2 a Lei da Termodinâmica

Tamanho: px
Começar a partir da página:

Download "2 a Lei da Termodinâmica"

Transcrição

1 2 a Lei da Termodinâmica - Primeira lei: A energia interna se conserva. No entanto, existem processos ue obedecem a primeira lei, mas ue nunca se realizarão. Ex: - O calor não lui de um corpo rio para um corpo uente; - Um lago não congela num dia de verão, cedendo calor para o ambiente. Segundo a primeira lei, não precisaríamos economizar energia, pois a energia total do universo se conserva!!!! O ato é ue nem todas as ormas de energia são úteis!!! - A Segunda Lei da Termodinâmica trata desses problemas: - Nos diz se determinadas transormações ocorrem ou não na natureza; - Se uma determinada energia pode ser aproveitada ou não; Traz a idéia de ue existe uma direção espontânea de ocorrência dos enômenos termodinâmicos. MÁQUINAS TÉRMICAS A 2 a Lei oi elaborada a partir da observação experimental e do estudo de máuinas térmicas. Enunciado de Kelvin: É impossível realizar um processo cíclico em ue se remova calor de um reservatório uente e se produza uma uantidade euivalente de trabalho. Enunciado de Clausius: É impossível realizar um processo cíclico cujo único resultado seja a transerência de energia térmica de um reservatório rio para um reservatório uente. 1

2 Exemplos: a) Uma pessoa empurra um bloco com atrito sobre uma mesa num circuito echado, voltando para a posição inicial. Pela primeira lei ( U = 0), e o trabalho realizado é igual ao calor transerido para o ambiente (devido ao atrito). O processo inverso nunca ocorre, apesar de não violar a 1 a Lei!!! b) Um bloco pesado cai de uma certa altura e colide inelasticamente com o chão. A energia potencial se converte em energia térmica, uebra da estrutura, etc... de orma ue a energia total é conservada. No entanto, o bloco nunca voltará espontaneamente para a posição inicial absorvendo energia do ambiente. Essa energia não pode mais ser aproveitada, é uma energia perdida!! Isso está relacionado com a irreversibilidade de alguns processos. Cilindro com gás ideal Processo isotérmico: 2

3 PROCESSOS IRREERSÍEIS: - Não se conhece o caminho entre o estado INICIAL e FINAL. PROCESSOS REERSÍEIS: - O caminho entre o estado INICIAL e FINAL é conhecido. 3

4 Se o mesmo processo or realizado adiabaticamente: Q = 0 U = Wi, e W = i Pd. Mas vimos ue a integral só pode ser calculada se o caminho or conhecido, ou seja, num processo reversível. Portanto, os mesmos para processos reversíveis e irreversíveis. U e T não são Máuinas térmicas: Para obter uma máuina térmica precisamos de um processo ue possa ser repetido indeinidamente, ou seja, o sistema precisa voltar ao estado inicial, descrevendo um ciclo. a) Motor térmico (máuina a vapor): É uma máuina ue produz trabalho a partir do calor. Segundo o enunciado de Kelvin, nem todo o calor pode ser aproveitado para trabalho, ou seja, uma parte tem ue ser eliminada, por isso, precisamos de dois reservatórios térmicos a temperaturas dierentes, T > T, onde: - Q é o calor ornecido ao sistema pela onte uente, a temperatura T ; - Q é o calor cedido pelo sistema para a onte ria, a temperatura T. Num ciclo completo: U = 0 W = Q, Q = Q Q. 4

5 O rendimento (η) de uma máuina térmica pode ser calculada em analogia com o cálculo do rendimento de aplicações inanceiras onde: η = lucro capital _ envestido No caso de um motor térmico lucro obtido é o trabalho realizado (W) e o capital investido é o calor extraído do reservatório uente (Q ), portanto: η = W / Q, W = Q Q logo: η = 1 Q / Obs: o rendimento seria 100% se Q = 0. Q Porue é necessária a onte ria? Para eliminar o calor liberado no processo de condensação. Caso contrário, existiria um submarino alimentado apenas pelo calor da água do mar!!! b) Rerigerador: Pode ser pensado como um motor térmico invertido, onde o objetivo é extrair calor de um reservatório rio (interior da geladeira) e transeri-lo para um reservatório mais uente. 5

6 De acordo com o enunciado de Clausius, isso só é possível mediante a realização de trabalho sobre o sistema (compressor acionado pelo motor da geladeira), para azer com ue uma substância (amônia ou reon) vaporize a baixa pressão e liueaça a alta pressão. O líuido a baixa pressão remove calor da onte ria vaporizando-se, sendo comprimido (alta pressão) para condensar liberando calor para a onte uente, passando novamente ao evaporador. O rendimento do rerigerador é dado por η = Q / W, pois neste caso o lucro é a uantidade de calor extraída do sistema (Q ) e o capital investido é o trabalho realizado sobre o sistema (W). Q = W + Q, Q η R = Q Q O rendimento do rerigerador também é chamado de Coeiciente de Desempenho (COP), ue para rerigeradores típicos ica entre 5 6. R 6

7 c) Bomba de calor: O seu objetivo é auecer um corpo ou uma região de interesse, por exemplo, o interior da casa num dia de rio. Se W or o trabalho necessário para remover uma uantidade de calor Q de um reservatório rio e rejeitar uma uantidade Q para o reservatório uente, então o rendimento desta máuina é: Q Q η B = = W Q Q d) Motor de combustão: Motor a gasolina Abaixo estão alguns sites de animações do uncionamento do pistão

8 CICLO OTTO (motor a gasolina) 1 η = 1 r γ 1 Sendo ue r é chamado de razão de compressão, ue varia entre 8 e 10 para motores a gasolina. O valor de 56% acima calculado oi obtido considerando-se um gás ideal diatômico (γ = 1,40) e r = 8. O valor real de 35% deve-se a perdas por atrito e perda de calor. O Ciclo Otto, ilustrado na igura abaixo, é um modelo idealizado para os processos termodinâmicos ue ocorrem em um motor a gasolina. Este ciclo é composto por dois processos adiabáticos onde ocorre a compressão em ab e a expansão em cd do pistão; e dois processos isovolumétricos onde ocorrem as trocas de calor: em bc calor é ornecido ao sistema pela ueima da gasolina e em da calor é rejeitado para o ambiente externo. é o volume mínimo e r o volume máximo ue o pistão pode adotar. Sendo T C e T H as temperaturas dos reservatórios rio e CP uente, respectivamente, e γ =. C η η calculado real = 56% = 35% P c b d a r 8

9 Inicialmente, vamos calcular os processos bc e da ue ocorrem a volume constante, deinindo Q H como a uantidade de calor ue entra no sistema e Q a uantidade de calor ue sai do sistema: C Q = nc ( T T ) H c b Q = nc ( T T ) C a d QH + QC Tc Tb + Ta Td Sabe-se ue a eiciência térmica é dada por: e = = Q T T H c b. Utilizando a relação entre temperatura e volume para um processo 1 adiabático de um gás ideal T γ = cte, temos: T ( r ) = T ( ) a γ 1 γ 1 b T ( r ) = T ( ) d γ 1 γ 1 c 1 Dividindo estas expressões acima pelo ator comum γ e substituindo as euações obtidas para T b e T c na euação da eiciência, temos: T r T r + T T ( T T )( r 1) e = =, logo: e = 1 1 γ 1 γ 1 γ 1 d a a d d a γ 1 γ 1 Td r Tar ( Td Ta ) 1 r γ 9

10 CICLO DIESEL (motor a diesel) e) Máuina de Carnot: De acordo com a segunda lei, é impossível uma máuina térmica operar com rendimento de 100%, ual seria então o rendimento máximo? Em 1824, Carnot descobriu ue uma máuina reversível seria a mais eiciente, por isso esse ciclo leva o seu nome. Teorema de Carnot: Nenhuma máuina térmica ue opere entre uma dada onte uente e uma dada onte ria pode ter rendimento superior ao de uma Máuina de Carnot. Todas as Máuinas de Carnot ue operem entre essas duas ontes tem o mesmo rendimento 10

11 Características do ciclo de Carnot: 1) Expansão isotérmica uase-estática com absorção de calor Q do reservatório uente T ; 2) Expansão adiabática uase-estática com abaixamento da temperatura até T ; 3) Compressão isotérmica uase-estática com rejeição de calor Q para o reservatório rio T ; 4) Compressão adiabática uase-estática com aumento da temperatura, retornando para T. - Condições 1) e 3) a condução de calor é irreversível, então para evitar isso, a troca de calor deve ocorrer na mesma temperatura. - Condições 2) e 4) pelo mesmo motivo, a variação de temperatura deve ocorrer sem troca de calor. Então vemos ue um ciclo reversível entre dois reservatórios térmicos, necessariamente deve ser ormado por duas porções isotermas ligadas por duas porções adiabáticas. 11

12 Rendimento da Máuina de Carnot (gás ideal): 1) De a b : absorve calor Q a temperatura constante caso, U = 0, então: b Q = Wa b = nrt ln. a Analogamente, Q de c d é dado por: d c Q = Wc d = nrt ln = nrt ln. c d Dividindo as duas expressões temos: Q T ln( c / d ) =. Q T ln( / ) b a T, neste 2) A relação entre temperatura e volume para um processo adiabático de um gás ideal é dada por: T T γ 1 = cte T = T = T γ 1 γ 1 b c T T γ 1 γ 1 d = a = T T c b d a Juntando temos ue: = = c d c b b a d a, Portanto, Q T Q T = = Q T Q T. 12

13 Então temos ue o rendimento de Carnot ( Q T η c = 1 = 1. Q T η c ) é dado por: Ou seja, depende apenas da razão entre as temperaturas do reservatório uente e rio. RENDIMENTO DE UM CICLO QUALQUER O ciclo ilustrado na igura abaixo representa os processos termodinâmicos de um motor térmico ue utiliza um mol de um gás monoatômico ideal, para o ual a capacidade térmica molar a volume constante é dada por C = 3R/2, onde R é a constante universal dos gases ideais. Este ciclo é composto por uma expansão isotérmica no trecho AB, um processo isocórico no trecho BC e uma compressão adiabática no trecho CA. é o volume mínimo e r o volume máximo ue o sistema pode adotar, onde r é chamado de razão de compressão. Sendo T e T as temperaturas dos reservatórios rio e uente, respectivamente, podemos airmar ue o rendimento térmico deste ciclo é dado por: P A B r C Identiicando as temperaturas de operação do ciclo, temos: T A = T B = T e T C = T. O rendimento do ciclo é dado por: 13

14 η = W total /Q, ou seja, o trabalho total dividido pelo calor absorvido do reservatório uente, onde: W total = W AB + W CA, pois W BC = 0 (processo isocórico) W AB = RT ln( B / A ) W CA = -C (T - T ) Então: W total = RT ln(r) 3R(T - T )/2 Temos ue: Q AB = W AB = RT ln(r) > 0 (calor absorvido do reservatório uente) Q BC =3R(T T )/2 < 0 (calor cedido ao reservatório rio) Q CA = 0 (processo adiabático) Então: Q = RT ln(r) Logo: η = 1- [3(T - T )/2T ln(r)] Considerando-se T = 300K, T = 150K e r = 3 temos ue a eiciência deste ciclo é de 32%. Se tivéssemos um motor de Carnot operando entre estas mesmas temperaturas, a sua eiciência seria calculada pela euação abaixo: T η c = 1 = 0,5 50%. Indicando ue a máuina de Carnot é mais T eiciente. OBS: Para saber mais sobre máuinas térmicas, sugiro a leitura dos seguintes textos: - Capítulo 18 Segunda Lei da Termodinâmica, do livro: Física II Termodinâmica e Ondas Sears & Zemansky. - Capítulo 19 Segunda Lei da Termodinâmica, do livro: Física, ol 1 (10 a Edição) Tipler. 14

Capítulo 4. Lord Kelvin ( )

Capítulo 4. Lord Kelvin ( ) Capítulo 4 Lord Kelvin (1824-1907) 4.1 Máuinas érmicas e o Segundo Princípio da ermodinâmica 4.2 Processos Reversíveis e Irreversíveis 4.3 Máuina de Carnot 4.4 Bombas de Calor e Rerigeradores 4.5 Entropia

Leia mais

Capítulo 3 A Segunda Lei da Termodinâmica

Capítulo 3 A Segunda Lei da Termodinâmica Capítulo 3 A Segunda Lei da Termodinâmica 3.1 Enunciados da Lei 3.2 Máquinas Térmicas 3.3 Escalas de Temperaturas Termodinâmicas 3.4 Entropia 3.5 Variações da Entropia de um Gás Ideal 3.6 A Terceira Lei

Leia mais

Capítulo 10 Segunda Lei da Termodinâmica. Obs: a existência do moto perpétuo de 1ª. Espécie, criaria energia, violando a 1ª. Lei.

Capítulo 10 Segunda Lei da Termodinâmica. Obs: a existência do moto perpétuo de 1ª. Espécie, criaria energia, violando a 1ª. Lei. Capítulo 10 Segunda Lei da Termodinâmica É muito comum e popular enunciar a 2ª Lei dizendo simplesmente que calor não pode ser totalmente transformado em trabalho. Está errado. Podemos fazer uma expansão

Leia mais

Ciências da Natureza e suas Tecnologias Física Segunda lei da termodinâmica

Ciências da Natureza e suas Tecnologias Física Segunda lei da termodinâmica Ciências da Natureza e suas Tecnologias Física Imagem: Tibbets74 / GNU Free Documentation License. FÍSICA - Existem enômenos cujos eventos acontecem numa ordem direta ou inversa, não nos permitindo saber

Leia mais

TERMODINÂMICA. Módulo 6 1ª Lei da Termodinâmica Módulo 7 2ª Lei da Termodinâmica

TERMODINÂMICA. Módulo 6 1ª Lei da Termodinâmica Módulo 7 2ª Lei da Termodinâmica TERMODINÂMICA Módulo 6 1ª Lei da Termodinâmica Módulo 7 ª Lei da Termodinâmica 1) Trabalho de um gás () p F A Para F = cte: F p. A F d cos F = cte. p Ad V Variação de Volume d V Ad p = cte. p V Para p

Leia mais

4/Mar/2015 Aula 4 Processos termodinâmicos Capacidades caloríficas dos gases Energia interna de um gás ideal Capacidades caloríficas dos sólidos

4/Mar/2015 Aula 4 Processos termodinâmicos Capacidades caloríficas dos gases Energia interna de um gás ideal Capacidades caloríficas dos sólidos 4/Mar/05 Aula 4 Processos termodinâmicos Capacidades caloríficas dos gases Energia interna de um gás ideal Capacidades caloríficas dos sólidos Transformações termodinâmicas e gases ideais Tipos de transformações

Leia mais

Aula 6 A 2a lei da termodinâmica Física II UNICAMP 2012

Aula 6 A 2a lei da termodinâmica Física II UNICAMP 2012 Aula 6 A 2a lei da termodinâmica Física II UNICAMP 2012 http://en.wikipedia.org/wiki/steam_car Caldeira de carro a vapor de 1924. Populares até a década de 1930, perderam prestígio com a popularização

Leia mais

1) Trabalho de um gás (W) F A. Para F = cte: cos. F = cte. p = cte. Variação de Volume. Para p = cte.

1) Trabalho de um gás (W) F A. Para F = cte: cos. F = cte. p = cte. Variação de Volume. Para p = cte. TERMODINÂMICA 1) Trabalho de um gás () p F A Para F = cte: F p. A F d cos F = cte. p Ad V Variação de Volume d V Ad p = cte. p V Para p = cte. 1) Trabalho de um gás () N/m = Pa Joule p V m 3 p V Expansão:

Leia mais

Entropia e a Segunda Lei da Termodinâmica

Entropia e a Segunda Lei da Termodinâmica ENTRO DE IÊNIAS E TENOLOGIA AGROALIMENTAR UNIDADE AADÊMIA DE TENOLOGIA DE ALIMENTOS DISIPLINA: FÍSIA II Entropia e a Segunda Lei da Termodinâmica Prof. Bruno Farias Sentido de um processo termodinâmico

Leia mais

Termodinâmica 12. Alexandre Diehl. Departamento de Física - UFPel

Termodinâmica 12. Alexandre Diehl. Departamento de Física - UFPel Termodinâmica 12 Alexandre Diehl Departamento de Física - UFPel Ciclo termodinâmico Definição Sequência de processos termodinâmicos aplicados sobre um sistema, tal que o mesmo é levado desde o seu estado

Leia mais

Termodinâmica. Lucy V. C. Assali

Termodinâmica. Lucy V. C. Assali Termodinâmica Segunda Lei Física II 2016 - IO A Segunda Lei da Termodinâmica 1 a Lei da Termodinâmica: incorpora ao princípio de conservação de energia o calor como forma de energia: du = dq - dw (qualquer

Leia mais

Física II FEP º Semestre de Instituto de Física - Universidade de São Paulo. Professor: Valdir Guimarães

Física II FEP º Semestre de Instituto de Física - Universidade de São Paulo. Professor: Valdir Guimarães Física II FEP 112 2º Semestre de 2012 Instituto de Física - Universidade de São Paulo Professor: Valdir Guimarães E-mail: valdir.guimaraes@usp.br Fone: 3091-7104 Aula 3 Irreversibilidade e Segunda Lei

Leia mais

UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 11: Máquinas de combustão interna

UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 11: Máquinas de combustão interna UFABC Fenômenos Térmicos Prof. Germán Lugones Aula 11: Máquinas de combustão interna Máquinas de combustão interna O motor a gasolina usado em automóveis e em outras máquinas é um tipo familiar de máquina

Leia mais

A Segunda Lei da Termodinâmica

A Segunda Lei da Termodinâmica A Segunda Lei da ermodinâmica -Evitar desperdícios - Conservar energia - A Energia total do Universo não muda! A 1ª Lei não conta a história toda! 2ª Lei trata da possibilidade ou impossibilidade de se

Leia mais

P 1 V 1 = nrt 1. Diagramas P x V Gases ideais. Estado 1. T 1 n o de moles. Equação de estado. Como as variáveis de estado se relacionam?

P 1 V 1 = nrt 1. Diagramas P x V Gases ideais. Estado 1. T 1 n o de moles. Equação de estado. Como as variáveis de estado se relacionam? Diagramas P x V Gases ideais Estado 1 P 1 1 Como as variáveis de estado se relacionam? V 1 T 1 n o de moles Equação de estado P 1 V 1 = nrt 1 Constante dos gases R = 8,31 J/mol.K = 2 cal/mol.k Processo

Leia mais

Máquinas Térmicas e a 2ª Lei da Termodinâmica. Módulo 7 Frente B

Máquinas Térmicas e a 2ª Lei da Termodinâmica. Módulo 7 Frente B Máquinas érmicas e a ª Lei da ermodinâmica Módulo 7 Frente B ENERGIA ÉRMICA E AS MÁUINAS ÉRMICAS Poder calorífico do combustível Rendimento (η) Ciclo termodinâmico de transformações ENERGIA ÉRMICA E AS

Leia mais

Máquinas térmicas, refrigeradores e 2 a lei da Termodinâmica

Máquinas térmicas, refrigeradores e 2 a lei da Termodinâmica Máquinas térmicas, refrigeradores e 2 a lei da Termodinâmica Processos irreversíveis. Máquinas térmicas. Ciclo de Carnot 2 a lei da Termodinâmica: enunciado de Kelvin-Planck. Refrigeradores. 2 a lei da

Leia mais

Entropia e Segunda Lei da termodinâmica

Entropia e Segunda Lei da termodinâmica Entropia e Segunda Lei da termodinâmica Todas as Leis física estudadas até agora são leis de conservação : energia, momento linear, momento angular, etc Segunda Lei da Termodinâmica (inequação) O calor

Leia mais

Duas ilustrações do teorema de Carnot

Duas ilustrações do teorema de Carnot Duas ilustrações do teorema de Carnot 1 mol de um gás ideal monoatômico executa o ciclo: C V = 3R 2 p 2p 0 2 3 T 1 = T 0 (= p 0 V 0 /R) T 2 = 2T 0 C p = 5R 2 p 0 1 V 0 4 2V 0 Q in : Q 12 + Q 23 V T 3

Leia mais

Termodinâmica II. Tecnologia e Processos

Termodinâmica II. Tecnologia e Processos Termodinâmica II Tecnologia e Processos Geral Estudadas nos gases Propriedades termodinâmicas A temperatura (T) A pressão (P) O volume (V) A densidade ( ) = m / V O calor específico a volume constante

Leia mais

Enunciados da Segunda lei da Termodinâmica. Enunciado de Kelvin e Planck ( referente a motor térmico)

Enunciados da Segunda lei da Termodinâmica. Enunciado de Kelvin e Planck ( referente a motor térmico) Enunciados da Segunda lei da ermodinâmica Enunciado de Kelvin e Planck ( referente a motor térmico) " É impossível a um motor térmico operar trocando calor com uma única fonte de calor Universidade " Santa

Leia mais

O que será cobrado na P3

O que será cobrado na P3 O que será cobrado na P3 1. Cap 19: Temperatura, Calor e a 1ª Lei da Termodinâmica i. TODAS 2. Cap 20: A Teoria Cinética dos Gases i. (20.1) Uma nova maneira de Olhar para os Gases ii. (20.2) O número

Leia mais

2ª Lei da Termodinâmica. Prof. Matheus Fontanelle Pereira

2ª Lei da Termodinâmica. Prof. Matheus Fontanelle Pereira 2ª Lei da Termodinâmica Prof. Matheus Fontanelle Pereira Introdução Trabalho poderia ser obtido. Oportunidades de gerar trabalho Qual é o máximo valor teórico do trabalho que poderia ser obtido? Quais

Leia mais

Máquinas térmicas. Máquina térmica Dispositivo que converte calor em energia mecânica (trabalho) Reservatório a alta temperatura T H

Máquinas térmicas. Máquina térmica Dispositivo que converte calor em energia mecânica (trabalho) Reservatório a alta temperatura T H 9/Mar/208 ula 5 Segunda lei da termodinâmica Máquinas térmicas; eficiência. Formulação de Kelvin Máquinas frigoríficas (e bombas de calor): princípio de funcionamento e eficiência Formulação de lausius

Leia mais

Refrigeração e Ar Condicionado

Refrigeração e Ar Condicionado Refrigeração e Ar Condicionado Introdução aos Ciclos Refrigeração por Compressão de Vapor Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade

Leia mais

Ciclo e máquinas térmicas

Ciclo e máquinas térmicas Questão 01 - (UFJF MG) Em um experimento controlado em laboratório, uma certa quantidade de gás ideal realizou o ciclo ABCDA, representado na figura abaixo. desenho abaixo. As transformações FG e HI são

Leia mais

Universidade de São Paulo Instituto de Física

Universidade de São Paulo Instituto de Física Universidade de São Paulo Instituto de Física FEP - FÍSICA II para o Instituto Oceanográfico º Semestre de 009 Sexta Lista de Exercícios a. Lei da Termodinâmica e Teoria Cinética dos Gases ) Uma máquina

Leia mais

Aulas Multimídias Santa Cecília Profº Rafael Rodrigues Disciplina: Física Série: 1º Ano EM

Aulas Multimídias Santa Cecília Profº Rafael Rodrigues Disciplina: Física Série: 1º Ano EM Aulas Multimídias Santa Cecília Profº Rafael Rodrigues Disciplina: Física Série: 1º Ano EM TERMODINÂMICA INTRODUÇÃO Um gás, contido num cilindro provido de êmbolo, ao ser aquecido age com uma força F sobre

Leia mais

Profa.. Dra. Ana Maria Pereira Neto

Profa.. Dra. Ana Maria Pereira Neto Universidade Federal do ABC BC1309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Segunda ei da Termodinâmica 1 Segunda ei da Termodinâmica Comparação com a 1ª ei da Termodinâmica;

Leia mais

Capítulo 4: Análise de Sistemas - 1ª e 2ª Leis da Termodinâmica

Capítulo 4: Análise de Sistemas - 1ª e 2ª Leis da Termodinâmica Capítulo 4: Análise de Sistemas - 1ª e 2ª Leis da Termodinâmica A segunda lei da termodinâmica Máquinas térmicas e bombas de calor Ciclos reversíveis Ciclo de Carnot A segunda lei da termodinâmica O que

Leia mais

2º Lei da Termodinâmica. Introdução Enunciado da 2º lei Rendimento de uma máquina térmica Ciclo de Carnot

2º Lei da Termodinâmica. Introdução Enunciado da 2º lei Rendimento de uma máquina térmica Ciclo de Carnot 2º Lei da Termodinâmica Introdução Enunciado da 2º lei Rendimento de uma máquina térmica Ciclo de Carnot Introdução Chamamos, genericamente, de máquina a qualquer dispositivo que tenha por finalidade transferir

Leia mais

Segunda Prova - Questões objetivas (0,7 pontos)

Segunda Prova - Questões objetivas (0,7 pontos) Universidade Federal do Rio de Janeiro Instituto de Física Disciplina: Física II-A (FIT122) 2018.2 Data: 03/10/2018 Segunda Prova - Questões objetivas (0,7 pontos) 1. Um cilindro fechado por um êmbolo

Leia mais

A Segunda Lei da Termodinâmica

A Segunda Lei da Termodinâmica A A segunda lei da termodinâmica é essencialmente diferente da primeira lei, pois ela trata de uma uestão sobre a ual a primeira lei nada diz, ue é a da direção tomada por um processo natural. Nem toda

Leia mais

Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2

Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2 Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2 O tempo tem um sentido, que é aquele no qual envelhecemos.! Na natureza, os

Leia mais

27/Fev/2013 Aula 5 Segunda lei da termodinâmica Máquinas térmicas; eficiência. Formulação de Kelvin

27/Fev/2013 Aula 5 Segunda lei da termodinâmica Máquinas térmicas; eficiência. Formulação de Kelvin 7/Fev/03 ula 5 Segunda lei da termodinâmica Máquinas térmicas; eficiência. Formulação de Kelvin Máquinas frigoríficas (e bombas de calor): princípio de funcionamento e eficiência Formulação de lausius

Leia mais

UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 10: Segunda lei da Termodinâmica Máquinas térmicas

UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 10: Segunda lei da Termodinâmica Máquinas térmicas UFABC Fenômenos Térmicos Prof. Germán Lugones Aula 10: Segunda lei da Termodinâmica Máquinas térmicas Segunda lei da termodinâmica Na aula passada definimos a variação de entropia para um processo reversível

Leia mais

Física 3 Cap 19 - Máquinas Térmicas

Física 3 Cap 19 - Máquinas Térmicas Física 3 Cap 19 - Máquinas Térmicas Baseado em parte em slides pelo Prof. Carlos Eduardo Souza Máquinas Térmicas Máquina Térmica: um dispositivo que opera em ciclos convertendo calor em trabalho útil.

Leia mais

Termodinâmica e Estrutura da Matéria (MEFT)

Termodinâmica e Estrutura da Matéria (MEFT) Termodinâmica e Estrutura da Matéria (MEFT) 2014-2015 Vasco Guerra Carlos Augusto Santos Silva carlos.santos.silva@tecnico.ulisboa.pt Versão 1.0 24-1-2014 1. Um inventor diz que desenvolveu uma máquina

Leia mais

CAPITULO 3 A Segunda lei da termodinâmica

CAPITULO 3 A Segunda lei da termodinâmica O objetivo deste capitulo é explicar a origem da espontaneidade das mudanças ísicas e quimicas. Procura mostrar que é possivel deinir, medir e usar uma propriedade, a entropia, na discussão quantitativa

Leia mais

TERMODINÂMICA APLICADA

TERMODINÂMICA APLICADA TERMODINÂMICA APLICADA Livro Texto adotado: Fundamentos da Termodinâmica Claus Borgnakke/ Richard E. Sonntag Editora Blucher. Samuel Sander de Carvalho samuel.carvalho@ifsudestemg.edu.br Juiz de Fora -MG

Leia mais

Ciclos e Segundo Princípio

Ciclos e Segundo Princípio Ciclos e Segundo Princípio Trabalho e calor são equivalentes no que respeita a alterarem a energia interna de um sistema (1º Princípio). Mas... Trabalho e calor não se transformam um no outro da mesma

Leia mais

Temperatura e Calor. Leis da Termodinâmica

Temperatura e Calor. Leis da Termodinâmica Temperatura e Calor Leis da Termodinâmica Temperatura O conceito de temperatura está intuitivamente ligado a ideia de quente e frio. Para se medir a temperatura, é necessário uma escala. Para determinar

Leia mais

= AT Lei de Stefan-Boltzmann

= AT Lei de Stefan-Boltzmann Radiação transporte de energia sob a forma de ondas electromagnéticas. No vazio, a propagação dá-se à velocidade da luz. A radiação térmica, emitida por um sólido ou líquido em virtude da sua temperatura

Leia mais

TE T R E M R O M D O I D NÂ N M Â I M CA C Prof. Rangel

TE T R E M R O M D O I D NÂ N M Â I M CA C Prof. Rangel TERMODINÂMICA Prof. Rangel Conceito de termodinâmica É a área da física que estuda as causas e os efeitos das mudanças de temperaturas (volume e pressão) em sistemas termodinâmicos. Termodinâmica Termo

Leia mais

Máquinas Térmicas, Segunda Lei e o Motor de Carnot

Máquinas Térmicas, Segunda Lei e o Motor de Carnot Máquinas Térmicas, Segunda Lei e o Motor de Carnot Revisando S = f i dq T = Q T Segunda Lei: ΔS>0 Para um processo espontâneo (irreversível) em um sistema fechado. Para processos reversíveis em um sistema

Leia mais

Física 3 aulas 19 e

Física 3 aulas 19 e www.fisicanaveia.com.br www.fisicanaveia.com.br/cei Ciclo de Carnot (824) Ciclo de rendimento máximo teórico possível, ainda assim menor do que 00%. máx máx Q Q 2 2 Q Q 2 2 Ciclo no sentido horário Ciclo

Leia mais

Físico-Química I. Profa. Dra. Carla Dalmolin Luísa Rosenstock Völtz. Máquinas Térmicas. Segunda Lei da Termodinâmica. Ciclo de Carnot.

Físico-Química I. Profa. Dra. Carla Dalmolin Luísa Rosenstock Völtz. Máquinas Térmicas. Segunda Lei da Termodinâmica. Ciclo de Carnot. Físico-Química I Profa. Dra. Carla Dalmolin Luísa Rosenstock Völtz Máquinas Térmicas Segunda Lei da Termodinâmica Ciclo de Carnot Refrigeração Máquina Térmica Uma máquina térmica converte parte da energia

Leia mais

Lista de Exercícios 9 Teoria cinética dos gases, Primeira e Segunda leis da Termodinâmica

Lista de Exercícios 9 Teoria cinética dos gases, Primeira e Segunda leis da Termodinâmica Lista de Exercícios 9 Teoria cinética dos gases, Primeira e Segunda leis da Termodinâmica Exercícios Sugeridos (14 de novembro de 2008) A numeração corresponde ao Livro Texto. 16.19 Um balão de ar quente

Leia mais

Uma caneca de café quente não fica mais quente se for colocada numa sala fria

Uma caneca de café quente não fica mais quente se for colocada numa sala fria SUMÁRIO Focámos, nos capítulos anteriores, a nossa atenção na Primeira Lei da Termodinâmica, que nos diz que a energia é conservada durante um processo. Neste capítulo abordaremos a Segunda Lei da Termodinâmica,

Leia mais

Segunda Lei da Termodinâmica restrita a ciclos (cont.)

Segunda Lei da Termodinâmica restrita a ciclos (cont.) UNIVERSIDADE DE SÃO PAUO ESCOA DE ENGENARIA DE SÃO CAROS Núcleo de Engenharia érmica e Fluidos ermodinâmica I (SEM0233) Prof. Oscar M.. Rodriguez Segunda ei da ermodinâmica restrita a ciclos (cont.) O

Leia mais

EM34F Termodinâmica A

EM34F Termodinâmica A EM34F Termodinâmica A Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br 2 Direção dos Processos E experiência mostra que existe uma direção definida para os processos espontâneos: Caso A Um objeto a uma

Leia mais

Professor Dr. Evandro Rodrigo Dário Curso: Engenharia Mecânica Disciplina: Termodinâmica. Processos reversíveis e Irreversíveis

Professor Dr. Evandro Rodrigo Dário Curso: Engenharia Mecânica Disciplina: Termodinâmica. Processos reversíveis e Irreversíveis Processos reversíveis e Irreversíveis Um processo reversível é definido como um processo que pode ser invertida sem deixar nenhum vestígio no ambiente. Ou seja, tanto o sistema e o ambiente são devolvidos

Leia mais

Capítulo 4: Análise de Sistemas: 1ª e 2ª Leis da Termodinâmica

Capítulo 4: Análise de Sistemas: 1ª e 2ª Leis da Termodinâmica Capítulo 4: Análise de Sistemas: ª e ª eis da ermodinâmica Revisão Exercícios Primeira lei da termodinâmica O balanço de energia pode ser escrito na forma diferencial: de δ - δw Como energia E é uma propriedade

Leia mais

(d) F < P a, F = P b, F < P c, P a < P c. (e) F = P a, F > P b, F < P c, P a < P c. Não é possível determinar com os dados do enunciado.

(d) F < P a, F = P b, F < P c, P a < P c. (e) F = P a, F > P b, F < P c, P a < P c. Não é possível determinar com os dados do enunciado. Seção 1. Universidade Federal do io de Janeiro Instituto de Física Física II 017.1 Prova 1: 4/04/017 Versão: A 5. A gura abaixo mostra três recipientes com a mesma área da base e contendo o mesmo uido

Leia mais

Termodinâmica 13. Alexandre Diehl. Departamento de Física - UFPel

Termodinâmica 13. Alexandre Diehl. Departamento de Física - UFPel Termodinâmica 13 Alexandre Diehl Departamento de Física - UFPel Nicolas Léonard Sadi Carnot (1796 1832) 1824: observações de Carnot Trabalho pode ser produzido a partir de fontes de calor (calor ainda

Leia mais

Reservatório a alta temperatura T H. Ciclos reversíveis

Reservatório a alta temperatura T H. Ciclos reversíveis 15/Mar/017 Aula 6 Ciclos termodinâmicos reversíveis Diagrama P e eficiência do Ciclo de Carnot Ciclo de Otto (motores a gasolina): processos e eficiência Ciclo de Diesel: processos, eficiência e trabalho

Leia mais

Reservatório a alta temperatura T H. Ciclos reversíveis

Reservatório a alta temperatura T H. Ciclos reversíveis 9/Mar/016 Aula 6 Ciclos termodinâmicos reversíveis Diagrama P e eficiência do Ciclo de Carnot Ciclo de Otto (motores a gasolina): processos e eficiência Ciclo de Diesel: processos, eficiência e trabalho

Leia mais

Fís. Monitor: Caio Girão

Fís. Monitor: Caio Girão Professor: Leonardo Gomes Monitor: Caio Girão Máquinas térmicas 05 jul RESUMO O que é uma máquina térmica? Máquinas térmicas são dispositivos usados para converter calor em energia mecânica. Como assim?

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Segunda Lei da Termodinâmica. v. 1.0

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Segunda Lei da Termodinâmica. v. 1.0 Termodinâmica Segunda Lei da Termodinâmica 1 v. 1.0 Introdução Leis da termodinâmica são a expressão matemática de observações da processos da natureza. Lei Zero - Equilíbrio Térmico 1a Lei - Relaciona

Leia mais

Física estatística. Termodinâmica: a segunda lei MEFT, IST

Física estatística. Termodinâmica: a segunda lei MEFT, IST Física estatística Termodinâmica: a segunda lei MEFT, IST You should call it entropy, because nobody knows what entropy really is, so in a debate you will always have the advantage von Neumann A segunda

Leia mais

Física 3. Cap 19: Máquinas Térmicas

Física 3. Cap 19: Máquinas Térmicas Física 3 Cap 19: Máquinas Térmicas Máquinas Térmicas Máquina Térmica: um dispositivo que opera em ciclos convertendo calor em trabalho útil. 1ª máquina térmica conhecida: Criada por Herão de Alexandria

Leia mais

TERMODINÂMICA. Prof. Rangel

TERMODINÂMICA. Prof. Rangel TERMODINÂMICA Prof. Rangel GÁS Gás é um estado físico da matéria onde as moléculas tem maior energia e grau de liberdade. Características: o O volume é igual ao do recipiente que o contem. o Alta compressibilidade;

Leia mais

Curso de Engenharia Civil

Curso de Engenharia Civil Curso de Engenharia Civil Física Geral e Experimental II 2 período A e B Calorimetria e Termodinâmica Prof.a Érica Muniz Capacidade térmica de um corpo: Capacidade térmica de um corpo é a grandeza que

Leia mais

QUÍMICA PROFº JAISON MATTEI

QUÍMICA PROFº JAISON MATTEI QUÍMICA PROFº JAISON MATTEI 1. Em uma máquina térmica ideal que opere em ciclos, todos os processos termodinâmicos, além de reversíveis, não apresentariam dissipação de energia causada por possíveis efeitos

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Entropia

Escola Politécnica da Universidade de São Paulo. Termodinâmica. Entropia ermodinâmica Entropia v.. Introdução Falamos nas aulas anteriores sobre a a Lei da ermodinâmica. Vimos dois enunciados da a Lei, o de Kelvin-Planck e o de Clausius. Falamos sobre sentido natural dos processos,

Leia mais

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 2 a Lei da Termodinâmica. v. 2.1

Escola Politécnica da Universidade de São Paulo. Termodinâmica. 2 a Lei da Termodinâmica. v. 2.1 Termodinâmica 2 a Lei da Termodinâmica v. 2.1 Introdução 1ª lei da termodinâmica não estabelece restrições no sentido da interação de calor ou trabalho. De nossa experiência sabemos que há um único sentido

Leia mais

Máquinas Térmicas, Refrigeradores, e a Segunda Lei

Máquinas Térmicas, Refrigeradores, e a Segunda Lei Máquinas érmicas, Refrigeradores, e a Segunda Lei onversão de rabalho em alor, e ice ersa uando atritamos dois objetos, eles tendem a ter sua energia interna aumentada, devido ao trabalho feito por fricção.

Leia mais

PME 3344 Termodinâmica Aplicada

PME 3344 Termodinâmica Aplicada PME 3344 Termodinâmica Aplicada 2 a Lei da Termodinâmica v. 2.2 Introdução A 1ª lei da termodinâmica não estabelece restrições no sentido da interação de calor ou trabalho. De nossa experiência sabemos

Leia mais

Segunda Lei da Termodinâmica

Segunda Lei da Termodinâmica Segunda Lei da Termodinâmica Para que possamos entender o enunciado da 2ª lei, devemos ter alguns conceitos básicos. 1. Transformações reversíveis e irreversíveis Transformações reversíveis são aquelas

Leia mais

Resumo do Conteúdo. 1ª Lei da Termodinâmica

Resumo do Conteúdo. 1ª Lei da Termodinâmica SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR SARGENTO NADER ALVES DOS SANTOS SÉRIE/ANO: 2º TURMA(S):

Leia mais

Ex: Ciclo de Carnot para um gás ideal

Ex: Ciclo de Carnot para um gás ideal Ciclo de Carnot ransformação reversível cíclica de um sistema termodinâmico, durante a qual o sistema: i) Sofre uma expansão isotérmica à temp. durante a qual flui calor para o sistema; ii) Sofre um arrefecimento

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN CAMPUS: CURSO: ALUNO: Lista de exercícios 20

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN CAMPUS: CURSO: ALUNO: Lista de exercícios 20 INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN CAMPUS: CURSO: ALUNO: DISCIPLINA: FÍSICA I PROFESSOR: EDSON JOSÉ Lista de exercícios 20 1. Numa transformação sob pressão constante de 800 N/m

Leia mais

2ª Lei da Termodinâmica. Dentre as duas leis da termodinâmica, a segunda é a. que tem maior aplicação na construção de máquinas e

2ª Lei da Termodinâmica. Dentre as duas leis da termodinâmica, a segunda é a. que tem maior aplicação na construção de máquinas e 2ª Lei da Termodinâmica Dentre as duas leis da termodinâmica, a segunda é a que tem maior aplicação na construção de máquinas e utilização na indústria, pois trata diretamente do rendimento das máquinas

Leia mais

A) 2,5 B) 4 C) 5 D) 7,5 E) 10

A) 2,5 B) 4 C) 5 D) 7,5 E) 10 1-Uma massa gasosa, inicialmente num estado A, sofre duas transformações sucessivas e passa para um estado C. A partir do estado A esse gás sofre uma transformação isobárica e passa para o estado B. A

Leia mais

Termo- estatística REVISÃO DE TERMODINÂMICA. Alguns conceitos importante que aparecem nesta lei:

Termo- estatística REVISÃO DE TERMODINÂMICA. Alguns conceitos importante que aparecem nesta lei: Lei Zero da Termodinâmica 4300259 Termo- estatística REVISÃO DE TERMODINÂMICA Se dois sistema estão em equilíbrio térmico com um terceiro sistema, então eles também estão em equilíbrio entre si. Alguns

Leia mais

1 a Lei da Termodinâmica

1 a Lei da Termodinâmica 1 a Lei da Termodinâmica Processos termodinâmicos. Gases ideais. Calor específico de gases ideais. Equação para processos adiabáticos de gases ideais. 1 a Lei da Termodinâmica Calor, Trabalho e Energia

Leia mais

Aula 7 A entropia e a sua interpretação microscópica Física II UNICAMP 2012

Aula 7 A entropia e a sua interpretação microscópica Física II UNICAMP 2012 Aula 7 A entropia e a sua interpretação microscópica Física II UNICAMP 2012 O teorema de Clausius Se uma máquina irreversível (I ) opera entre as temperaturas T 1 e T 2 vimos que o seu rendimento é sempre

Leia mais

Questão 1. Assinale com um x na lacuna V se julgar que a afirmativa é verdadeira e na lacuna F se julgar que é falsa. [2,0]

Questão 1. Assinale com um x na lacuna V se julgar que a afirmativa é verdadeira e na lacuna F se julgar que é falsa. [2,0] Universidade Federal do Espírito Santo Centro de Ciências Exatas Departamento de Física FIS966 Física Prof. Anderson Coser Gaudio Prova 3/3 Nome: Assinatura: Matrícula UFES: Semestre: 3/ Curso: Física

Leia mais

Cap. 20 A Entropia e a Segunda Lei da Termodinâmica

Cap. 20 A Entropia e a Segunda Lei da Termodinâmica Cap. 20 A Entropia e a Segunda Lei da Processos Irreversíveis e Entropia; Variação de Entropia; A Segunda Lei da ; Entropia no Mundo Real: Máquinas Térmicas; Entropia no Mundo Real: Refrigeradores; Eficiência

Leia mais

As leis da Termodinâmica

As leis da Termodinâmica PARTE I Unidade D 9 Capítulo As leis da Termodinâmica Seções: 91 Considerações preliminares 92 O princípio da conservação da energia aplicado à Termodinâmica 93 Transformações gasosas 94 A conversão de

Leia mais

Termodinâmica I - FMT 159 Segunda prova: 30/11/2009 Noturno

Termodinâmica I - FMT 159 Segunda prova: 30/11/2009 Noturno ermodinâmica I - FM 159 Segunda prova: 30/11/2009 Noturno AENÇÃO: JUSIFIQUE todas as suas respostas. Não destaque a folha de rascunho. empo de prova: 100 minutos. NOME: 1. (3,0) Em uma máquina térmica

Leia mais

S em processos reversíveis (lentos) e irreversíveis (abruptos) Reservatório (R)

S em processos reversíveis (lentos) e irreversíveis (abruptos) Reservatório (R) S em processos reversíveis (lentos) e irreversíveis (abruptos) gás (g) Reservatório (R) Em processos abruptos, não há estados de equilíbrio entre os estados i e f. Não há como calcular W (i) emos que inferir

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departamento de Estudos Básicos e Instrumentais 4 Termodinâmica Física II Ferreira 1 ÍNDICE 1. Conceitos Fundamentais; 2. Sistemas Termodinâmicos; 3. Leis da

Leia mais

TERMODINÂMICA 3 INTRODUÇÃO AO 2º PRINCÍPIO DA TERMODINÂMICA

TERMODINÂMICA 3 INTRODUÇÃO AO 2º PRINCÍPIO DA TERMODINÂMICA 3 INRODUÇÃO AO º PRINCÍPIO DA ERMODINÂMICA 3. O ciclo de Carnot (84). ERMODINÂMICA Investigou os princípios que governam a transformação de energia térmica, calor em energia mecânica, trabalho. Baseou

Leia mais

2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3

2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3 6/Fev/016 Aula 3 Calor e Primeira Lei da Termodinâmica Calor e energia térmica Capacidade calorífica e calor específico Calor latente Diagrama de fases para a água Primeira Lei da Termodinâmica Trabalho

Leia mais

BC 0303: Fenômenos Térmicos 2 a Lista de Exercícios

BC 0303: Fenômenos Térmicos 2 a Lista de Exercícios BC 33: Fenômenos Térmicos a Lista de Exercícios ** Onde for necessário adote a constante universal dos gases R = 8,3 J/mol K e o número de Avogadro N A = 6,. 3 ** Caminho Livre Médio. Em um dado experimento,

Leia mais

Disciplina: FÍSICA Série: 2º ANO ATIVIDADES DE REVISÃO PARA O REDI III ENSINO MÉDIO

Disciplina: FÍSICA Série: 2º ANO ATIVIDADES DE REVISÃO PARA O REDI III ENSINO MÉDIO Professor (a): Estefânio Franco Maciel Aluno (a): Disciplina: FÍSICA Série: 2º ANO ATIVIDADES DE REVISÃO PARA O REDI III ENSINO MÉDIO Data: /08/2017. Questão 01) O gráfico mostra a variação da pressão

Leia mais

Termodinâmica. Lucy V. C. Assali

Termodinâmica. Lucy V. C. Assali Termodinâmica Segunda Lei Física II 2015 - IO A Segunda Lei da Termodinâmica 1 a Lei da Termodinâmica: incorpora ao princípio de conservação de energia o calor como forma de energia: du=dq dw - (qualquer

Leia mais

Aula 4 A 2ª Lei da Termodinâmica

Aula 4 A 2ª Lei da Termodinâmica Universidade Federal do ABC P O S M E C Aula 4 A 2ª Lei da Termodinâmica MEC202 As Leis da Termodinâmica As leis da termodinâmica são postulados básicos aplicáveis a qualquer sistema que envolva a transferência

Leia mais

ESTUDO DOS GASES. Energia cinética de um gás. Prof. Patricia Caldana

ESTUDO DOS GASES. Energia cinética de um gás. Prof. Patricia Caldana ESTUDO DOS GASES Prof. Patricia Caldana Gases são fluidos no estado gasoso, a característica que o difere dos fluidos líquidos é que, quando colocado em um recipiente, este tem a capacidade de ocupa-lo

Leia mais

Lista 2-2 a Lei da Termodinâmica MPEF, UFRJ, 2018/1

Lista 2-2 a Lei da Termodinâmica MPEF, UFRJ, 2018/1 Lista 2-2 a Lei da Termodinâmica MPEF, UFRJ, 2018/1 Questão 1. Uma máquina térmica utiliza o calor fornecido por uma fonte para realizar trabalho. Nos motores de automóvel a mistura gasolina-ar atua como

Leia mais

1 Gases Termodinâmica

1 Gases Termodinâmica FRENTE 3 UL 09 CONTINUÇÃO f: 11 4534.3388 1 Gases Termodinâmica 1.1 Gás Ideal lgumas condições para se assumir que um gás é ideal: 1. os átomos são considerados como esferas 2. as colisões se dão unicamente

Leia mais

Física do Calor. Entropia e Segunda Lei II

Física do Calor. Entropia e Segunda Lei II 4300159 Física do Calor Entropia e Segunda Lei II C A = C B = C A B f f A > B ds = dq rev S A = R dq rev = C A R f A d = C ln f A < 0 S B = R dq rev = C B R f B d = C ln f B > 0 S sis = S A + S B = C ln

Leia mais

Plano de Aulas. Física. Módulo 12 Gases e termodinâmica

Plano de Aulas. Física. Módulo 12 Gases e termodinâmica Plano de Aulas Física Módulo 1 Gases e termodinâmica Resolução dos exercícios propostos Exercícios dos conceitos 16 CAPÍTULO 1 1 a) Utilizando a lei de Boyle no processo isotérmico, temos: p A 3 V A 5

Leia mais

Entropia e Segunda Lei

Entropia e Segunda Lei Entropia e Segunda Lei BC0205 Roosevelt Droppa Jr. roosevelt.droppa@ufabc.edu.br Entropia e Segunda Lei Sentido de um processo Desordem no processo Conceito de entropia Entropia em proc. reversíveis e

Leia mais

2 c) V 0 d) 2V 0 e) 3V 0. 0,02 m é submetido a uma transformação isobárica, 9 litros. 0,06 m. Nessas condições, é possível.

2 c) V 0 d) 2V 0 e) 3V 0. 0,02 m é submetido a uma transformação isobárica, 9 litros. 0,06 m. Nessas condições, é possível. Lista Especial Física Prof. Elizeu 01. (Pucrj 017) Uma certa quantidade de gás ideal ocupa inicialmente um volume 0 com pressão P. 0 Se sobre esse gás se realiza um processo isotérmico dobrando sua pressão

Leia mais

Máquinas térmicas, bombas de calor e refrigeradores 1

Máquinas térmicas, bombas de calor e refrigeradores 1 Máquinas térmicas, bombas de calor e refrigeradores 1 Física I (4302112) IFUSP 2017 1 Transformando energia Alguns livros didáticos definem energia como a capacidade de realizar trabalho, entendida como

Leia mais

Termodinâmica. Prof.: POMPEU

Termodinâmica. Prof.: POMPEU 1. DEFINIÇÃO A estuda a relação entre calor e trabalho que um sistema (por exemplo, um gás) troca com o meio exterior. 2. ENERGIA INTERNA (U) É a soma das várias formas de energia das moléculas que constituem

Leia mais

Instruções. Leia as questões antes de respondê-las. A interpretação da questão faz parte da avaliação.

Instruções. Leia as questões antes de respondê-las. A interpretação da questão faz parte da avaliação. Nome: Curso: RA: Instituto de Ciências Exatas e Tecnológicas Campus Indianópolis SUB Termodinâmica Básica Turma: Data: Instruções Leia as questões antes de respondê-las. A interpretação da questão faz

Leia mais

Aula 9: Entropia e a Segunda Lei da Termodinâmica

Aula 9: Entropia e a Segunda Lei da Termodinâmica UFABC Fenômenos Térmicos Prof. Germán Lugones Aula 9: Entropia e a Segunda Lei da Termodinâmica Sadi Carnot [1796-1832] R. Clausius [1822-1888] W. Thomson (Lord Kelvin) [1824-1907] Quando um saco de pipocas

Leia mais