Para onde vai a energia?

Tamanho: px
Começar a partir da página:

Download "Para onde vai a energia?"

Transcrição

1 Para onde vai a energia? J. C. Romão, J. Dias de Deus, and P. Brogueira Departamento de Física, Instituto Superior Técnico Avenida Rovisco Pais, 9- Lisboa, Portugal I. INTRODUÇÃO Um problema interessante em electrostática é o seguinte (ver Problemas. e.37 na Ref.[]) Dois condensadores de capacidades C e C, um carregado, outro não, são ligados em paralelo. ) Mostre que no equilíbrio se verificam as seguintes relações: Q Q = C C +C Q Q = C C +C, onde Q é a carga inicial do condensador carregado e Q e Q as cargas finais de cada um deles. ) Mostre que a energia final armazenada no sistema é menor que a energia inicial e deduza umaexpressão para a diferença entre as duas energias em termos de Q e de C e C. Considere que o fio que liga os dois condensadores tem resistência R. Mostre que a diferença de energia é exactamente igual à energia dissipada por efeito de Joule, isto é, U J = RI (t)dt. 3) Que acontece no caso em que R tende para zero? A resposta à primeira questão é trivial. A segunda, embora faça sentido fisicamente por dever haver conservação de energia, já não é tão trivial. Em particular, a diferença de energias entre o estado inicial e final só depende das capacidades C e C. Como pode então ser dissipada por efeito de Joule que depende da resistência? A terceira, embora académica por haver sempre alguma resistência nos fios, é muito interessante e não trivial. Para sermos capazes de responder à última pergunta não podemos desprezar a auto indutância L do circuito. Assim somos levados à análise dum circuito RLC em regime transitório. II. O CIRCUITO RLC EM REGIME TRANSITÓRIO Consideremos o circuito RLC da Fig. com a condição inicial de termos uma carga no condensador C em t =. Vamos determinar a carga nos condensadores e a corrente no circuito em função do tempo. Electronic address: jorge.romao@ist.utl.pt Electronic address: jdd@fisica.ist.utl.pt Electronic address: pedro@fisica.ist.utl.pt

2 R L C C FIG. : Circuito RLC A equação diferencial do circuito pode-se escrever em termos da carga Q(t) no condensador C na forma seguinte onde C é a capacidade do conjunto dos dois condensadores, isto é = R dq Q C dt +Ld dt + Q C, () C = C C C +C. () A solução geral da Eq. () será a soma duma solução particular da equação (Q = C/C ) com a solução da equação homogénea, R dq dt +Ld Q dt + Q C =. (3) Asoluçãodaequaçãohomogéneaédaformae αt. SubstituindonaEq.(3)obtemosaequaçãocaracterística com soluções α + R L α+ LC = () α = R L ± ( R L ) LC (5) Vemos assim que a característica das soluções depende do sinal do discriminante = ( ) R L LC () O discriminante é nulo para um valor crítico da resistência dada por R c = L C (7) Vamos estudar separadamente as várias situações. A. R > R c Neste caso ambas as raízes são reais e negativas. A solução geral da equação é então Q(t) = C C ( +Ae t/τ +Be t/τ ) ()

3 3 com τ = L R + ( R c ), τ = L R R ( R c R ) (9) É fácil de ver que as soluções com as condições na fronteira do problema, Q() = e i() = são, Q(t) = C C [ e t/τ + τ τ τ ( e t/τ e t/τ ) ] () e I(t) = C [ e t/τ + τ ( e t/τ )] e t/τ C τ τ τ τ τ () Para referência futura notemos que τ +τ = RC () Na Figura mostramos os gráficos da carga no condensador C e da corrente no circuito I A FIG. : Carga e intensidade de corrente en função do tempo para o caso A. Dados: = µ C, C = C = µf, L = µh, R c = Ω e R =.R c. B. R = R c Neste caso temos uma raiz dupla onde se usou o facto que R = R c. A solução geral da Eq. () é agora τ = τ = τ = L R = RC (3) Q(t) = C ( [ + t ] )e t/τ C τ () o que dá para a corrente, I(t) = C C t τ e t/τ (5) Na Figura 3 mostramos os gráficos da carga no condensador C e da corrente no circuito.

4 I A FIG. 3: Carga e intensidade de corrente en função do tempo para o caso B. Dados: = µ C, C = C = µf, L = µh, R c = Ω e R = R c. C. R < R c Este é o caso mais interessante e vai conduzir a oscilações pois as raízes são complexas. Para fixar notação escrevemos α = τ ±iω () onde τ = L R, ω = LC R L (7) As soluções gerais são agora, Q(t) = C ( [ cosωt+ ] )e C ωτ sinωt t/τ () e I(t) = C +ω τ C ωτ sinωt e t/τ (9) Nas Figuras, 5 e mostramos os gráficos da carga no condensador C e da corrente no circuito. 5 5 I A 5 5 FIG. : Carga e intensidade de corrente en função do tempo para o caso C. Dados: = µ C, C = C = µf, L = µh, R c = Ω e R =.5R c.

5 5 I A 5 5 FIG. 5: Carga e intensidade de corrente en função do tempo para o caso C. Dados: = µ C, C = C = µf, L = µh, R c = Ω e R = R c/. I A 5 5 FIG. : Carga e intensidade de corrente en função do tempo para o caso C. Dados: = µ C, C = C = µf, L = µh, R c = Ω e R = R c/. III. ANÁLISE DA ENERGIA A questão que motivou este estudo era saber qual a diferença entre a energia inicial com o condensador C com carga e a situaçãofinal com os dois condutores atingindo o equilíbrioelectrostático. Excluindo o caso R =, ao qual voltaremos mais à frente, em todos os outros casos obtemos, Portanto e lim t Q = C C = C C+C, lim t Q = C C = C C+C () W i = Q, W f = Q + Q () C C C C W i W f = C (C +C ) > () A questão era saber para onde ia esta diferença de energia. Vamos mostrar que em todos os casos em que R > esta diferença corresponde exactamente à energia dissipada por efeito de Joule, independentemente do valor de R e do tipo de solução, amortecida, ou periódica amortecida. A. R > R c Para mostrarmos o que acima dissemos basta calcular W Joule = RI (t)dt (3)

6 Para vermos como a resistência R desaparece das contas vamos fazer este caso em detalhe (os outros serão semelhantes). Usando a Eq. () obtemos facilmente Agora usando W Joule = R C C Q = R C C Q [ τ e t/τ + τ τ τ [ τ ( e t/τ )] e t/τ dt τ τ ( ) ( ) τ τ e t/τ + τ τ τ e t/τ + τ τ τ e t/τ τ + τ τ τ e t/τ ( ) τ e t(/τ+/τ) τ τ τ τ ] e t(/τ+/τ) dt () τ τ obtemos [ W Joule = R C C Q = C C Q τ + e αt = α ( ) ( τ τ + τ τ τ τ τ ( ) τ τ +τ τ τ R τ +τ = ) τ + τ τ τ τ τ τ τ +τ ] τ (5) C C (C +C ) = W i W f () onde se usou a Eq. () e a Eq. (). B. R = R c Agora obtemos onde se usou a a Eq. () e a Eq. (3). W Joule = C C Q R τ = C C (C +C ) = W i W f (7) C. R < R c Neste caso o integral é ligeiramente mais complicado mas o resultado é o mesmo, onde se usou a Eq. (7) para obter W Joule = C C Q R ω τ + = C τ C (C +C ) = W i W f () R ω τ + τ = C (9)

7 7 IV. QUE ACONTECE QUANDO R =? Este é o caso mais interessante. Se usarmos as expressões na Eq. (7) obtemos e portanto isto é, neste limite a atenuação desaparece. As soluções são então lim τ = (3) R lim R e t/τ = (3) e Q(t) = C C ( cosωt) (3) onde I(t) = C C ωsinωt (33) ω = LC (3) O sistema vai oscilar, nunca atingindo o estado de equilíbrio electrostático (e portanto não violando o teorema de Thomson). É fácil calcular as várias parcelas da energia nas várias componentes do circuito (neste limite não há resistência). Obtemos W C = (C +C cosωt) C (C +C ) (35) C W C = (C +C ) ( cosωt) (3) W L = Podemos então mostrar que a energia é conservada, pois C C C +C sin ωt (37) W C +W C +W L = Q = W i (3) C V. EXEMPLOS NUMÉRICOS Vamos agora ver para valores típicos dos parâmetros dos circuitos o que vai acontecer. Para isso tomemos dois condensadores com C = C = µf. Temos então C = C C C +C = µf (39) TemosagoraqueestimarR el. ParaissoadmitimosqueocircuitotemaformadaFiguraequeasligações são feitas com fio de cobre com condutividade σ Cu = 5. 7 S/m, secção com raio b =.5 m e o circuito forma uma circunferência de perímetro l =.3m. Então a =.77 m, R = Ω, L = 3µH ()

8 C C a FIG. 7: Circuito RLC Como R < R c = L/C =.3Ω, o circuito vai entrar em regime oscilatório amortecido. No entanto a constante de tempo de amortecimento é muito pequena τ = L R =.5 3 s () pelo que o estado de equilíbrio é atingido muito rapidamente. No laboratório convém encontrar valores de R, L e C que ilustrem os 3 regimes. O caso de R = é, claro, um caso académico, a menos que se utilizem supercondutores. A situação aqui descrita corresponde aos gráficos da Figura. 3 5 I A FIG. : Carga e intensidade de corrente en função do tempo para o caso C. Dados: = µ C, C = C = µf, L = 3 µh, R c =.3 Ω e R = R = Ω. [] A. B. Henriques and J. C. Romão, Electromagnetismo (IST Press, ).

Resposta natural de circuitos RLC paralelo

Resposta natural de circuitos RLC paralelo Exemplo 1 i R 6 Ω 7 H 1/42 F i C v v() = V () = 1 A α = 3. 5 rad/s s = 1 rad/s ω = 6 rad/s s = 6 rad/s 2 1 v(t) = 84 (e t e 6t ) V Regime sobreamortecido ou aperiódico Teoria dos Circuitos Circuitos RLC

Leia mais

PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA EXPERIÊNCIA 10: REDES DE SEGUNDA ORDEM

PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA EXPERIÊNCIA 10: REDES DE SEGUNDA ORDEM ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI.3031 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA Edição 2017 E.Galeazzo / L.Yoshioka

Leia mais

Roteiro-Relatório da Experiência N o 07 CIRCUITO RLC CC TRANSITÓRIO

Roteiro-Relatório da Experiência N o 07 CIRCUITO RLC CC TRANSITÓRIO Roteiro-Relatório da Experiência N o 7 CIRCUITO RLC CC TRANSITÓRIO. COMPONENTES DA EQUIPE: ALUNOS NOTA 3 Data: / / : hs. OBJETIVOS:.. Esta experiência tem por objetivo verificar as características de resposta

Leia mais

A energia total do circuito é a soma da potencial elétrica e magnética

A energia total do circuito é a soma da potencial elétrica e magnética Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III - Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 35-, 35-4, 35-5, 35-6 S. 3-6, 3-7 T. 8-4 Aula 7 Circuitos

Leia mais

BC 1519 Circuitos Elétricos e Fotônica

BC 1519 Circuitos Elétricos e Fotônica BC 1519 Circuitos Elétricos e Fotônica Capacitor / Circuito RC Indutor / Circuito RL 2015.1 1 Capacitância Capacitor: bipolo passivo que armazena energia em seu campo elétrico Propriedade: Capacitância

Leia mais

Circuitos RLC alimentados com onda quadrada

Circuitos RLC alimentados com onda quadrada Circuitos RLC alimentados com onda quadrada 8 8.1 Material capacitor de 10 nf; resistores de 100 Ω; indutor de 23,2 mh; potenciômetro. 8.2 Introdução Nos experimentos anteriores estudamos o comportamento

Leia mais

Circuitos RLC alimentados com onda quadrada

Circuitos RLC alimentados com onda quadrada Circuitos RLC alimentados com onda quadrada 4 4.1 Material Gerador de funções; osciloscópio; multímetro; capacitor de 10 nf; resistores de 100 Ω; indutor de 10 a 50 mh; potenciômetro. 4.2 Introdução No

Leia mais

Experimento 5 Circuitos RLC com onda quadrada

Experimento 5 Circuitos RLC com onda quadrada Experimento 5 Circuitos RLC com onda quadrada 1. OBJETIVO O objetivo desta aula é estudar a variação de voltagem nas placas de um capacitor, em função do tempo, num circuito RLC alimentado com onda quadrada.

Leia mais

R R R. 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série. resistências & lei de Ohm R A

R R R. 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série. resistências & lei de Ohm R A resistências & lei de Ohm R A V R 7. corrente contínua e circuitos os circuitos são constituídos por um gerador e cargas ligadas em: Série Paralelo corrente Rsérie R R Rparalelo R R2 2 SÉREigual corrente

Leia mais

Circuito RLC série FAP

Circuito RLC série FAP Circuito RLC série Vamos considerar um circuito com um indutor puro e um capacitor puro ligados em série, em que o capacitor está carregado no instante t. Como inicialmente o capacitor está com a carga

Leia mais

Cap. 5 - Corrente, Resistência e Força Eletromotriz

Cap. 5 - Corrente, Resistência e Força Eletromotriz Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 5 - Corrente, Resistência e Força Eletromotriz Prof. Elvis Soares Nesse capítulo, estudaremos a definição de corrente,

Leia mais

6. CIRCUITOS DE CORRENTE CONTÍNUA

6. CIRCUITOS DE CORRENTE CONTÍNUA 6. CCUTOS DE COENTE CONTÍNUA 6.. Força Electromotriz 6.2. esistências em Série e em Paralelo. 6.3. As egras de Kirchhoff 6.4. Circuitos C 6.5. nstrumentos Eléctricos Análise de circuitos simples que incluem

Leia mais

Circuitos RLC alimentados com onda quadrada

Circuitos RLC alimentados com onda quadrada Capítulo 5 Circuitos RLC alimentados com onda quadrada 5.1 Material Gerador de funções; osciloscópio; multímetro; capacitor de 10 nf; resistores de 100 Ω; indutor de 10 a 50 mh; potenciômetro. 5.2 Introdução

Leia mais

Problema 1 (só exame) Problema 2 (só exame) Problema 3 (teste e exame)

Problema 1 (só exame) Problema 2 (só exame) Problema 3 (teste e exame) º Teste: Problemas 3, 4 e 5. Exame: Problemas,, 3, 4 e 5. Duração do teste: :3h; Duração do exame: :3h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP PSI.31 LABORATÓRIO DE CIRCUITOS ELETRICOS INTRODUÇÃO TEÓRICA Edição 018 EXPERIÊNCIA 10: REDES

Leia mais

6. CIRCUITOS DE CORRENTE CONTÍNUA

6. CIRCUITOS DE CORRENTE CONTÍNUA 6. CCUTOS DE COENTE CONTÍNUA 6. Força Electromotriz 6.2 esistências em Série e em Paralelo. 6.3 As egras de Kirchhoff 6.4 Circuitos C 6.5 nstrumentos Eléctricos Análise de circuitos simples que incluem

Leia mais

Experimento 5 Circuitos RLC com onda quadrada

Experimento 5 Circuitos RLC com onda quadrada Experimento 5 Circuitos RLC com onda quadrada 1. OBJETIVO O objetivo desta aula é estudar a variação de voltagem nas placas de um capacitor, em função do tempo, num circuito RLC alimentado com onda quadrada.

Leia mais

Física 3. Fórmulas e Exercícios P3

Física 3. Fórmulas e Exercícios P3 Física 3 Fórmulas e Exercícios P3 Fórmulas úteis para a P3 A prova de física 3 traz consigo um formulário contendo várias das fórmulas importantes para a resolução da prova. Aqui eu reproduzo algumas que

Leia mais

Seção 9: EDO s lineares de 2 a ordem

Seção 9: EDO s lineares de 2 a ordem Seção 9: EDO s lineares de a ordem Equações Homogêneas Definição. Uma equação diferencial linear de segunda ordem é uma equação da forma onde fx, gx e rx são funções definidas em um intervalo. y + fx y

Leia mais

Escola Politécnica FGE GABARITO DA P3 29 de junho de 2006

Escola Politécnica FGE GABARITO DA P3 29 de junho de 2006 P3 Física III Escola Politécnica - 006 FGE 03 - GABARITO DA P3 9 de junho de 006 Questão 1 Um espira retangular com lados a e b e um fio muito longo passando pelo centro da espira, ambos co-planares, foram

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 12 Revisão Propagação da energia eletromagnética ao longo do comprimento da linha. Modo

Leia mais

Circuitos. ε= dw dq ( volt= J C ) Definição de fem:

Circuitos. ε= dw dq ( volt= J C ) Definição de fem: Aula-7 Circuitos Circuitos Resolver um circuito de corrente contínua (DC) é calcular o valor e o sentido da corrente. Como vimos, para que se estabeleça uma corrente duradoura num condutor, é necessário

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III CIRCUITOS RLC COM ONDA QUADRADA

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III CIRCUITOS RLC COM ONDA QUADRADA UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III CIRCUITOS RLC COM ONDA QUADRADA 1. OBJETIVO O objetivo desta aula é estudar a variação de voltagem

Leia mais

Capítulo 9. Circuitos de Segunda Ordem

Capítulo 9. Circuitos de Segunda Ordem EA-53 Circuitos Elétricos I Capítulo 9 Circuitos de Segunda Ordem EA-53 Circuitos Elétricos I 9. Circuitos com Dois Elementos Armazenadores Circuito com dois indutores, onde deseja-se obter a corrente

Leia mais

Circuitos de Primeira Ordem

Circuitos de Primeira Ordem Circuitos de Primeira Ordem Magno T. M. Silva e Flávio R. M. Pavan, 5 Introdução Em geral, um circuito de primeira ordem tem um único elemento armazenador de energia (um capacitor ou um indutor) e é descrito

Leia mais

Problema Circuito RL excitado por um escalão de tensão

Problema Circuito RL excitado por um escalão de tensão PRTE III -Circuitos Dinâmicos Lineares Problema 3. - Circuito LC em regime estacionário (dc) Considere o circuito da figura 3., que representa uma rede RLC alimentada por um gerador de tensão contínua.

Leia mais

LISTA DE EXERCÍCIOS 2

LISTA DE EXERCÍCIOS 2 LISTA DE EXERCÍCIOS 2 Esta lista trata de vários conceitos associados ao movimento harmônico forçado e/ou amortecido. Tais conceitos são abordados no capítulo 4 do livro-texto (seções 4.1 a 4.5): Moysés

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 12 Revisão Propagação da energia eletromagnética ao longo do comprimento da linha. Modo

Leia mais

Escola Politécnica FGE GABARITO DA P2 17 de maio de 2007

Escola Politécnica FGE GABARITO DA P2 17 de maio de 2007 P2 Física III Escola Politécnica - 2007 FGE 2203 - GABARITO DA P2 17 de maio de 2007 Questão 1 Um capacitor plano é constituido por duas placas planas paralelas de área A, separadas por uma distância d.

Leia mais

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas.

, (1) onde v é o módulo de v e b 1 e b 2 são constantes positivas. Oscilações Amortecidas O modelo do sistema massa-mola visto nas aulas passadas, que resultou nas equações do MHS, é apenas uma idealização das situações mais realistas existentes na prática. Sempre que

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁSE DE UTOS - ENG04031 Aula 7 - esposta no Domínio Tempo de ircuitos Série Sumário Solução

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 17:42. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 17:42. Jason Alfredo Carlson Gallas, professor titular de física teórica, LISTA 3 - Prof. Jason Gallas, DF UFPB 0 de Junho de 203, às 7:42 Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor em Física pela Universidade

Leia mais

Questionário de Física IV

Questionário de Física IV Questionário de Física IV LEFT-LEA-LMAC-LCI 2 Semestre 2002/2003 Amaro Rica da Silva, Teresa Peña Alfredo B. Henriques Profs. Dep.Física - IST Questão 1 Na figura junta representam-se as linhas de campo

Leia mais

Física III Escola Politécnica GABARITO DA PS 30 de junho de 2011

Física III Escola Politécnica GABARITO DA PS 30 de junho de 2011 Física - 4320301 Escola Politécnica - 2011 GABARTO DA PS 30 de junho de 2011 Questão 1 No modelo de Rutherford o átomo é considerado como uma esfera de raio R com toda a carga positiva dos prótons, Ze,

Leia mais

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E

AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E AMORTECIMENTOS SUBCRÍTICO, CRÍTICO E SUPERCRÍTICO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 26 de março de 2018 Roteiro 1 Modelo geral Amortecimento supercrítico Amortecimento subcrítico

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-328 Física Geral III Aula exploratória- 10B UNICAMP IFGW username@ifi.unicamp.br F328 1S2014 1 A ei de enz O sentido da corrente induzida é tal que ela se opõe à variação do fluxo magnético que a produziu.

Leia mais

CIRCUITOS DE CORRENTE CONTÍNUA

CIRCUITOS DE CORRENTE CONTÍNUA Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T5 Física Experimental I - 2007/08 CIRCUITOS DE CORRENTE CONTÍNUA 1. Objectivo Verificar as leis fundamentais de conservação da

Leia mais

Capítulo 2. Corrente eléctrica. 2.1 Introdução. Capítulo 2. F.Barão, L.F.Mendes Electromagnetismo e Óptica (MEEC-IST) 49

Capítulo 2. Corrente eléctrica. 2.1 Introdução. Capítulo 2. F.Barão, L.F.Mendes Electromagnetismo e Óptica (MEEC-IST) 49 Capítulo 2 Corrente eléctrica 2.1 Introdução Uma corrente eléctrica consiste no movimento ordenado de cargas eléctricas num dado meio. O número de cargas eléctricas que atravessam uma dada superfície por

Leia mais

EO-Sumário 16. Raquel Crespo Departamento Física, IST-Tagus Park

EO-Sumário 16. Raquel Crespo Departamento Física, IST-Tagus Park EO-Sumário 16 aquel Crespo Departamento Física, IST-Tagus Park Energia armazenada num condensador Condensador de pratos paralelos Condutor 2: -Q d A 2 - - - - - - 1 y Condutor 1: Q Campo pratos paralelos:

Leia mais

Elementos de Circuitos Elétricos

Elementos de Circuitos Elétricos Elementos de Circuitos Elétricos Corrente e Lei de Ohm Consideremos um condutor cilíndrico de seção reta de área S. Quando uma corrente flui pelo condutor, cargas se movem e existe um campo elétrico. A

Leia mais

Corrente e resistência

Corrente e resistência Cap. 27 Corrente e resistência Prof. Oscar Rodrigues dos Santos oscarsantos@utfpr.edu.br Circuito 1 Força eletromotriz Quando as cargas de movem em através de um material condutor, há diminuição da sua

Leia mais

Revisão de conceitos. Aula 2. Introdução à eletrónica médica João Fermeiro

Revisão de conceitos. Aula 2. Introdução à eletrónica médica João Fermeiro Revisão de conceitos Aula 2 Introdução à eletrónica médica João Fermeiro Objetivos Rever as grandezas elétricas e elementos de circuito passivos. Considerações sobre resistência/indutância/capacitância

Leia mais

CF360 - Resumo Experimentos Prova 2

CF360 - Resumo Experimentos Prova 2 CF360 - Resumo Experimentos Prova 2 Fabio Iareke 19 de dezembro de 2011 1 Força Magnética sobre Condutores de Corrente 1.1 Roteiro de Estudos 1. Qual é a expressão para o campo magnético

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

Corrente e Resistência

Corrente e Resistência Capítulo 5 Corrente e Resistência 5.1 Corrente Elétrica A corrente elétrica i em um fio condutor é definida como a carga que atravessa a área do fio por unidade de tempo: Unidade de corrente: Ampere [A]

Leia mais

AULA 07 CORRENTE ELÉTRICA E LEI DE OHM. Eletromagnetismo - Instituto de Pesquisas Científicas

AULA 07 CORRENTE ELÉTRICA E LEI DE OHM. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO AULA 07 CORRENTE ELÉTRICA E LEI DE OHM A corrente elétrica pode ser definida como o movimento ordenado de cargas elétricas. O caminho feito pelas cargas elétricas é chamado de circuito.

Leia mais

Corrente Elétrica. Adriano A. Batista 28/07/2014

Corrente Elétrica. Adriano A. Batista 28/07/2014 Departamento de Física-UFCG 28/07/2014 Resumo Por que existe corrente elétrica? Resumo Por que existe corrente elétrica? Densidade de corrente Resumo Por que existe corrente elétrica? Densidade de corrente

Leia mais

O circuito RLC. 1. Introdução

O circuito RLC. 1. Introdução O circuito Na natureza são inúmeros os fenómenos que envolvem oscilações. Um exemplo comum é o pêndulo de um relógio, que se move periódicamente (ou seja, de repetindo o seu movimento ao fim de um intervalo

Leia mais

1. Conceito de capacidade 2. Tipos de condensadores. 3. Associação de condensadores. 4. Energia de um condensador. 5. Condensador plano paralelo com

1. Conceito de capacidade 2. Tipos de condensadores. 3. Associação de condensadores. 4. Energia de um condensador. 5. Condensador plano paralelo com 1. Conceito de capacidade 2. Tipos de condensadores. 3. Associação de condensadores. 4. Energia de um condensador. 5. Condensador plano paralelo com dieléctrico. Utilidade: Armazenamento de carga e energia

Leia mais

O circuito RLC. 1. Introdução

O circuito RLC. 1. Introdução O circuito RLC Na natureza são inúmeros os fenómenos que envolvem oscilações. Um exemplo comum é o pêndulo de um relógio, que se move periódicamente (ou seja, de repetindo o seu movimento ao fim de um

Leia mais

Lab. Eletrônica: Oscilador senoidal usando amplificador operacional

Lab. Eletrônica: Oscilador senoidal usando amplificador operacional Lab. Eletrônica: Oscilador senoidal usando amplificador operacional Prof. Marcos Augusto Stemmer 27 de abril de 206 Introdução teórica: Fasores Circuitos contendo capacitores ou indutores são resolvidos

Leia mais

Problema 1 R 1 R 2 EO/MEEC-IST -1-11/15/11

Problema 1 R 1 R 2 EO/MEEC-IST -1-11/15/11 Problema 1 ε L V R 1-a) Para determinar os campos vamos usar a Lei de Gauss para superfícies cilíndricas r de raio r e altura h L, com eixos coincidentes com o do condensador, e em regiões afastadas das

Leia mais

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4)

QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) [0000]-p1/6 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) ando necessário, use π = 3, 14, g=10 m/s 2. Respostas da questões por versão de prova: E7Hx: (1) A; (2) E; (3) A; (4) E; 112F: (1) E; (2) B; (3) D; (4) B;

Leia mais

Aula 12. Aritmétrica complexa. Laboratório Numérico 1

Aula 12. Aritmétrica complexa. Laboratório Numérico 1 Aula 12 Aritmétrica complexa Laboratório Numérico 1 Circuito RLC (corrente alterna) V = V L + V C + V R = V 0 cos ωt V R = RI Lei d Ohm V C = 1 C න Idt V L = L di dt Laboratório Numérico 2 sinais a 50

Leia mais

Experimento 7 Circuitos RC em corrente alternada

Experimento 7 Circuitos RC em corrente alternada 1. OBJETIVO Experimento 7 Circuitos RC em corrente alternada O objetivo desta aula é estudar o comportamento de circuitos RC em presença de uma fonte de alimentação de corrente alternada.. 2. MATERIAL

Leia mais

Duração do exame: 2:30h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova.

Duração do exame: 2:30h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova. Duração do exame: :3h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova. Problema Licenciatura em Engenharia e Arquitetura Naval Mestrado Integrado

Leia mais

Eletromagnetismo - Instituto de Pesquisas Científicas

Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO Vimos que a dissipação de energia num circuito nos fornece uma condição de amortecimento. Porém, se tivermos uma tensão externa que sempre forneça energia ao sistema, de modo que compense

Leia mais

Circuitos oscilantes e corrente alternada (CA)

Circuitos oscilantes e corrente alternada (CA) Circuitos oscilantes e corrente alternada (CA) Os circuitos que veremos a seguir serão compostos dos seguintes elementos: Resistores: Nos resistores R a tensão V R aplicada sobre ele e a corrente I que

Leia mais

O eletromagnetismo e a energia

O eletromagnetismo e a energia O eletromagnetismo e a energia Nesta aula veremos finalmente o que levou a unificação dos campos de estudos elétricos e magnéticos, o que foi uma das maiores revoluções científicas do século XIX A lei

Leia mais

= = V I R 2 I I 2 V 2 V 1 R 1. Lei das malhas: Lei dos nós: Divisor de tensão. Divisor de corrente. Electromagnetismo e Óptica (EO)

= = V I R 2 I I 2 V 2 V 1 R 1. Lei das malhas: Lei dos nós: Divisor de tensão. Divisor de corrente. Electromagnetismo e Óptica (EO) Electromagnetismo e Óptica LEC Tagus 1ºSem 011/1 Prof. J. C. Fernandes Electromagnetismo e Óptica (EO Corrente contínua. Circuitos Formulário Lei das malhas: Lei dos nós: i i 0 0 1 Divisor de corrente

Leia mais

CIRCUITOS ELÉTRICOS DC

CIRCUITOS ELÉTRICOS DC Experiência 4 CIRCUITOS ELÉTRICOS DC 67 Corrente elétrica Define-se corrente elétrica como a quantidadede carga que passa pela secção de um fio condutor por unidadede tempo: A direção da corrente elétrica

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 5. Heaviside Dirac Newton

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 5. Heaviside Dirac Newton Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 5 Heaviside Dirac Newton Conteúdo 5 - Circuitos de primeira ordem...1 5.1 - Circuito linear invariante de primeira ordem

Leia mais

CAPÍTULO IX. Análise de Circuitos RLC

CAPÍTULO IX. Análise de Circuitos RLC CAPÍTULO IX Análise de Circuitos RLC 9. Introdução Neste capítulo, serão estudados os circuitos RLC s, ou seja, aqueles que possuem resistores, indutores e capacitores. Em geral, a análise desses circuitos

Leia mais

ELECTROTECNIA TEÓRICA MEEC IST

ELECTROTECNIA TEÓRICA MEEC IST ELECTROTECNIA TEÓRICA MEEC IST 2º Semestre 2017/18 4º TRABALHO LABORATORIAL REGIMES TRANSITÓRIOS Prof. V. Maló Machado Prof. M. Guerreiro das Neves Prof.ª Mª Eduarda Pedro ELECTROTECNIA TEÓRICA CIRCUITOS

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Condutividade Elétrica e Lei de Ohm na Forma Pontual (Capítulo 5 Páginas 114 a 118) Lei de Ohm na forma Pontual vs. Macroscópica Tempo de Relaxação 3 - Eletrostática Condutividade

Leia mais

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo II. Prof. Daniel Orquiza. Prof. Daniel Orquiza de Carvalho Eletromagnetismo II Prof. Daniel Orquiza Eletromagnetismo II Prof. Daniel Orquiza de Carvalho Profundidade Pelicular e Teorema de Poyinting (Capítulo 11 Páginas 384 a 394) Profundidade Pelicular Teorema

Leia mais

Sistemas de EDOs: Respostas, Soluções e Dicas para os Problemas

Sistemas de EDOs: Respostas, Soluções e Dicas para os Problemas Sistemas de EDOs: Respostas, Soluções e Dicas para os Problemas ) a) (t) = e t (t) = e t b) c) (t) = e t ( cos t + sin t) (t) = e t cos t (t) = + 9t (t) = 6t ) Substitua (t) e (t) na equação e resolva

Leia mais

Física para Engenharia II - Prova P a (cm/s 2 ) -10

Física para Engenharia II - Prova P a (cm/s 2 ) -10 4320196 Física para Engenharia II - Prova P1-2012 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis

Leia mais

Electromagnetismo Aula Teórica nº 21

Electromagnetismo Aula Teórica nº 21 Electromagnetismo Aula Teórica nº 21 Departamento de Engenharia Física Faculdade de Engenharia Universidade do Porto PJVG, LMM 1 Breve revisão da última aula Rotacional Rotacional Teorema de Stokes Forma

Leia mais

Soluções dos Problemas de Análise de Circuitos

Soluções dos Problemas de Análise de Circuitos Soluções dos Problemas de Análise de Circuitos Teresa Mendes de Almeida IST Secção de Electrónica 9 de Dezembro de 3 Capítulo I Circuitos Resistivos Lineares................................. Capítulo II

Leia mais

Eletromagnetismo II. Preparo: Diego Oliveira. Aula 3. Equação da Onda e Meios Condutores

Eletromagnetismo II. Preparo: Diego Oliveira. Aula 3. Equação da Onda e Meios Condutores Eletromagnetismo II Prof. Dr. R.M.O Galvão - 1 Semestre 015 Preparo: Diego Oliveira Aula 3 Equação da Onda e Meios Condutores Vamos considerar a equação de onda para casos em que existam correntes de condução

Leia mais

Na posição de equilíbrio, temos como forças que actuam sobre o corpo: Fora da posição de equilíbrio, as forças que podem actuar são:

Na posição de equilíbrio, temos como forças que actuam sobre o corpo: Fora da posição de equilíbrio, as forças que podem actuar são: APLICAÇÕES DAS EQUAÇÕES DIFERENCIAIS DE SEGUNDA ORDEM Como aplicação das equações diferenciais de segunda ordem, vamos considerar o movimento oscilatório de uma mola de comprimento l e constante de elasticidade

Leia mais

Eletromagnetismo - Instituto de Pesquisas Científicas AULA 09 CIRCUITO RC

Eletromagnetismo - Instituto de Pesquisas Científicas AULA 09 CIRCUITO RC ELETROMAGNETISMO AULA 09 CIRCUITO RC A PONTE DE WHITESTONE Antes de inserirmos um novo elemento em nosso circuito vamos estudar um caso especial de montagem (de circuito) que nos auxilia na determinação

Leia mais

Tópico 01: Estudo de circuitos em CC com Capacitor e Indutor Profa.: Ana Vitória de Almeida Macêdo

Tópico 01: Estudo de circuitos em CC com Capacitor e Indutor Profa.: Ana Vitória de Almeida Macêdo Disciplina Eletrotécnica Tópico 01: Estudo de circuitos em CC com Capacitor e Indutor Profa.: Ana Vitória de Almeida Macêdo Capacitor São dispositivos cuja finalidade é armazenar cargas elétricas em suas

Leia mais

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T. Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CIRCUITOS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CIRCUITOS. Prof. CENTO DE CIÊNCIAS E TECNOLOGIA AGOALIMENTA UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CICUITOS Prof. Bruno Farias Circuitos elétricos Circuito elétrico é um caminho fechado que

Leia mais

e em paralelo Dipolo eléctrico, momento dipolar eléctrico nua

e em paralelo Dipolo eléctrico, momento dipolar eléctrico nua Bioelectricidade - Electricidade BásicaB Condensadores associação em série s e em paralelo Dipolo eléctrico, momento dipolar eléctrico Densidade da corrente eléctrica Lei de Ohm da corrente contínua nua

Leia mais

Olimpíadas de Física Seleção para as provas internacionais. Prova Experimental B

Olimpíadas de Física Seleção para as provas internacionais. Prova Experimental B SOCIEDADE PORTUGUESA DE FÍSICA Olimpíadas de Física 015 Seleção para as provas internacionais Prova Experimental B 16/maio/015 Olimpíadas de Física 015 Seleção para as provas internacionais Prova Experimental

Leia mais

Frequência de corte 𝕍 𝒋𝝎 𝑉𝑠 𝑡 = 2 cos 𝜔𝑡 + 0𝑜 𝑉 𝐶 = 1𝜇𝐹 𝑅 = 1𝐾Ω 𝜔𝑐 𝝎 (𝒓𝒂𝒅/𝒔𝒆𝒈)

Frequência de corte 𝕍 𝒋𝝎 𝑉𝑠 𝑡 = 2 cos 𝜔𝑡 + 0𝑜 𝑉 𝐶 = 1𝜇𝐹 𝑅 = 1𝐾Ω 𝜔𝑐 𝝎 (𝒓𝒂𝒅/𝒔𝒆𝒈) Aula 25 Revisão P3 Frequência de corte V jω Vs t = 2 cos ωt + 0 o V C = 1μF R = 1KΩ ω c ω (rad/seg) Frequência de corte V C = V S 1 jωc R + 1 jωc = V S 1 1 + jωrc V R = V S R R + 1 jωc = V S jωrc 1 + jωrc

Leia mais

Olimpíadas de Física Selecção para as provas internacionais. Prova Teórica

Olimpíadas de Física Selecção para as provas internacionais. Prova Teórica Olimpíadas de Física 2005 Selecção para as provas internacionais Prova Teórica Sociedade Portuguesa de Física 20/Maio/2005 ) Olimpíadas Internacionais de Física 2005 Selecção para as provas internacionais

Leia mais

CORRENTE E RESISTÊNCIA

CORRENTE E RESISTÊNCIA CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CORRENTE E RESISTÊNCIA Prof. Bruno Farias Corrente Elétrica Eletrodinâmica: estudo das

Leia mais

Experimento 10 Circuitos RLC em corrente alternada: ressonância

Experimento 10 Circuitos RLC em corrente alternada: ressonância Experimento 10 Circuitos RLC em corrente alternada: ressonância 1. OBJETIVO O objetivo desta aula é estudar o comportamento de circuitos RLC em presença de uma fonte de alimentação de corrente alternada.

Leia mais

Aula 05 Transformadas de Laplace

Aula 05 Transformadas de Laplace Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número

Leia mais

Aula 05 Transformadas de Laplace

Aula 05 Transformadas de Laplace Aula 05 Transformadas de Laplace Pierre Simon Laplace (1749-1827) As Transformadas de Laplace apresentam uma representação de sinais no domínio da frequência em função de uma variável s que é um número

Leia mais

Eletrônica de Potência I

Eletrônica de Potência I Universidade Federal do ABC Eng. De Instrumentação, Automação e Robótica Eletrônica de Potência I Prof. José Azcue, Dr. Eng. Retificador monofásico de meia onda 1 Retificador monofásico de meia onda Carga

Leia mais

Pêndulo Físico. Cientistas e Engenheiros, Vol. 2, Tradução da 8ª edição norte-americana, Cengage Learning, 2011) 1. Introdução

Pêndulo Físico. Cientistas e Engenheiros, Vol. 2, Tradução da 8ª edição norte-americana, Cengage Learning, 2011) 1. Introdução Pêndulo Físico 1. Introdução Nesta experiência estudaremos o movimento periódico executado por um corpo rígido que oscila em torno de um eixo que passa pelo corpo, o que é denominado de pêndulo físico,

Leia mais

q 1 q 2 2 V 5 V MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2018/2019 EIC0014 FÍSICA II 2º ANO, 1º SEMESTRE 23 de janeiro de 2019 Nome:

q 1 q 2 2 V 5 V MESTRADO INTEGRADO EM ENG. INFORMÁTICA E COMPUTAÇÃO 2018/2019 EIC0014 FÍSICA II 2º ANO, 1º SEMESTRE 23 de janeiro de 2019 Nome: MESTRADO NTEGRADO EM ENG. NFORMÁTCA E COMPUTAÇÃO 208/209 EC004 FÍSCA 2º ANO, º SEMESTRE 23 de janeiro de 209 Nome: Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

Electrotecnia Teórica (1º Semestre 2000/2001)

Electrotecnia Teórica (1º Semestre 2000/2001) Electrotecnia Teórica (º Semestre 2000/200) Exame #2 (25-Jan-200) Resolver cada problema numa folha separada Electrotecnia Teórica (º Semestre 2000/200) Duração: 2.30 horas SEM CONSULTA Problema Linhas

Leia mais

a unidade de θ em revoluções e do tempo t em segundos (θ(rev.) t(s)). Também construa o gráfico da velocidade angular ω em função do tempo (ω( rev.

a unidade de θ em revoluções e do tempo t em segundos (θ(rev.) t(s)). Também construa o gráfico da velocidade angular ω em função do tempo (ω( rev. 30195-Física Geral e Exp. para a Engenharia I - 3 a Prova - 8/06/01 Nome: N o USP: Professor: Turma: A duração da prova é de horas. Material: lápis, caneta, borracha, régua. O uso de calculadora é proibido

Leia mais

Resposta de circuitos RLC

Resposta de circuitos RLC MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS JOINVILLE DEPARTAMENTO DO DESENVOLVIMENTO DO ENSINO

Leia mais

2) Em qual frequência, uma bobina de indutância 20mH terá uma reatância com módulo de 100Ω? E com módulo de 0Ω?

2) Em qual frequência, uma bobina de indutância 20mH terá uma reatância com módulo de 100Ω? E com módulo de 0Ω? Professor: Caio Marcelo de Miranda Turma: T11 Nome: Data: 05/10/2016 COMPONENTES PASSIVOS E CIRCUITOS RL, RC E RLC EM CORRENTE ALTERNADA graus. Observação: Quando não informado, considere o ângulo inicial

Leia mais

Capítulo 4 O Oscilador Amortecido

Capítulo 4 O Oscilador Amortecido Capítulo 4 O Oscilador Amortecido Vamos supor que um oscilador harmônico tenha amortecimento, isto é, sofre uma resistência ao seu movimento e que esta resistência, para simplificar seja linearmente proporcional

Leia mais

Física III Escola Politécnica GABARITO DA P2 17 de maio de 2018

Física III Escola Politécnica GABARITO DA P2 17 de maio de 2018 Física III - 4323203 Escola Politécnica - 2017 GABARITO DA P2 17 de maio de 2018 Questão 1 Considere um fio retilíneo muito longo de raio R e centrado ao longo do eixo z no qual passa uma corrente estacionária

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 11

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL 420. Módulo 11 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL 420 Módulo Laplace Bode Fourier Conteúdo - Transformada de Laplace.... - Propriedades básicas da transformada de Laplace....2 - Tabela de

Leia mais

Cap. 4 - Capacitância e Dielétricos

Cap. 4 - Capacitância e Dielétricos Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 4 - Capacitância e Dielétricos Prof. Elvis Soares Nesse capítulo, estudaremos o conceito de capacitância, aplicações de

Leia mais

Prof. Fernando Massa Fernandes https://www.fermassa.com/microondas-i.php Sala 5017 E fernando.fernandes@uerj.br Aula 13 Revisão Modelo de elementos distribuídos Modelar a linha em pequenos elementos de

Leia mais

Respostas Finais Lista 6. Corrente Elétrica e Circuitos de Corrente Contínua ( DC )

Respostas Finais Lista 6. Corrente Elétrica e Circuitos de Corrente Contínua ( DC ) Respostas Finais Lista 6 Corrente Elétrica e Circuitos de Corrente Contínua ( DC ) Q 26.3) Essa diferença esta mais associada à energia entregue à corrente de um circuito por algum tipo de bateria e à

Leia mais