometria Analítica - Aula 19 246 IM-UFF K. Frensel - J. Delgado Aula 20 Vamos analisar a equação Ax 2 + Cy 2 + Dx + Ey + F = 0 nos casos em que exatamente um dos coeficientes A ou C é nulo. 1. Parábola

Leia mais

PLANO DE ENSINO CURSO ENGENHARIA AMBIENTAL MATRIZ 519

PLANO DE ENSINO CURSO ENGENHARIA AMBIENTAL MATRIZ 519 Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Medianeira PLANO DE ENSINO CURSO ENGENHARIA AMBIENTAL MATRIZ 519 FUNDAMENTAÇÃO LEGAL Resolução 075/09 COEPP, de 21 de agosto de

Leia mais

Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza

Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza Geometria Analítica Estudo do Plano Prof Marcelo Maraschin de Souza Plano Equação Geral do Plano Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = a, b, c, n 0, um vetor normal (ortogonal)

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Engenharia de Produção. Ênfase

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Engenharia de Produção. Ênfase Curso 4402 - Engenharia de Produção Ênfase Identificação Disciplina 0002001EP2 - Geometria Analítica e Álgebra Linear Docente(s) Tatiana Miguel Rodrigues de Souza Unidade Faculdade de Ciências Departamento

Leia mais

n. 33 Núcleo de uma transformação linear

n. 33 Núcleo de uma transformação linear n. 33 Núcleo de uma transformação linear Chama-se núcleo de uma transformação linear f: V W ao conjunto de todos os vetores v V que são transformados em 0 W. Indica-se esse conjunto por N(f) ou Ker (f).

Leia mais

n. 32 Regras para achar a transformação linear correspondente

n. 32 Regras para achar a transformação linear correspondente n. 3 Regras para achar a transformação linear correspondente Lembrete: matriz da transformação linear [T] B A F(u 1 ) = a v 1 + b v F(u ) = c v 1 + d v [T] A B = [ a c b d ] Dadas às bases e a matriz da

Leia mais

Equação fundamental da reta

Equação fundamental da reta GEOMETRIA ANALÍTICA Equação fundamental da reta (Xo, Yo) (X, Y) (Xo, Yo) (X, Y) PARA PRATICAR: 1. Considere o triângulo ABC, cujos vértices são A (3, 4), B (1, 1) e C (2, 4). Determine a equação fundamental

Leia mais

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto

Leia mais

ALUNO(A): Prof.: André Luiz Acesse: 02/05/2012

ALUNO(A): Prof.: André Luiz Acesse:  02/05/2012 1. FUNÇÃO 1.1. DEFINIÇÃO Uma função é um conjunto de pares ordenados de números (x,y) no qual duas duplas ordenadas distintas não podem ter o mesmo primeiro número, ou seja, garante que y seja único para

Leia mais

Lista de Exercícios de Geometria

Lista de Exercícios de Geometria Núcleo Básico de Engenharias Geometria - Geometria Analítica Professor Julierme Oliveira Lista de Exercícios de Geometria Primeira Parte: VETORES 1. Sejam os pontos A(0,0), B(1,0), C(0,1), D(-,3), E(4,-5)

Leia mais

Estudaremos três tipos de equações de retas: vetorial, paramétricas e simétricas.

Estudaremos três tipos de equações de retas: vetorial, paramétricas e simétricas. CAPÍTULO VII RETA Consideremos em V 3 o sistema de referência (O, i, j, k ), onde E = ( i, j, k ) é base ortonormal positiva e O(0, 0, 0). 7.1. EQUAÇÕES DA RETA Estudaremos três tipos de equações de retas:

Leia mais

Geometria Analítica. Prof. M.Sc. Guilherme Schünemann

Geometria Analítica. Prof. M.Sc. Guilherme Schünemann Geometria Analítica Prof. M.Sc. Guilherme Schünemann Ponto de partida Um ponto é a unidade básica de toda a geometria analítica. A partir dele, definem-se retas, segmentos, vetores, planos, etc. Reta definida

Leia mais

PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL

PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba PLANO DE ENSINO CURSO Bacharelados e licenciaturas do Campus Curitiba da UTFPR. MATRIZ (SA) FUNDAMENTAÇÃO LEGAL Resolução

Leia mais

Prof. Fernando Carneiro Rio de Janeiro, Outubro de 2015

Prof. Fernando Carneiro Rio de Janeiro, Outubro de 2015 Ga - retas e planos na solução de problemas 1 GA - Retas e planos na solução de problemas Prof. Fernando Carneiro Rio de Janeiro, Outubro de 2015 1 Reta concorrente a duas retas dadas Este tipo de problema

Leia mais

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2

6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2 Lista 2: Retas, Planos e Distâncias - Engenharia Mecânica Professora: Elisandra Bär de Figueiredo x = 2 + 2t 1. Determine os valores de m para que as retas r : y = mt z = 4 + 5t sejam: (a) ortogonais (b)

Leia mais

1 Segmentos orientados e vetores, adição e multiplicação

1 Segmentos orientados e vetores, adição e multiplicação MAP2110 Modelagem e Matemática 1 o Semestre de 2007 Resumo 1 - Roteiro de estudos - 07/05/2007 Espaços vetoriais bi e tri-dimensionais (plano ou espaço bidimensional E 2, e espaço tridimensional E 3 )

Leia mais

Aula Exemplos e aplicações. Exemplo 1. Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos.

Aula Exemplos e aplicações. Exemplo 1. Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos. Aula 16 Nesta aula apresentamos uma série de exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações Exemplo 1 Considere os pontos A = (1, 2, 2), B = (2, 4, 3), C = ( 1, 4, 2), D = (7, 1,

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u

Leia mais

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante?

A(500, 500) B( 600, 600) C(715, 715) D( 1002, 1002) E(0, 0) F (711, 0) (c) ao terceiro quadrante? (d) ao quarto quadrante? Universidade Federal de Ouro Preto Departamento de Matemática MTM131 - Geometria Analítica e Cálculo Vetorial Professora: Monique Rafaella Anunciação de Oliveira Lista de Exercícios 1 1. Dados os pontos:

Leia mais

Na figura acima, o vetor tem origem no ponto A e extremidade no ponto B. Notação usual: 1 O ESPAÇO R3

Na figura acima, o vetor tem origem no ponto A e extremidade no ponto B. Notação usual: 1 O ESPAÇO R3 VETORES E R3 Ultra-Fast Prof.: Fábio Rodrigues fabio.miranda@engenharia.ufjf.br Obs.: A maioria das figuras deste texto foram copiadas do livro virtual álgebra vetorial e geometria analítica, 9ª edição,

Leia mais

Lista 3 com respostas

Lista 3 com respostas Lista 3 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2018 Exercício 1. Sendo que w = ( u v) ( u + v), determine o ângulo entre os vetores u e v, sabendo que u = v = w = 1 e u v

Leia mais

Ponto 1) Representação do Ponto

Ponto 1) Representação do Ponto Ponto 1) Representação do Ponto Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Plano Cartesiano, sistemas de coordenadas: pontos e retas Na geometria

Leia mais

1Q1. Considere o ponto A = (1, 2, 3), a reta r : x+1

1Q1. Considere o ponto A = (1, 2, 3), a reta r : x+1 Com exceção da Questão 15, em todas as questões da prova considera-se fixado um sistema de coordenadas Σ = (O, E), onde E é uma base ortonormal positiva. 1Q1. Considere o ponto A = (1, 2, 3), a reta r

Leia mais

Retas no Espaço. Laura Goulart. 28 de Agosto de 2018 UESB. Laura Goulart (UESB) Retas no Espaço 28 de Agosto de / 30

Retas no Espaço. Laura Goulart. 28 de Agosto de 2018 UESB. Laura Goulart (UESB) Retas no Espaço 28 de Agosto de / 30 Retas no Espaço Laura Goulart UESB 28 de Agosto de 2018 Laura Goulart (UESB) Retas no Espaço 28 de Agosto de 2018 1 / 30 Equação Vetorial da Reta Um dos principais axiomas da Geometria Euclidiana diz que

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04. v = x 2 + y 2. v = x1 x 2 + y 1 y 2. v = 0. v = x 2 + y 2 + z 2

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04. v = x 2 + y 2. v = x1 x 2 + y 1 y 2. v = 0. v = x 2 + y 2 + z 2 UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 04 Assunto:Produto escalar, bases canônicas do R 2 e R 3, produto vetorial, produto misto, equação da reta no R 2 Palavras-chaves: Produto

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase Curso 1503 - Licenciatura em Matemática Ênfase Identificação Disciplina 0006311A - Álgebra Linear e Geometria Analítica Docente(s) Julio Ricardo Sambrano, Nair Cristina Margarido Brondino Unidade Faculdade

Leia mais

GAAL /1 - Simulado - 3 exercícios variados de retas e planos

GAAL /1 - Simulado - 3 exercícios variados de retas e planos GAAL - 201/1 - Simulado - exercícios variados de retas e planos SOLUÇÕES Exercício 1: Considere as retas m e n de equações paramétricas m : (x, y, z) = (1, 1, 0) + t( 2, 1, ) (a) Mostre que m e n são retas

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Londrina PLANO DE ENSINO DISCIPLINA/UNIDADE CURRICULAR CÓDIGO PERÍODO

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Londrina PLANO DE ENSINO DISCIPLINA/UNIDADE CURRICULAR CÓDIGO PERÍODO Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Londrina PLANO DE ENSINO CURSO Licenciatura em Química MATRIZ 1 FUNDAMENTAÇÃO LEGAL Resolução n. 180/10-COEPP de 09 de dezembro

Leia mais

Posições relativas entre retas

Posições relativas entre retas Posições relativas entre retas Sejam duas retas r e s. Consideremos um sistema de coordenadas (O, e 1, e 2, e 3 ), r = (a, b, c) um vetor diretor da reta r s = (m, n, p) um vetor diretor da reta s A =

Leia mais

Lista 3: Geometria Analítica

Lista 3: Geometria Analítica Lista 3: Geometria Analítica A. Ramos 25 de abril de 2017 Lista em constante atualização. 1. Equação da reta e do plano; 2. Ângulo entre retas e entre planos. Resumo Equação da reta Equação vetorial. Uma

Leia mais

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta

3º. EM Prof a. Valéria Rojas Assunto: Determinante, Área do Triângulo, Equação da reta, Eq. Reduzida da Reta 1 - O uso do Determinante de terceira ordem na Geometria Analítica 1.1 - Área de um triângulo Seja o triângulo ABC de vértices A(x a, y a ), B(x b, x c ) e C(x c, y c ). A área S desse triângulo é dada

Leia mais

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase

Plano de Ensino. Identificação. Câmpus de Bauru. Curso Licenciatura em Matemática. Ênfase Curso 1503 - Licenciatura em Matemática Ênfase Identificação Disciplina 0006311A - Álgebra Linear e Geometria Analítica Docente(s) Julio Ricardo Sambrano, Nair Cristina Margarido Brondino Unidade Faculdade

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA 1 UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA 1 a Lista de exercícios MAT 41 - Cálculo III - 01/II Coordenadas no espaço 1. Determinar o lugar geométrico

Leia mais

Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos.

Aula Exemplos e aplicações - continuação. Exemplo 8. Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. Aula 1 Nesta aula continuamos com mais exemplos e aplicações dos conceitos vistos. 1. Exemplos e aplicações - continuação Exemplo 8 Considere o plano π : x + y + z = 3 e a reta r paralela ao vetor v =

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 76 Capítulo 4 Distâncias no plano e regiões no plano 1. Distância de um ponto a uma reta Dados um ponto P e uma reta r no plano, já sabemos calcular a distância de P a cada ponto P r. Definição 1 Definimos

Leia mais

linearmente independentes se e somente se: Exercícios 13. Determine o vetor X, tal que 3X-2V = 15(X - U).

linearmente independentes se e somente se: Exercícios 13. Determine o vetor X, tal que 3X-2V = 15(X - U). 11 linearmente independentes se e somente se: 1.4. Exercícios 1. Determine o vetor X, tal que X-2V = 15(X - U). Figura 21 14. Determine os vetores X e Y tais que: 1.4.2 Multiplicação por um escalar. Se

Leia mais

Lista de exercícios de GA no espaço

Lista de exercícios de GA no espaço Lista de GA no espaço 1 Lista de exercícios de GA no espaço Prof. Fernando Carneiro Rio de Janeiro, Janeiro de 2017 01) Dado A(1, 0, 1), qual é o ponto mais próximo de A que pertence ao plano gerado pelas

Leia mais

n. 30 TRANSFORMAÇÕES LINEARES Definição: Sejam V e W espaços vetoriais, uma transformação linear T: V W é uma função de V em W se:

n. 30 TRANSFORMAÇÕES LINEARES Definição: Sejam V e W espaços vetoriais, uma transformação linear T: V W é uma função de V em W se: n. 30 TRANSFORMAÇÕES LINEARES Uma transformação linear é um tipo particular de função entre dois espaços vetoriais que preserva as operações de adição vetorial e multiplicação por escalar. Uma transformação

Leia mais