Estatística: uma definição

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Estatística: uma definição"

Transcrição

1 Coleção de úmeros estatístcas Estatístca: uma defção O úmero de carros veddos o país aumetou em 30%. A taa de desemprego atge, este mês, 7,5%. As ações da Telebrás subram R$,5, hoje. Resultados do Caraval o trâsto: 45 mortos, 430 ferdos. A cêca de coletar, orgazar, apresetar, aalsar e terpretar dados com o objetvo de tomar melhores decsões. Estatístca (dvsão) Descrtva Idutva Os procedmetos usados para orgazar, resumr e apresetar dados. A coleção de métodos e téccas utlzados para estudar uma população baseado em amostras probablístcas desta população. População Uma coleção de todos os possíves elemetos, objetos ou meddas de teresse.

2 Ceso Amostra Um levatameto efetuado sobre toda uma população é deomado de levatameto cestáro ou smplesmete ceso. Uma porção ou parte de uma população de teresse. Amostragem O processo de escolha de uma amostra da população é deomado de amostragem. PROBABILIDADE (Matemátca) ESTATÍSTICA (Matemátca Aplcada) Trabalha com duas ou mas característcas dos dados Trabalha com uma úca característca dos dados Uvarada Multvarada P R O B A POPULAÇÃO (Ceso) Estatístca Descrtva B IL I D A D E Erro AMOSTRA (Amostragem) Iferêca Probabldade Estatístca Idutva Amostragem

3 Estatístca Probabldade Faces Probabldades Faces Freqüêcas /6 5 /6 8 3 / / /6 5 6 /6 6 7 Total Total 0 Arredodameto Todo arredodameto é um erro. O erro deve ser evtado ou etão mmzado. Eemplos: Regra básca: Arredodar sempre para o mas prómo.,456,46,454,45,475 É ímpar Aumeta,48 É par,485 Não aumeta,48 V A R I Á V E I S Qualtatvas Quattatvas Nomal Ordal Dscreta Cotíua Varável Qualtatva NOMINAL ORDINAL Seo Relgão Estado cvl Curso Coceto Grau de Istrução Mês Da da semaa 3

4 Varável Quattatva DISCRETA CONTÍNUA Número de faltas Número de rmãos Número de acertos Altura Área Peso Volume Estatístca Descrtva Orgazação; Resumo; Apresetação. Cojuto de dados: Amostra ou População Um cojuto de dados é resumdo de acordo com as segutes característcas: Amostra ou População Tedêca ou posção cetral Dspersão ou varabldade Assmetra (dstorção) Achatameto ou curtose Tedêca ou Posção Cetral A méda Artmétca (a) As médas S m p l e s Artmétca Geométrca Harmôca Quadrátca Itera

5 A méda Geométrca A méda Harmôca m g..... m h A méda Quadrátca A méda Itera m q É a mesma méda artmétca só que aplcada sobre o cojuto ode uma parte dos dados (etremos) é descartada. Eemplo Médas Cojutos m g m h ,9 4, ,8 Relação etre as médas Dado um cojuto de dados qualquer, as médas artmétca, geométrca e harmôca matém a segute relação: m g m h 5

6 Tedêca ou Posção Cetral A méda Artmétca Poderada (a) As médas P o d er a d as Artmétca Geométrca Harmôca Quadrátca m ap.w +.w k.w w + w wk.w w k A méda Geométrca Poderada A méda Harmôca Poderada m gp w w w. w w.... w k k m h P w + w + w w w w w k w k k Eemplo Produtos p 0 p 0 q Care 4,80 5,5 5 Caa 5,0 4,94 Ceva 0,80 0,9 Pão,50,0 Total Produto p 0 p 0 α p(0,t) 4,80 5,5 0,57,5 5,0 4,94 0,3 0,95 3 0,80 0,9 0,3,5 4,50,0 0,07,40 Total -- --,

7 map Solução Méda artmétca poderada dos relatvos (aumetos) será:,5.0,57 + 0,95.0,3 +,5.0,3 +,40.0,07 0,57 + 0,3 + 0,3 + 0,07,45 4,5% Por este crtéro o aumeto fo de 4,5%. m Méda geométrca poderada dos relatvos (aumetos) será: gp,373 3,73%. 0,57 0,3 0,3 0, 07,5,5 0,57 0,95 0,95 0,3 3,73 %,5,5 0,3,40,40 Por este crtéro o aumeto fo de 0,07 Méda harmôca poderada dos relatvos (aumetos) será: m h P 3,3%. 0,57 0,3 0, ,5 0,95,5,33 3,3 % 0,07, 40 Por este crtéro o aumeto fo de (b) Tedêca ou Posção Cetral A medaa (meda) É o valor que separa o cojuto em dos subcojutos do mesmo tamaho. m e [ (/) + (/)+ ]/ se é par m e (+)/ se é ímpar Tedêca ou Posção Cetral (b) Separatrzes A déa de repartr o cojuto de dados pode ser levada adate. Se ele for repartdo em 4 partes tem-se os QUARTIS, se em 0 os DECIS e se em 00 os PERCENTIS. Eemplo Cosdere o segute cojuto: Como 7 (ímpar), etão (+)/ 4 Ordeado o cojuto, tem-se: Etão: m e 4 7

8 Se o cojuto for: Tem-se: 8 (par) Etão m e [ / + /+) ]/ ( )/ Ordeado o cojuto, tem-se: m e ( )/ ( + )/,50 Tedêca ou Posção Cetral (c) A moda (mode) É o(s) valor(es) do cojuto que mas se repete(m). Eemplo Cosdere o cojuto Etão: m o Pos, o dos é o que mas se repete (três vezes). Eemplo Cosdere o cojuto: Etão: m o e m o Cojuto bmodal Eemplo 3 Cosdere o cojuto: Este cojuto é amodal, pos todos os valores apresetam a mesma freqüêca. Dspersão ou Varabldade (a) A ampltude (h) (b) O Desvo Médo (dma) (c) A Varâca (s ) (d) O Desvo Padrão (s) (e) A Varâca Relatva (g ) (f) O Coefcete de Varação (s) 8

9 A Ampltude (rage) h má - mí Cosdere o cojuto: h 5 (-) 7 O dma (average devato) Cosdere o cojuto: A méda é: Calculado os desvos: Tem-se: d - -3 d - - d d 4 3 d Como pode ser vsto a soma é gual a zero. Tomado o módulo vem: dma ,40 A varâca (varace) Se ao vés de tomar o módulo, elevarmos ao quadrado, tem-se: s ( 3) + ( ) + ( ) ( ) ,80 s A varâca de um cojuto de dados será: ( ) ( ) + ( ) ( s ) 9

10 O Desvo Padrão (stadard devato) É a raz quadrada da varâca s ( ) Se etrarmos a raz quadrada teremos do resultado ateror teremos: s ( ) 6,80,6 A Varâca Relatva g s O Coefcete de Varação g s O coefcete de varação do eemplo ateror, será: s,6077 g 60,77% Grade Cojutos de Dados Orgazação; Resumo; Apresetação. Amostra ou População 0

11 Cocetos da Escola Athra Karaba Ótmo Muto Bom Muto Bom Bom Bom Isufcete Regular Ótmo Isufcete Bom Muto Bom Muto Bom Ótmo Regular Regular Bom Bom Muto Bom Muto Bom Isufcete Dstrbução de freqüêcas Defeto Freqüêca % Ótmo 7 4,0 Muto Bom 95 9,00 Bom 97 9,40 Regular 70 4,00 Isufcete 83 6,60 TOTAL F R E Q Ü Ê N C I A S Absoluta SIMPLES Relatva Absoluta ACUMULADAS Relatva Apresetação Decmal Percetual Decmal Percetual

12 Freqüêcas: represetação Valores f F fr fr Fr , , , , , , ,0 00 TOTAL 00,00 00 Defetos em uma lha de produção % 5% 4% 0% 7% 4% 9% Deseho Esmalte Lascado Maor Meor Torto Trcado Número de rmãos dos aluos da turma Estatístca - PUCRS - 0/

13 Dstrbução de freqüêcas por poto ou valores da varável: Número de rmãos dos aluos da turma 450 da dscpla: Probabldade e Estatístca PUCRS - 0/0. N 0 de rmãos N 0 de aluos Dagrama de coluas smples da varável: Número de rmãos dos aluos da turma 450 Dscpla: Estatístca, PUCRS - 0/

14 A méda Artmétca Neste caso, a méda a dada por: f + f f f + f f k k. k f. Eemplo f f A méda será, etão: f ,90 rmãos A Medaa Como 50 é par, tem-se: me / + ( / ) + / + ( / ) rmão 50 + Eemplo f F Total de dados 50 (par) Metade dos dados / 5 4

15 A Moda Eemplo m o valor(es) que mas se repete(m) f Pos A moda ele se é repete gual a mas (um) vezes A Ampltude h má - mí h rmãos O Desvo Médo Neste caso, o dma será dado por: f +... f + + f k dma f + f f k f. k Eemplo f f ,90 3,30.,90 8, ,90 0, ,90 5, ,90 8, ,90 9, ,90 8, ,40 5

16 A Varâca O dma será, etão: Neste caso, a varâca será: dma f. 64,40,9 rmãos 50 s f( ) + f ( ) f f ( ) f k (k ) Eemplo f f A varâca será, etão: s f 99,90 50,3700 rmãos O Desvo Padrão O Coefcete de Varação s O desvo padrão será dado por: f,3700,5395,54 rmãos Dvddo a méda pelo desvo padrão, tem-se o coefcete de varação:, g,90 8,03% 6

17 Idade (em meses) dos aluos da turma 450 da dscpla: Probabldade e Estatístca - PUCRS - 0/ Dstrbução por classes ou tervalos da varável dade dos aluos da turma 450 da dscpla: Probabldade e Estatístca da PUCRS - 0/0 Idades Número de aluos Total 50 7

18 Hstograma de freqüêcas da varável Idade dos aluos da turma 450 de Probabldade e Estatístca da PUCRS - 0/0 f / h 0,7 0,6 0,5 0,4 0,3 0, 0, Ates de apresetar as meddas,. é, represetates do cojuto, é ecessáro estabelecer uma otação para algus elemetos da dstrbução. 8

19 O Poto Médo da Classe poto médo da classe; f freqüêca smples da classe; l lmte feror da classe; ls lmte superor da classe; h ampltude da classe. f A Méda da Dstrbução f f Eemplo A Medaa A méda será: f ,0 meses Neste caso, utlzam-se as freqüêcas acumuladas para detfcar a classe medaa,. é, a que cotém o(s) valor(es) cetral(s). 9

20 Eemplo f F Total de dados 50 (par) Metade dos dados / 5 Portato, a classe medaa é a tercera. Assm 3. A medaa será obtda através da segute epressão: A Moda 50 F 70 0 me l + h + f meses 8 8 Neste caso é precso calmete apotar a classe modal,. é, a de maor freqüêca. Neste eemplo é a prmera com f. Assm. Eemplo f Classe modal, pos f. Portato a moda poderá ser obtda através de uma das segutes epressões: 0

21 Crtéro de Kg: m o l + h f f + + f meses Crtéro de Czuber: m o l f f + h.f (f + f + ) (0 9) meses A Ampltude h má - mí h meses O Desvo Médo Absoluto Neste caso, o dma será dado por: f +... f + + f k dma f + f f k f. k Eemplo f f ,0 54, ,0 6, ,0 4, ,0 03, ,0 08, ,0 74, ,0 4, ,60

22 A Varâca O dma será, etão: Neste caso, a varâca será: dma f. 3,43 meses 6,60 50 s f( ) + f ( ) f f ( ) f k (k ) Eemplo f f A varâca será, etão: s f , ,96 meses O Desvo Padrão O Coefcete de Varação O desvo padrão será dado por: f s 40,96 37, ,70 meses Dvddo a méda pelo desvo padrão, tem-se o coefcete de varação: 37,69563 g 3,% 85,0

23 Prmero Coefcete ( de Pearso) a (Méda - Moda) / Desvo Padrão Segudo Coefcete ( de Pearso) Skewess a 3.(Méda - Medaa) / Desvo Padrão Coefcete Quartílco CQA [(Q 3 - Q ) - (Q - Q )]/(Q 3 - Q ) Coefcete do Mometo Provão 000 Curso: Odoto Coefcete 0 Cojuto Smétrco a 3 m 3 /s 3, ode m 3 Σ(X - ) 3 / Coefcete < 0 Cojuto: Negatvamete Assmétrco Provão 000 Curso: Joralsmo Coefcete > 0 Cojuto: Postvamete Assmétrco Provão 000 Curso: Eg. Elétrca 3

24 Coefcete de Curtose (mometos) a 4 m 4 /s 4, ode m 4 Σ(X - ) 4 / (Kurtoss) Coefcete 3 ou 0 Cojuto: Mesocúrtco Provão 000 Curso: Odoto Coefcete > 3 ou (> 0) Cojuto: Leptocúrtco Provão 000 Curso: Matemátca Coefcete < 3 ou (< 0) Cojuto: Platcúrtco Provão 999 Curso: Eg. Cvl 4

25 Etão: Se y a +b y a + b s a y s s a s y Aálse Eploratóra de Dados As téccas de aálse eploratóra de dados cosstem em gráfcos smples de desehar que podem ser utlzados para resumr rapdamete um cojuto de dados. Uma destas téccas é uma forma de apresetação de dados cohecda como Caule e Folha. Apresetação Caule e Folha Para lustrar esta forma de apresetação vamos supor que o cojuto a segur é o resultado de um teste do tpo Pscotécco de 00 questões aplcados a 40 caddatos a um emprego em uma grade orgazação dustral. Eemplo Resultado de um teste do tpo Pscotécco de 00 questões aplcados a 40 caddatos Ramo e Folha Grado a represetação 90 graus tem-se um dagrama semelhate a um hstograma. Esta represetação possu duas vatages sobre o hstograma: É mas fácl de costrur; Apreseta os dados reas. 5

26 Eercíco Faça um represetação utlzado a dezea como udade de folha BoPlot Caa e Bgode Outra forma de ter uma déa do cojuto de dados é utlzar a regra dos cco tes. Nem sempre a méda e o desvo padrão são as melhores alteratvas para resumr um cojuto de dados. A méda e o desvo padrão podem sofrer forte fluêca de valores etremos e além dsso ão forecem uma déa da assmetra do cojuto de dados. Como alteratva as segutes cco meddas são sugerdas (Tukey, 977): () A medaa; () Os etremos (mámo e mímo); () Os quarts. Estas cco meddas são deomadas de estatístcas de ordem. Represetação A formação forecda por estes cco úmeros pode ser represetada em um dagrama deomado de Dagrama Caa e Bgode (BoPlot). O deseho forece uma déa da posção, dspersão, assmetra e dados dscrepates do cojuto (outlers). Traçar um retâgulo tedo como etremos os quarts e eglobado a medaa. Calcular a dstâca terquartl, sto é: D Q Q 3 Q Determar os lmtes dos potos dscrepates: Q,5 D Q Q 3 +,5 D Q 6

27 Qualquer valor abao de Q,5 DQ ou acma de Q3 +,5 DQ será cosderado um valor dscrepate (outler). Para obter o dagrama caa e bgode (boplot) traçar duas lhas a partr do cetro do retâgulo e em lados opostos até o últmo poto do cojuto que ão seja um poto dscrepate. Dagrama de Caa e Bgodes - BoPlot Q -,5D Q D Q Q +,5D Q Q Q 3 3 Q Eemplo Obteha o dagrama Caa e Bgode para o úmero de paradas semaas para mauteção de uma máqua Eemplo Os cco valores são: Mímo Quartl um 4 Medaa 6 Quartl três 7 Mámo Os demas são: D Q -,5D -0,5 Q 3 +,5D,5 Outler Wlfredo Pareto -0,5Q -,5D Q D Q 3 9 Q 4 Q 6 7 Q 3 Q +,5D 3 Q,5 O Dagrama de Pareto é uma homeagem ao egehero, flósofo, socólogo e ecoomsta talao Vlfredo Frederco Samaso Pareto (848-93). Pareto fo um dos poeros a aplcação de aálses matemátcas ao estudo dos feômeos sóco-ecoômcos. 7

28 Dagrama Wlfredo eucou, em 897, o que passou a ser cohecdo como Prcpo de Pareto que afrma: 80% das dfculdades tem orgem em 0% dos problemas. Este prcpo podera ser colocado como estem mutos tes trvas mas poucos vtas. O Dagrama de Pareto é um gráfco de coluas smples, ode a varável está em ordem de mportâca freqüêca de ocorrêca ou custo) dos problemas ou defetos. Eemplo Normalmete o dagrama evolve a 40 Dagrama de Pareto 00% freqüêca smples combada com a freqüêca acumulada em um úco gráfco. É, também, comum a colocação de Número de erros Vtas Trvas 75% 50% 5% um sstemas de eos X Y aulares % E B C F D A H I Tpo de erro Eercíco Cosderado os dados sobre o Defetos (Palha Eercíco_3) do Laboratóro, costrua um dagrama de Pareto para os dados. Defetos Número de Azulejos Deseho 7 Esmalte 95 Lascado 97 Maor 70 Meor 83 Torto 57 Trcado 7 Total 500 8

29 Solução Ordeado as freqüêcas dadas e calculado as freqüêcas relatvas e relatvas acumuladas, tem-se: Posções Relatvas A méda e o desvo padrão são as duas prcpas meddas utlzadas para descrever um cojuto de dados. Elas, também, podem ser utlzadas para comparações, sto é, para forecer a posção relatva de um valor em relação ao cojuto como um todo. O escore z Seja (,,..., ) uma amostra de observações. Sejam e s a méda e o desvo padrão da amostra. Etão o escore z é o valor que forece a posção relatva de cada da amostra, tedo como poto de referêca a méda afastameto o desvo padrão. e como medda de - z s O escore z forece o úmero de desvos padrão que cada valor está acma ou abao da méda. O escore,5, sgfca que este valor está um desvo e meo abao da méda. Eemplo O escore Z é também uma varável, que é obtda pela trasformação da amostra orgal. Ela apreseta méda gual a zero e desvo padrão gual a um. Cosdere o segute amostra:

30 Assmetra 0,33 Curtose - 0, Calcular os escores z para cada valor da amostra. Represetar os valores da amostras e os escores em dagramas para verfcar se houve alteração o formato da dstrbução dos dados. Solução: A méda e o desvo padrão da amostra são: 40 e 3,69. Etão os escores padrozados serão: 0,3066 0,997-0,997-0,63-0,63 -,63-0,3066-0,63 0,3066,538,63 -,538,456 -,538 0,0000 0,0000 0,0000 -,63 0,3066-0,997-0,63-0,997-0,3066-0,3066,63 0,63 0,63-0,3066 0,997 0,63 0,3066-0,3066 0,3066 -,538 0,0000,63 -,63 0,0000-0,997 0,0000 -,63-0,3066,460 0,0000 0,997 -,8394,538-0,63 0,63, Assmetra 0,37 Curtose - 0, ,84 -,3-0,6 0,00 0,6,3,84,45 Propredades A méda do escore padrozado é zero; O desvo padrão do escore padrozado é um. A forma da dstrbução do escore padrozado é a mesma dos dados orgas. Escalas O escore Z ão é utlzado ormalmete da forma como é calculado. É comum a utlzação de uma escala lear de trasformação. As duas mas utlzadas são: 30

31 Escalas A escala T que é obtda através da segute trasformação T 0.Z + 50 A escala A que é utlzada os vestbulares é obtda por: A 00.Z Teorema de Chebyshev O teorema de Chebyshev permte verfcar qual é o percetual mímo de valores de um cojuto de dados que deve estar um certo úmero de desvos em toro da méda. Eemplos: Em qualquer cojuto de dados com desvo padrão s, pelo meos ( /z ) dos valores do cojuto devem estar etre z desvos em toro da méda, ode z é um valor tal que z >. Assm pelo meos: 75% dos valores estão detro de z desvos a partr da méda; 89% dos valores estão detro de z 3 desvos a cotar da méda; 94% dos valores estão detro de z 4 desvos a cotar da méda. X - X < S - /4 75%. 3

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@ufrgs.br http://www.ufrgs.br/~val/ Estatístca: uma defção Coleção de úmeros estatístcas O úmero de carros veddos o país aumetou em 30%. A taa de desemprego atge, este mês, 7,5%.

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@pucrs.br http://.pucrs.br/faat/val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos auetou e 30%. o país A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. .pucrs.br/faat/val/.at.ufrgs.br/~val/ Prof. Lorí Val, Dr. val@at.ufrgs.br val@pucrs.br Coleção de úeros estatístcas O úe ro de carros ve ddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%.

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Coleção de úeros estatístcas stcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações a da Telebrás

Leia mais

Grande Conjuntos de Dados. Organização; Resumo; Apresentação. Amostra ou População. Defeitos em uma linha de produção

Grande Conjuntos de Dados. Organização; Resumo; Apresentação. Amostra ou População. Defeitos em uma linha de produção Prof. Lorí Val, Dr. val@pucr.br http://www.pucr.br/~val/ Grade Cojuto de Dado Orgazação; Reumo; Apreetação. Amotra ou População Defeto em uma lha de produção Lacado Deeho Torto Deeho Torto Lacado Torto

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

9 Medidas Descritivas

9 Medidas Descritivas 1 9 Meddas Descrtvas Vmos aterormete que um cojuto de dados pode ser resumdo através de uma dstrbução de freqüêcas, e que esta pode ser represetada através de uma tabela ou de um gráfco. Se o cojuto refere-se

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

Análise da Informação Económica e Empresarial

Análise da Informação Económica e Empresarial Aálse da Iformação Ecoómca e Empresaral Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração Aálse da Iformação Ecoómca e Empresaral Guão Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração

Leia mais

Do que trata a Estatística. Estatística Básica (Anova, TH, Regressão) Séries Temporais Data Mining Six Sigma Redes Neurais Controle de Qualidade

Do que trata a Estatística. Estatística Básica (Anova, TH, Regressão) Séries Temporais Data Mining Six Sigma Redes Neurais Controle de Qualidade Do que trata a Estatístca A essêca da cêca é a observação. Estatístca: A cêca que se preocupa com a orgazação, descrção, aálse e terpretação dos dados epermetas. Ramo da Matemátca Aplcada. A palavra estatístca

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

Estatística Descritiva

Estatística Descritiva Estatístca Descrtva Pedro Paulo Balestrass www.pedro.ufe.edu.br ppbalestrass@gmal.com 35-3691161 / 88776958 (cel) Estatístca Descrtva Pedro Paulo Balestrass www.pedro.ufe.edu.br 1 População e amostra:

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Introdução à Estatística

Introdução à Estatística Itrodução à Estatístca Júlo Cesar de C. Balero Estatístca É a cêca que se preocupa com: () Orgazação; () Descrção; () Aálses; (v) Iterpretações. Estatístca Descrtva Estatístca Idutva ou Estatístca Ierecal

Leia mais

Introdução à Estatística. Júlio Cesar de C. Balieiro 1

Introdução à Estatística. Júlio Cesar de C. Balieiro 1 Itrodução à Estatístca Júlo Cesar de C. Balero Estatístca É a cêca que se preocupa com: () Orgazação; () Descrção; () Aálses; (v) Iterpretações. Estatístca Descrtva Estatístca Idutva ou Estatístca Ierecal

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

Estatística Área 4 BACEN Aula 01 Estatística Descritiva Prof. Alexandre Lima. Aula 01. Sumário

Estatística Área 4 BACEN Aula 01 Estatística Descritiva Prof. Alexandre Lima. Aula 01. Sumário Estatístca Área 4 BACEN Aula 0 Estatístca Descrtva Prof. Aleadre Lma Aula 0 Sumáro Itrodução à Estatístca... 3 Tpos de Varáves... 4 3 Rol... 5 4 Séres Estatístcas... 6 5 Téccas de Descrção Gráfca... 8

Leia mais

Qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

Qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq Qwertyuopasdghjklzcvbmqwerty uopasdghjklzcvbmqwertyuopasd ghjklzcvbmqwertyuopasdghjklz cvbmqwertyuopasdghjklzcvbmq wertyuopasdghjklzcv bmqwertyuopasdghjklzcvbmqw ertyuopasdghjklzcvbmqwertyuo pasdghjklzcvbmqwertyuopasdgh

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO RACIOCÍIO LÓGICO - Zé Carlos RACIOCÍIO LÓGICO / ESTATÍSTICA LISTA RESUMO TEÓRICO I. Cocetos Icas. O desvo médo (DM), é a méda artmétca dos desvos de cada dado da amostra em toro do valor médo, sto é x

Leia mais

Estatística Descritiva

Estatística Descritiva Estatístca Descrtva Capítulo "O estatístco, está casado em méda com 1,75 esposas, que procuram fazê-lo sar de casa,5 otes com 0,5 de sucesso apeas. Possu frote com 0,0 de clação (deotado poder metal),

Leia mais

Estatística Básica - Continuação

Estatística Básica - Continuação Professora Adraa Borsso http://www.cp.utfpr.edu.br/borsso adraaborsso@utfpr.edu.br COEME - Grupo de Matemátca Meddas de Varabldade ou Dspersão Estatístca Básca - Cotuação As meddas de tedêca cetral, descrtas

Leia mais

ESTATÍSTICA 2º. SEMESTRE DE 2016

ESTATÍSTICA 2º. SEMESTRE DE 2016 ESTATÍSTICA O presete materal fo elaborado com o objetvo de facltar as atvdades em sala de aula, segudo a bblografa apresetada o fal do texto. Esclarece-se que o materal, ão substtu a bblografa apresetada,

Leia mais

ESTATÍSTICA BÁSICA - Profº Marcos Nascimento

ESTATÍSTICA BÁSICA - Profº Marcos Nascimento ESTATÍSTICA BÁSICA - Proº Marcos Nascmeto CÁPITULO I- Itrodução Atualmete a utlzação da Estatístca é cada vez maor em qualquer atvdade prossoal. Nos mas dverscados ramos, as pessoas estão requetemete epostas

Leia mais

Medidas Numéricas Descritivas:

Medidas Numéricas Descritivas: Meddas Numércas Descrtvas: Meddas de dspersão Meddas de Varação Varação Ampltude Ampltude Iterquartl Varâca Desvo absoluto Coefcete de Varação Desvo Padrão Ampltude Medda de varação mas smples Dfereça

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

Unidade II ESTATÍSTICA

Unidade II ESTATÍSTICA ESTATÍSTICA Udade II 3 MEDIDAS OU PARÂMETROS ESTATÍSTICOS 1 O estudo que fzemos aterormete dz respeto ao agrupameto de dados coletados e à represetação gráfca de algus deles. Cumpre agora estudarmos as

Leia mais

CAPITULO 1 CONCEITOS BÁSICOS

CAPITULO 1 CONCEITOS BÁSICOS DISCIPLIA: ESTATÍSTICA PROFESSOR: JOSELIAS SATOS DA SILVA - joselas@uol.com.br ÍDICE CAPITULO 1 COCEITOS BÁSICOS... 3 1.1 ESTATÍSTICA... 3 1. ESTATÍSTICA DESCRITIVA... 3 1.3 ESTATÍSTICA IFERECIAL... 3

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

TRABALHO DE COMPENSAÇÃO DE FALTAS - DP

TRABALHO DE COMPENSAÇÃO DE FALTAS - DP Cotrole do Proº Compesou as Faltas Não Compesou as Faltas TRABALHO DE COMPENSAÇÃO DE FALTAS - DP (De acordo coma s ormas da Isttução) CURSO: CIÊNCIAS CONTÁBEIS DISCIPLINA: INTRODUÇÃO À ESTATÍSTICA 2º ANO

Leia mais

Nas próximas secções iremos abordar a análise estatística de uma amostra em que os dados numéricos estão agrupados em classes, ou seja, em intervalos.

Nas próximas secções iremos abordar a análise estatística de uma amostra em que os dados numéricos estão agrupados em classes, ou seja, em intervalos. Estatístca Descrtva ESTATÍSTICA DESCRITIVA Amostras com dados agrupados em classes as prómas secções remos abordar a aálse estatístca de uma amostra em que os dados umércos estão agrupados em classes,

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

MEDIDAS DE DISPERSÃO 9. MEDIDAS DE DISPERSÃO

MEDIDAS DE DISPERSÃO 9. MEDIDAS DE DISPERSÃO Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa MEDIDAS DE DISPERSÃO 9 9. MEDIDAS DE DISPERSÃO

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Ivan G. Peyré Tartaruga. 1 Metodologia espacial

Ivan G. Peyré Tartaruga. 1 Metodologia espacial RELATÓRIO DE PESQUISA 5 Procedmetos o software ArcGIS 9. para elaborar os mapas da Regão Metropoltaa de Porto Alegre RMPA com as elpses de dstrbução drecoal etre 99 e 000 Iva G. Peré Tartaruga Metodologa

Leia mais

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA Aula 7 Prof. Dr. Marco Atoo Leoel Caetao Dstrbuções de Probabldade DISCRETAS CONTÍNUAS (Números teros) Bomal Posso Geométrca Hper-Geométrca Pascal (Números reas) Normal t-studet F-Sedecor Gama

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola Cetro de Cêcas Agráras e Ambetas da UFBA Departameto de Egehara Agrícola Dscpla: AGR116 Boestatístca Proessor: Celso Luz Borges de Olvera Assuto: Estatístca Descrtva Tema: Meddas de Posção e Meddas de

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP Iferêca Estatístca e Aplcações I Edso Zagacom Martez Departameto de Medca Socal FMRP/USP edso@fmrp.usp.br Rotero Parte I Escola frequetsta Defções: parâmetros, estmatvas Dstrbuções de probabldade Estmação

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens Dados xpermetas Para medr a produção de certa varedade de mlho, faremos um expermeto o qual a varedade de mlho semete é platada em váras parcelas homogêeas com o mesmo fertlzate, pestcda etc. Depos mede-se

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO A expressão dados, será ctada dversas vezes esta dscpla, em lguagem ormal, dados são ormações (úmeros ou ão) sobre um dvíduo (pessoa,

Leia mais

Previsão de demanda quantitativa Regressão linear Regressão múltiplas Exemplos Exercícios

Previsão de demanda quantitativa Regressão linear Regressão múltiplas Exemplos Exercícios Objetvos desta apresetação Plaejameto de produção: de Demada Aula parte Mauro Osak TES/ESALQ-USP Pesqusador do Cetro de Estudos Avaçados em Ecooma Aplcada Cepea/ESALQ/USP de demada quattatva Regressão

Leia mais

Variável discreta: X = número de divórcios por indivíduo

Variável discreta: X = número de divórcios por indivíduo 5. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

ESTATÍSTICA DESCRITIVA NOCÕES FUNDAMENTAIS

ESTATÍSTICA DESCRITIVA NOCÕES FUNDAMENTAIS ESTATÍSTICA DESCRITIVA NOCÕES FUNDAMENTAIS Coceto Básco: Def. Város autores têm procurado defr a Estatístca. Através de mutos lvros escrtos sobre Estatístca, todos cotedo defções, desde as mas smples até

Leia mais

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM -

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM - CURSO SOBRE MEDIDAS DESCRITIVA Adrao Medoça Souza Departameto de Estatístca - UFSM - O telecto faz pouco a estrada que leva à descoberta. Acotece um salto a coscêca, chame-o você de tução ou do que quser;

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

Medidas de Localização

Medidas de Localização 07/08/013 Udade : Estatístca Descrtva Meddas de Localzação João Garbald Almeda Vaa Cojuto de dados utlzação de alguma medda de represetação resumo dos dados. E: Um cojuto com 400 observações como aalsar

Leia mais

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Volume 1 Edção 007 Curso: Pscologa Amostragem, Séres Estatístcas, Dstrbução de Freqüêca, Méda, Medaa, Quartl, Percetl e Desvo Padrão Prof. Dr. Celso Eduardo Tua 1 Capítulo 1 - Itrodução

Leia mais

Matemática C Semiextensivo V. 2

Matemática C Semiextensivo V. 2 Matemátca C Semetesvo V. Eercícos 0) Através da observação dreta do gráfco, podemos coclur que: a) País. b) País. c) 00 habtates. d) 00 habtates. e) 00 0 0 habtates. 0) C Através do gráfco, podemos costrur

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho Matemátca Fcha de Trabalho Meddas de tedêca cetral - 0º ao MEDIDAS DE LOCALIZAÇÃO Num estudo estatístco, depos de recolhdos e orgazados os dados, há a ase de trar coclusões através de meddas que possam,

Leia mais

É o quociente da divisão da soma dos valores das variáveis pelos números deles:

É o quociente da divisão da soma dos valores das variáveis pelos números deles: Meddas de Posção. Itrodução Proª Ms. Mara Cytha O estudo das dstrbuções de requêcas, os permte localzar a maor cocetração de valores de uma dstrbução. Porém, para ressaltar as tedêcas característcas de

Leia mais

Escola Secundária de Jácome Ratton

Escola Secundária de Jácome Ratton Ecola Secudára de Jácome Ratto Ao Lectvo / Matemátca Aplcada à Cêca Soca Na Ecola Secudára do Suceo aualmete é premado o aluo que tver melhor méda a ua clafcaçõe a dferete dcpla. No ao lectvo 9/, o do

Leia mais

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc.

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc. Estatístca Notas de Aulas ESTATÍSTICA Notas de Aulas Professor Iáco Adrus Gumarães, DSc. Professor Iáco Adrus Gumarães, DSc. Estatístca Notas de Aulas SUMÁRIO CONCEITOS BÁSICOS 5. Estatístca. Estatístca

Leia mais

Oitava Lista de Exercícios

Oitava Lista de Exercícios Uversdade Federal Rural de Perambuco Dscpla: Matemátca Dscreta I Professor: Pablo Azevedo Sampao Semestre: 07 Otava Lsta de Exercícos Lsta sobre defções dutvas (recursvas) e prova por dução Esta lsta fo

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

Forma padrão do modelo de Programação Linear

Forma padrão do modelo de Programação Linear POGAMAÇÃO LINEA. Forma Padrão do Modelo de Programação Lear 2. elações de Equvalêca 3. Suposções da Programação Lear 4. Eemplos de Modelos de PPL 5. Suposções da Programação Lear 6. Solução Gráfca e Iterpretação

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

Controle Estatístico de Qualidade. Capítulo 6 (montgomery)

Controle Estatístico de Qualidade. Capítulo 6 (montgomery) Cotrole Estatístco de Qualdade Capítulo 6 (motgomery) Gráfcos de Cotrole para Atrbutos Itrodução Mutas característcas da qualdade ão podem ser represetadas umercamete. Nestes casos, classfcamos cada tem

Leia mais

Revisão/Resumo de Análise Estatística I e Introdução à Tecnologia da Amostragem I

Revisão/Resumo de Análise Estatística I e Introdução à Tecnologia da Amostragem I Dscpla: Tecologa da Amostragem I Professor: Marcelo Rubes Revsão/Resumo de Aálse Estatístca I e Itrodução à Tecologa da Amostragem I 1 - Modelos Estatístcos/Probablístcos São modelos que se aplcam quado

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Prof. Drª Marília Brasil Xavier REITORA. Profª. Drª. Maria das Graças Silva VICE-REITORA

Prof. Drª Marília Brasil Xavier REITORA. Profª. Drª. Maria das Graças Silva VICE-REITORA Prof. Drª Maríla Brasl Xaver REITORA Profª. Drª. Mara das Graças Slva VICE-REITORA Prof. Dr. Ruy Gulherme Castro de Almeda PRÓ-REITOR DE ENSINO E GRADUAÇÃO Profª. M.Sc. Mara José de Souza Cravo DIRETORA

Leia mais

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS Professor Luz Atoo de Carvalho PLANO PROBABILIDADES Professora Rosaa Relva DOS Números Iteros e Racoas COMPLEXOS rrelva@globo.com Número s 6 O Número Por volta de 00 d.c a mpressão que se tha é que, com

Leia mais

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO DEPARTAMENTO DE ENGENHARIAS E TECNOLOGIA Plano de Ensino

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO UNIVERSITÁRIO NORTE DO ESPÍRITO SANTO DEPARTAMENTO DE ENGENHARIAS E TECNOLOGIA Plano de Ensino Plao de Eso Uversdade Federal do Espírto Sato Campus: São Mateus Curso: Egehara de Produção Departameto Resposável: Departameto de Egeharas e Tecologa Data de Aprovação (Art. º 91): Docete resposável:

Leia mais

Matemática. Resolução das atividades complementares. M18 Noções de Estatística

Matemática. Resolução das atividades complementares. M18 Noções de Estatística Resolução das atvdades complemetares Matemátca M8 Noções de Estatístca p. 3 (UFRJ) Dos estados do país, um certo ao, produzem os mesmos tpos de grãos. Os grácos de setores lustram a relação etre a produção

Leia mais

Métodos iterativos. Capítulo O Método de Jacobi

Métodos iterativos. Capítulo O Método de Jacobi Capítulo 4 Métodos teratvos 41 O Método de Jacob O Método de Jacob é um procedmeto teratvo para a resolução de sstemas leares Tem a vatagem de ser mas smples de se mplemetar o computador do que o Método

Leia mais

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL 3 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL Como vto em amotragem o prmero bmetre, etem fatore que fazem com que a obervação de toda uma população em uma pequa eja mpratcável, muta veze em vrtude

Leia mais

Como CD = DC CD + DC = 0

Como CD = DC CD + DC = 0 (9-0 www.eltecampas.com.br O ELITE RESOLVE IME 008 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO Determe o cojuto-solução da equação se +cos = -se.cos se + cos = se cos ( se cos ( se se.cos cos + + = = (

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional.

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional. Curso Aperfeçoameto em Avalação de Programas Socas ª Turma Dscpla: Téccas quattatvas de levatameto de dados: prcpas téccas de amostragem Docete: Claudete Ruas Brasíla, ovembro/005 Pesqusa por amostragem

Leia mais

1. Revisão Matemática

1. Revisão Matemática 1. Revsão Matemátca Dervadas Seja a fução f : R R, fxe x R, e cosdere a expressão : f ( x+ αe ) lmα 0 α f, ode e é o vector utáro. Se o lmte acma exstr, chama-se a dervada parcal de f o poto x e é represetado

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

CBA DE MARKETING Estatística Aplicada

CBA DE MARKETING Estatística Aplicada CBA DE MARKETING Estatístca Aplcada Motora: Aulas a 4 Motora: Ferada Garca Cordero e-mal: eradagcordero@gmal.com DISTRIBUIÇOES DE FREQUENCIA Para costrurmos uma tabela de dstrbução de reqüêcas devemos:.

Leia mais