MATEMÁTICA MÓDULO 13 FUNDAMENTOS. Professor Matheus Secco

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA MÓDULO 13 FUNDAMENTOS. Professor Matheus Secco"

Transcrição

1

2 MATEMÁTICA Professor Matheus Secco MÓDULO 13 FUNDAMENTOS

3 1. FUNDAMENTOS Conceitos primitivos: ponto, reta e plano. Dois pontos distintos determinam uma única reta que pasa por eles.reta. Três pontos não colineares determinam um único plano que passa por eles. Se dois pontos distintos de uma reta pertencem a um plano, então essa reta está contida nesse plano. Se dois planos possuem um ponto comum, então possuem pelo menos algum outro ponto comum. Isso indica que a interseção de dois planos distintos que se intercepatam é uma reta. Por um ponto não pertencente a uma reta, passa uma, e apenas uma, reta paralela à primeira. (Euclides)

4 Um único plano fica determinado por: a) Três pontos não colineares b) Uma reta e um ponto exterior

5 c) Duas retas concorrentes d) Duas retas paralelas distintas

6 a) Concorrentes: um ponto de interseção b) Paralelas Coincidentes: infinitos pontos de interseção r s

7 c) Paralelas distintas: não há pontos de interseção Retas Reversas: não há pontos de interseção

8

9 a) Reta e plano contidos: infinitos pontos de interseção b) Reta e plano paralelos: não há pontos de interseção

10 c) Reta e plano secantes: um único ponto de interseção.

11 Posições relativas entre dois planos a) Planos paralelos coincidentes: a interseção é todo o plano.

12 b) Planos paralelos distintos: não há pontos de interseção.

13 c) Planos secantes (ou concorrentes): a interseção é uma reta.

14 2. PARALELISMO Se duas retas são paralelas a uma terceira, então elas são paralelas entre si. Uma reta é paralela a um plano se, e somente se, eles não têm ponto em comum.

15 A condição necessária e suficiente para que uma reta não contida em um plano seja paralela a esse plano é que ela seja paralela a uma reta do plano. Dois planos são paralelos se, e somente se, não têm ponto em comum ou são coincidentes. Por um ponto fora de um plano passa um único plano paralelo a esse plano.

16 A condição necessária e suficiente para que dois planos sejam paralelos, é que um deles contenha duas retas concorrentes, paralelas ao outro. r,s r e s concorrentes r e s

17 Se dois planos são secantes e uma reta de um deles é paralela ao outro, então essa reta é paralela à interseção. e secantes s s r s

18 Se duas retas distintas são paralelas entre si e um plano paralelo à primeira contém um ponto da segunda, então esse plano contém a segunda. Se uma reta é paralela a dois planos secantes, então ela é paralela à interseção desses planos. e secantes s e s s r

19 Se dois planos são paralelos a um terceiro, então eles são paralelos entre si. Se dois planos paralelos entre si são interceptados por um terceiro, então as interseções são paralelas entre si. r r s s

20 3. PERPENDICULARIDADE Ângulo entre retas reversas é o ângulo formado por duas retas concorrentes paralelas às retas dadas.

21 Retas ortogonais são retas reversas que formam ângulo reto.

22 Uma reta e um plano são perpendiculares se, e somente se, a reta é perpendicular ou ortogonal a todas as retas do plano. Se uma reta e um plano são perpendiculares, o traço (P) da reta no plano é o pé da perpendicular. Se uma reta é perpendicular a um plano, então ela é perpendicular ou ortogonal a qualquer reta do plano. Uma reta é perpendicular a um plano se, e somente se, é perpendicular (ou ortogonal) a duas retas concorrentes desse plano.

23 Um plano é perpendicular a um plano se, e somente se, contém uma reta perpendicular a. r r Por uma reta r não perpendicular a um plano, existe um único plano perpendicular a.

24 Se dois planos são perpendiculares entre si e uma reta de um deles é perpendicular à interseção dos planos, então essa reta é perpendicular ao outro plano. r r s

25 Dois planos secantes são perpendiculares se, e somente se, toda reta de um deles, perpendicular à interseção, é perpendicular ao outro. Se uma reta é perpendicular a um plano, qualquer outro plano que a contenha é perpendicular ao primeiro. Se um plano é perpendicular a dois planos secantes, então ele é perpendicular à interseção desses planos. r

26 4. DISTÂNCIAS

27 dadas duas retas reversas, existe uma única reta que é perpendicular comum a essas retas. De todos os segmentos que têm extremidades em cada uma das retas reversas, o menor é o da perpendicular comum. Todo plano que passa pelo ponto médio de um segmento é equidistante das extremidades do segmento.

28 6. ÂNGULO DE UMA RETA COM UM PLANO O ângulo entre uma reta e um plano oblíquos é o ângulo que a reta forma com sua projeção ortogonal sobre o plano. O ângulo entre uma reta e um plano perpendiculares é reto. Se a reta é paralela ou está contida no plano, o ângulo entre a reta e o plano é nulo.

29

MATEMÁTICA MÓDULO 13 FUNDAMENTOS 1. INTRODUÇÃO 1.1. POSTULADOS PRINCIPAIS 1.2. DETERMINAÇÃO DO PLANO. Conceitos primitivos: ponto, reta e plano.

MATEMÁTICA MÓDULO 13 FUNDAMENTOS 1. INTRODUÇÃO 1.1. POSTULADOS PRINCIPAIS 1.2. DETERMINAÇÃO DO PLANO. Conceitos primitivos: ponto, reta e plano. FUNDAMENTOS 1. INTRODUÇÃO Conceitos primitivos: ponto, reta e plano. 1.1. POSTULADOS PRINCIPAIS Dois pontos distintos determinam uma única reta que passa por eles. Três pontos não colineares determinam

Leia mais

Geometria Espacial Curso de Licenciatura em Matemática parte II. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR

Geometria Espacial Curso de Licenciatura em Matemática parte II. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR Geometria Espacial Curso de Licenciatura em Matemática parte II Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 1. Paralelismo de Retas L20 Postulado das Paralelas ( de Euclides )

Leia mais

Conceitos Primitivos: são conceitos adotados sem definição.

Conceitos Primitivos: são conceitos adotados sem definição. Geometria Plana Geometria Espacial Conceitos Primitivos: são conceitos adotados sem definição. 1. Ponto P Características: Não possui dimensão Sua representação geométrica é indicada por letra maiúscula

Leia mais

Geometria Espacial de Posição

Geometria Espacial de Posição Geometria Espacial de Posição Prof.: Paulo Cesar Costa www.pcdamatematica.com Noções primitivas POSTULADOS Postulados da existência Numa reta e fora dela existem infinitos pontos. Num plano e fora dele

Leia mais

GEOMETRIA DE POSIÇÃO

GEOMETRIA DE POSIÇÃO GEOMETRIA DE POSIÇÃO 1- Conceitos primitivos 1.1- Ponto Não possui dimensão. Representado por letras maiúsculas. A B C 1.2 - Reta É unidimensional, possuindo comprimento infinito. Não possui largura ou

Leia mais

GGM /11/2010 Dirce Uesu Pesco Geometria Espacial

GGM /11/2010 Dirce Uesu Pesco Geometria Espacial GGM00161-06/11/2010 Turma M2 Dirce Uesu Pesco Geometria Espacial Postulados : - Por dois pontos distintos passa uma e somente uma reta - Três pontos não colineares determinam um único plano. - Qualquer

Leia mais

Aula 24 mtm B GEOMETRIA ESPACIAL

Aula 24 mtm B GEOMETRIA ESPACIAL Aula 24 mtm B GEOMETRIA ESPACIAL Entes Geométricos Ponto A T Reta r s Plano Espaço y α z x Entes Geométricos Postulados ou Axiomas Teorema a 2 = b 2 + c 2 S i =180 Determinação de uma reta Posições relativas

Leia mais

Posição Relativa. 1. Quatro pontos distintos e não coplanares determinam exatamente: (A) 1 plano (B) 2 planos (C) 3 planos (D) 4 planos (E) 5 planos.

Posição Relativa. 1. Quatro pontos distintos e não coplanares determinam exatamente: (A) 1 plano (B) 2 planos (C) 3 planos (D) 4 planos (E) 5 planos. SEI Ensina MILITAR Matemática Posição Relativa 1. Quatro pontos distintos e não coplanares determinam exatamente: (A) 1 plano (B) 2 planos (C) 3 planos (D) 4 planos (E) 5 planos. 2. Considere as seguintes

Leia mais

a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares.

a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares. 01 a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares. c) Verdadeira. Três pontos distintos e não colineares sempre determinam um plano.

Leia mais

4. Posições relativas entre uma reta e um plano

4. Posições relativas entre uma reta e um plano RESUMO GEOMETRIA DE POSIÇÃO OU EUCLIDIANA 1.Geometria de posição espacial Ponto, reta e plano são considerados noções primitivas na Geometria. Espaço é o conjunto de todos o pontos. Postulados são proposições

Leia mais

CAPÍTULO IV APLICAÇÕES

CAPÍTULO IV APLICAÇÕES CAPÍTULO IV APLICAÇÕES PROJEÇÃO ORTOGONAL SOBRE UM PLANO PROJEÇÃO DE UM PONTO: Definição: Chama-se projeção ortogonal de um ponto sobre um plano ao pé da perpendicular ao plano conduzida pelo ponto. O

Leia mais

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 1 Fundamentos de Geometria Euclidiana Plana e Ângulos SUMÁRIO 1. Fundamentos 1.1. Postulados principais 1.2. Determinação do plano 1.3. Posições

Leia mais

FAMEBLU Arquitetura e Urbanismo

FAMEBLU Arquitetura e Urbanismo FAMEBLU Arquitetura e Urbanismo Disciplina GEOMETRIA DESCRITIVA APLICADA A ARQUITETURA 1 Aula 8: Revisão Geral Exercícios Professor: Eng. Daniel Funchal, Esp. Revisão PLANOS Um plano pode ser determinado

Leia mais

Geometria Espacial Curso de Licenciatura em Matemática parte I. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR

Geometria Espacial Curso de Licenciatura em Matemática parte I. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR Geometria Espacial Curso de Licenciatura em Matemática parte I Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 1 1. Conceitos Primitivos e Postulados L1. Noções 1. Conceitos primitivos:

Leia mais

a) Postulado 1 - Por dois pontos...passa uma e só uma reta

a) Postulado 1 - Por dois pontos...passa uma e só uma reta PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL I) Completes a lacunas: a) Postulado 1 - Por dois pontos...passa uma e só uma reta b) Postulado 2 Para todo...ab e todo...cd exist um único...e

Leia mais

DEPARTAMENTO DE MATEMÁTICA Matemática 7 MA07A TURMA T51 Prof. Luiz Antonio Kretzschmar

DEPARTAMENTO DE MATEMÁTICA Matemática 7 MA07A TURMA T51 Prof. Luiz Antonio Kretzschmar DEPARTAMENTO DE MATEMÁTICA Matemática 7 MA07A TURMA T51 Prof. Luiz Antonio Kretzschmar PARTE 2 PONTO, RETA, PLANO Def. : Uma reta é paralela a um plano se, e somente se, eles não têm ponto comum Uma reta

Leia mais

PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL

PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL I) Completes a lacunas: a) Postulado 1 - Por dois pontos...passa uma e só uma reta b) Postulado 2 Para todo...ab e todo...cd exist um único...e

Leia mais

Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza

Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza Geometria Analítica Estudo do Plano Prof Marcelo Maraschin de Souza Plano Equação Geral do Plano Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = a, b, c, n 0, um vetor normal (ortogonal)

Leia mais

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria Geometria Descritiva Prof. Luiz Antonio do Nascimento ladnascimento@gmail.com www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer

Leia mais

Geometria Analítica. Estudo da Reta. Prof Marcelo Maraschin de Souza

Geometria Analítica. Estudo da Reta. Prof Marcelo Maraschin de Souza Geometria Analítica Estudo da Reta Prof Marcelo Maraschin de Souza Reta Considere um ponto A(x 1, y 1, z 1 ) e um vetor não-nulo v = a, b, c. Só existe uma reta r que passa por A e tem a direção de v.

Leia mais

Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG. Sistemas Projetivos. Representação de Retas no Sistema Mongeano NOTAS DE AULA

Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG. Sistemas Projetivos. Representação de Retas no Sistema Mongeano NOTAS DE AULA Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG Sistemas Projetivos Representação de Retas no Sistema Mongeano NOTAS DE AULA Prof. Julio Cesar B. Torres (juliotorres@ufrj.br) REPRESENTAÇÃO

Leia mais

GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA

GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA PONTO, RETA, PLANO E ESPAÇO; PROPOSIÇÕES GEOMÉTRICAS; POSIÇOES RELATIVAS POSIÇÕES RELATIVAS ENTRE PONTO E RETA POSIÇÕES RELATIVAS DE PONTO E PLANO POSIÇÕES

Leia mais

Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva.

Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva. 1 Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva a1q1: Sejam r uma reta, A e B dois pontos distintos não pertencentes a r Seja L o lugar geométrico dos

Leia mais

Axiomas da Geometria Diferencial: Incidência Axioma I 1 : Para todo ponto P e para todo ponto Q distinto de P, existe uma única reta l que passa por

Axiomas da Geometria Diferencial: Incidência Axioma I 1 : Para todo ponto P e para todo ponto Q distinto de P, existe uma única reta l que passa por GEOMETRIA ESPACIAL Axiomas da Geometria Diferencial: Incidência Axioma I 1 : Para todo ponto P e para todo ponto Q distinto de P, existe uma única reta l que passa por P e Q. Axioma I 2 : Toda reta possui

Leia mais

EXERCÍCIOS COMPLEMENTARES

EXERCÍCIOS COMPLEMENTARES Questão 01) EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL PROF.: GILSON DUARTE d) Se e são perpendiculares entre-si, então é perpendicular a todas as retas contidas em. Todas as afirmações abaixo estão

Leia mais

GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS

GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS GEOMETRIA ANALI TICA PONTO PLANO CARTESIANO Vamos representar os pontos A (-2, 3) e B (4, -3) num plano cartesiano. MEDIANA E BARICENTRO A mediana é o segmento que une o ponto médio de um dos lados do

Leia mais

Ensino Fundamental II 8º ANO Profº: Sâmia M. Corrêa Disciplina: Geometria Aluno (a):. No. TRABALHO DE RECUPERAÇÃO

Ensino Fundamental II 8º ANO Profº: Sâmia M. Corrêa Disciplina: Geometria Aluno (a):. No. TRABALHO DE RECUPERAÇÃO COLÉGIO SHALOM 65 Ensino Fundamental II 8º ANO Profº: Sâmia M. Corrêa Disciplina: Geometria Aluno (a):. No. TRABALHO DE RECUPERAÇÃO TRABALHO DE RECUPERAÇÃO 1) Use a malha quadriculada a seguir para elaborar

Leia mais

PHA ( ) PHP ( ) Iº DIEDRO: PVI ( ) IIIº DIEDRO:

PHA ( ) PHP ( ) Iº DIEDRO: PVI ( ) IIIº DIEDRO: GEOMETRIA DESCRITIVA UNIDADE 01 GEOMETRIA DESCRITIVA PLANO DE PROJEÇÃO PHA ( ) PHP ( ) Iº DIEDRO: PVS ( ) IIº DIEDRO: PVI ( ) IIIº DIEDRO: LT ( ) IVº DIEDRO: 1 GEOMETRIA DESCRITIVA UNIDADE 01 Linha Terra

Leia mais

1. Encontre as equações simétricas e paramétricas da reta que:

1. Encontre as equações simétricas e paramétricas da reta que: Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: retas; planos; interseções de retas e planos; posições relativas entre retas e planos; distância

Leia mais

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique. Universidade Federal de Uberlândia Faculdade de Matemática Disciplina: Geometria euclidiana espacial (GMA010) Assunto: Paralelisno e Perpendicularismo; Distância e Ângulos no Espaço. Prof. Sato 1 a Lista

Leia mais

AULA Paralelismo e perpendicu- 11 larismo

AULA Paralelismo e perpendicu- 11 larismo AULA Paralelismo e perpendicu- 11 larismo 11.1 Introdução Nesta aula estudaremos as noções de paralelismo e perpendicularismo. Vamos assumir que o aluno tenha o conhecimento de todos os resultados concernentes

Leia mais

Teorema de Tales no plano

Teorema de Tales no plano MA620 - Aula 3 p. 1/ Teorema de Tales no plano Teorema de Tales: (no plano) Se duas retas paralelas são cortadas por duas retas concorrentes, então as medidas dos segmentos correspondentes determinados

Leia mais

FAMEBLU Arquitetura e Urbanismo

FAMEBLU Arquitetura e Urbanismo FAMEBLU Arquitetura e Urbanismo Disciplina GEOMETRIA DESCRITIVA APLICADA A ARQUITETURA 1 Aula 2: Conceitos Básicos Sistemas de Projeção Método da Dupla Projeção de Monge Professor: Eng. Daniel Funchal,

Leia mais

Código da Disciplina CCE0985. Aula 3.

Código da Disciplina CCE0985. Aula 3. Código da Disciplina CCE0985 Aula 3 e-mail:clelia.monasterio@estacio.br http://cleliamonasterio.blogspot.com/ O que é geometria? Palavra de origem grega: GEO (terra) METRIA (medida). Há 5.000 anos, era

Leia mais

Geometria Descritiva. Alfabeto do Plano:

Geometria Descritiva. Alfabeto do Plano: Geometria Descritiva Alfabeto do Plano: Posição de um plano em relação aos: Planos projectantes - Paralelo - perpendicular a um só plano - perpendicular aos dois planos Planos não projectantes: Retas contidas

Leia mais

3.5 Posições relativas

3.5 Posições relativas 3.5 Posições relativas Geometria Descritiva 2006/2007 Paralelismo Paralelismo de duas rectas É condição necessária e suficiente para que duas rectas, não de perfil, sejam paralelas que as suas projecções

Leia mais

2.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:

2.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2012 1ª. SÉRIE 1.- A média das notas dos 21 alunos do 1º Ano do Ensino Médio, em Matemática é 5,80. Se a nota de Álvaro que é 1,80 for excluída, então qual

Leia mais

Geometria. Uma breve introdução

Geometria. Uma breve introdução Geometria Uma breve introdução Etimologia Geometria, em grego antigo γεωμετρία, geo- "terra", -metria "medida Origem (lazer ou necessidade?) Geometria Euclidiana Euclides de Alexandria, matemático grego

Leia mais

❷ Uma recta e um ponto exterior à recta definem um e um só plano.

❷ Uma recta e um ponto exterior à recta definem um e um só plano. Uma resolução da Ficha de Trabalho (10.º Ano) POSIÇÕES RELATIVAS, PERSPECTIVAS, CORTES. 1. FORMAS DE DEFINIR UM PLANO: ❶ Três pontos não colineares definem um e um só plano. ❷ Uma recta e um ponto exterior

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

A projeção de uma reta sobre um plano é o lugar das projeções de todos os seus pontos sobre este plano. (D) (C)

A projeção de uma reta sobre um plano é o lugar das projeções de todos os seus pontos sobre este plano. (D) (C) ESTUDO DA RETA A projeção de uma reta sobre um plano é o lugar das projeções de todos os seus pontos sobre este plano. (A) (C) (D) (B) (a) B (p) A C D Baixando de todos os pontos da reta perpendiculares

Leia mais

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! 1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,

Leia mais

SISTEMAS DE PROJEÇÃO

SISTEMAS DE PROJEÇÃO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD028 Expressão Gráfica II Curso de Engenharia

Leia mais

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2014 1ª. SÉRIE 1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: 2.-Ao fazer uma

Leia mais

1. SISTEMA DE PROJEÇÕES

1. SISTEMA DE PROJEÇÕES Expressão Gráfica I 1 Desde a pré-história o homem já defrontou-se com o problema de representar em um só plano. O desenho assumiu a função simbólica, mística (os povos primitivos representavam em cavernas

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Geometria Euclidiana Espacial e Introdução à Geometria Descritiva

Geometria Euclidiana Espacial e Introdução à Geometria Descritiva UNIVERSIDDE ESTDUL PULIST DEPRTMENTO DE MTEMÁTIC Geometria Euclidiana Espacial e Introdução à Geometria Descritiva Material em preparação!! Última atualização: 28.04.2008 Luciana F. Martins e Neuza K.

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

LISTA DE EXERCÍCIOS COMPLEMENTAR 1ª PROVA

LISTA DE EXERCÍCIOS COMPLEMENTAR 1ª PROVA MINISTÉRI DA EDUCAÇÃ UNIVERSIDADE FEDERAL D PARANÁ SETR DE CIÊNCIAS EXATAS DEPARTAMENT DE EXPRESSÃ GRÁFICA Professora Elen Andrea Janzen Lor Representação de Retas LISTA DE EXERCÍCIS CMPLEMENTAR 1ª PRVA

Leia mais

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 03 de abril de º Olímpico Matemática I 6º Olímpico Matemática I Sistema de numeração romano. Situações problema com as seis operações com números naturais (adição, subtração, multiplicação, divisão, potenciação e radiciação). Expressões numéricas

Leia mais

2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014

2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014 a Lista de Eercícios de MAT4 Escola Politécnica o semestre de 4. Determine u tal que u = e u é ortogonal a v = (,, ) e a w = (, 4, 6). Dos u s encontrados, qual é o que forma um ângulo agudo com o vetor

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ensino Secundário Ano Letivo 2016/2017

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ensino Secundário Ano Letivo 2016/2017 Apresentação da disciplina: Objetivos, funcionamento e avaliação. 1. Módulo inicial 2. Introdução à Geometria Descritiva Domínios: Socio Afetivo e Cognitivo. Avaliação e sumativa. Lista de material e sua

Leia mais

Lista de Exercícios de Geometria

Lista de Exercícios de Geometria Núcleo Básico de Engenharias Geometria - Geometria Analítica Professor Julierme Oliveira Lista de Exercícios de Geometria Primeira Parte: VETORES 1. Sejam os pontos A(0,0), B(1,0), C(0,1), D(-,3), E(4,-5)

Leia mais

Prof. Rafael Saraiva Campos CEFET/RJ UnED Nova Iguaçu 2011

Prof. Rafael Saraiva Campos CEFET/RJ UnED Nova Iguaçu 2011 Introdução à Geometria Descritiva Aula 01 Prof. Rafael Saraiva Campos CEFET/RJ UnED Nova Iguaçu 2011 Resumo O que é Geometria Descritiva? Projeção Ortogonal de um Ponto Método da Dupla Projeção de Monge

Leia mais

Revisão de Círculos. Geometria Básica Profa Lhaylla Crissaff

Revisão de Círculos. Geometria Básica Profa Lhaylla Crissaff Revisão de Círculos Geometria Básica Profa Lhaylla Crissaff 2017.2 1 Definição Circunferência é uma figura geométrica formada por todos os pontos que estão a uma mesma distância de um ponto fixado no plano.

Leia mais

Módulo de Geometria Espacial I - Fundamentos. Pontos, Retas e Planos. 3 ano/e.m.

Módulo de Geometria Espacial I - Fundamentos. Pontos, Retas e Planos. 3 ano/e.m. Módulo de Geometria Espacial I - Fundamentos Pontos, Retas e Planos. 3 ano/e.m. Geometria Espacial I - Fundamentos Pontos, Retas e Planos. 1 Exercícios Introdutórios 2 Exercícios de Fixação Exercício 4.

Leia mais

Prof. Fernando Carneiro Rio de Janeiro, Outubro de 2015

Prof. Fernando Carneiro Rio de Janeiro, Outubro de 2015 Ga - retas e planos na solução de problemas 1 GA - Retas e planos na solução de problemas Prof. Fernando Carneiro Rio de Janeiro, Outubro de 2015 1 Reta concorrente a duas retas dadas Este tipo de problema

Leia mais

3. Representação diédrica de pontos, rectas e planos

3. Representação diédrica de pontos, rectas e planos 3. Representação diédrica de pontos, rectas e planos Geometria Descritiva 2006/2007 Geometria de Monge Utilizam-se simultaneamente dois sistemas de projecção paralela ortogonal. Os planos de projecção

Leia mais

Retas e planos. Posições relativas

Retas e planos. Posições relativas Retas e planos. Posições relativas Recordar Noção de Plano Se prolongares indefinidamente e em todas as direções o tampo do quadro, obténs um Plano. Como desenhar um plano é impossível, convencionou-se

Leia mais

Posições de Retas. Algumas definições sobre retas foram sistematizadas por Euclides, por volta de 300a.C.

Posições de Retas. Algumas definições sobre retas foram sistematizadas por Euclides, por volta de 300a.C. Posições de Retas Introdução: Conceitos Primitivos Algumas definições sobre retas foram sistematizadas por Euclides, por volta de 300a.C. A partir dessas definições estabeleceram-se os termos geométricos

Leia mais

n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas

n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas n. 18 Estudo da reta: ângulo, paralelismo, ortogonalidade, coplanaridade e interseção entre retas Ângulo entre duas retas Sejam as retas r1, que passa pelo ponto A (x1, y1, z1) e tem a direção de um vetor

Leia mais

AULA Introdução a Geometria Es- 10 pacial: Pontos, Retas e Planos

AULA Introdução a Geometria Es- 10 pacial: Pontos, Retas e Planos AULA Introdução a Geometria Es- 10 pacial: Pontos, Retas e Planos 10.1 Introdução O ensino de Geometria para alunos do segundo ano do segundo grau faz o aluno se deparar com guras geométricas tridimensionais.

Leia mais

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS 2 1 NOÇÕES DE GEOMETRIA PLANA 1.1 GEOMETRIA A necessidade de medir terras

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva

Leia mais

Um plano fica definido por duas retas paralelas ou concorrentes.

Um plano fica definido por duas retas paralelas ou concorrentes. 1 3 - ESTUDO DOS PLANOS Um plano fica definido por duas retas paralelas ou concorrentes. 3.1. Traços do plano São as retas de interseção de um plano com os planos de projeção. απ' - traço vertical de (α)

Leia mais

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Plano cartesiano, Retas e. Alex Oliveira. Circunferência Plano cartesiano, Retas e Alex Oliveira Circunferência Sistema cartesiano ortogonal O sistema cartesiano ortogonal é formado por dois eixos ortogonais(eixo x e eixo y). A intersecção dos eixos x e y é

Leia mais

Metas Curriculares do Ensino Básico Matemática 3.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo

Metas Curriculares do Ensino Básico Matemática 3.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Metas Curriculares do Ensino Básico Matemática 3.º Ciclo António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Geometria e Medida 3.º ciclo Grandes temas: 1. Continuação do estudo dos polígonos

Leia mais

Axiomas de Incidência Axiomas de Ordem Axiomas de Congruência Axioma das paralelas Axiomas de Continuidade

Axiomas de Incidência Axiomas de Ordem Axiomas de Congruência Axioma das paralelas Axiomas de Continuidade 1 GEOMETRIA PLANA Atualizado em 04/08/2008 www.mat.ufmg.br/~jorge Bibliografia 1. Pogorélov, A.V. Geometria Elemental Editora Mir. 2. Dolce, Osvaldo e Nicolau, Pompeu Geometria Plana Volume 9 da Coleção

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Poliedros 2º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Poliedros 2º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Poliedros 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre/2013 Aluno(a): Número: Turma: 1) Coloque V ou F, conforme

Leia mais

3. Obter a equação do plano que contém os pontos A = (3, 0, 1), B = (2, 1, 1) e C = (3, 2, 2).

3. Obter a equação do plano que contém os pontos A = (3, 0, 1), B = (2, 1, 1) e C = (3, 2, 2). Lista II: Retas, Planos e Distâncias Professora: Ivanete Zuchi Siple. Equação geral do plano que contém o ponto A = (,, ) e é paralelo aos vetores u = (,, ) e v = (,, ).. Achar a equação do plano que passa

Leia mais

Álgebra Linear I - Aula 6. Roteiro

Álgebra Linear I - Aula 6. Roteiro Álgebra Linear I - Aula 6 1. Equação cartesiana do plano. 2. Equação cartesiana da reta. 3. Posições relativas: de duas retas, de uma reta e um plano, de dois planos. Roteiro 1 Equação cartesiana do plano

Leia mais

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos Ângulos entre retas Retas e Planos Perpendiculares Walcy Santos Ângulo entre duas retas A idéia do ângulo entre duas retas será adaptado do conceito que temos na Geometria Plana. Se duas retas são concorrentes

Leia mais

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso:

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE MATEMÁTICA Aluno(a): Professor(a): Curso: 5 Geometria Analítica - a Avaliação - 6 de setembro de 0 Justique todas as suas respostas.. Dados os vetores u = (, ) e v = (, ), determine os vetores m e n tais que: { m n = u, v u + v m + n = P roj u

Leia mais

Lista 3: Geometria Analítica

Lista 3: Geometria Analítica Lista 3: Geometria Analítica A. Ramos 25 de abril de 2017 Lista em constante atualização. 1. Equação da reta e do plano; 2. Ângulo entre retas e entre planos. Resumo Equação da reta Equação vetorial. Uma

Leia mais

Item 1 (Paralelismo) Item 2 (Distâncias)

Item 1 (Paralelismo) Item 2 (Distâncias) Item 1 (Paralelismo) 1. Representam-se os dados do enunciado; 2. Este relatório apresenta dois processos distintos para a resolução do primeiro exercício do Exame: o Processo A (que consiste em visualizar

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:

Leia mais

Projeções de entidades geométricas elementares condicionadas por relações de pertença (incidência) 8

Projeções de entidades geométricas elementares condicionadas por relações de pertença (incidência) 8 Índice Item Representação diédrica Projeções de entidades geométricas elementares condicionadas por relações de pertença (incidência) 8 Reta e plano 8 Ponto pertencente a uma reta 8 Traços de uma reta

Leia mais

d) Por dois pontos distintos passa uma única reta

d) Por dois pontos distintos passa uma única reta INTRODUÇÃO À GEOMETRIA Ponto, reta e plano Você já tem ideia intuitiva sobre ponto, reta e plano. Vejamos alguns exemplos: Um furo de agulha num papel dá ideia de ponto. Uma corda bem esticada dá ideia

Leia mais

Aula 10 Produto interno, vetorial e misto -

Aula 10 Produto interno, vetorial e misto - MÓDULO 2 - AULA 10 Aula 10 Produto interno, vetorial e misto - Aplicações II Objetivos Estudar as posições relativas entre retas no espaço. Obter as expressões para calcular distância entre retas. Continuando

Leia mais

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica

Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos

Leia mais

Retas e planos no espaço

Retas e planos no espaço Retas e planos no espaço Jorge M. V. Capela, Marisa V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 1 Retas e Segmentos de Reta no Espaço 2 Equação vetorial

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

O PLANO...> Equação do Plano

O PLANO...> Equação do Plano Equação do Plano O PLANO...> Equação vetorial de um Plano Equações Paramétricas do Plano Equações Geral de um Plano Casos Particulares da Equações Geral de um Plano Vetor normal a um plano Feixe de Planos

Leia mais

Geometria Descritiva

Geometria Descritiva Geometria Descritiva Projeção de retas situados nos planos de projeção: Plano Horizontal de projeção Plano Frontal de projeção Planos Bissetores: ß 1/3 ; ß 2/4 Alfabeto da Reta - Revisões Reta Horizontal

Leia mais

7 a lista de exercícios - GA Período de Prof. Fernando Carneiro

7 a lista de exercícios - GA Período de Prof. Fernando Carneiro Lista 7 de GA 1 7 a lista de exercícios - GA Período de 014. - Prof. Fernando Carneiro 1 (Boulos): Dados os pontos A(1, 0, 0), B(, 1, 0), C(1, 0, 1) e D(, 1, 1), mostre que a) formam um retângulo; b) a

Leia mais

O MÉTODO DAS DUPLAS PROJEÇÕES ORTOGONAIS

O MÉTODO DAS DUPLAS PROJEÇÕES ORTOGONAIS Expressão Gráfica II Geometria Descritiva Engenharia Civil - 2014 13 MÉTD DAS DUPLAS PRJEÇÕES RTGNAIS PARTE I REPRESENTAÇÃ D PNT 1. Planos fundamentais de referência (PFR) Consideremos π e π dois planos

Leia mais

Estas notas de aulas são destinadas a todos aqueles que desejam ter. estudo mais profundo.

Estas notas de aulas são destinadas a todos aqueles que desejam ter. estudo mais profundo. Geometria Descritiva Prof. Sérgio Viana Estas notas de aulas são destinadas a todos aqueles que desejam ter um conhecimento básico de Geometria Descritiva, para um posterior estudo mais profundo. GEOMETRIA

Leia mais

A x,y e B x,y, as coordenadas do ponto médio desse segmento serão dadas por:

A x,y e B x,y, as coordenadas do ponto médio desse segmento serão dadas por: . Plano Cartesiano: é formado por dois eixos perpendiculares, um horizontal (eixo das abscissas) e outro vertical (eixo das ordenadas), dividido em quatro quadrantes contados no sentido anti-horário como

Leia mais

Soluções do Capítulo 8 (Volume 2)

Soluções do Capítulo 8 (Volume 2) Soluções do Capítulo 8 (Volume 2) 1. Não. Basta considerar duas retas concorrentes s e t em um plano perpendicular a uma reta r. As retas s e t são ambas ortogonais a r, mas não são paralelas entre si.

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Geometria Figuras no plano Retas, semirretas e segmentos de reta Ângulos: amplitude e medição Polígonos: propriedades e classificação Círculo e circunferência: propriedades e construção Reflexão, rotação

Leia mais

GEOMETRIA ANALÍTICA 2017

GEOMETRIA ANALÍTICA 2017 GEOMETRIA ANALÍTICA 2017 Tópicos a serem estudados 1) O ponto (Noções iniciais - Reta orientada ou eixo Razão de segmentos Noções Simetria Plano Cartesiano Abcissas e Ordenadas Ponto Médio Baricentro -

Leia mais

Desenho Computacional. Parte I

Desenho Computacional. Parte I FACULDADE FUCAPI Desenho Computacional Parte I, M.Sc. Doutorando em Informática (UFAM) Mestre em Engenharia Elétrica (UFAM) Engenheiro de Telecomunicações (FUCAPI) Referências SILVA, Arlindo; RIBEIRO,

Leia mais

MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Intervalos de números Reais (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como 2 1, 1414 e 3 1, 7321, representando na reta real o intervalo

Leia mais

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria IV Paralelismo e perpendicularidade. Sistemas de equações.

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria IV Paralelismo e perpendicularidade. Sistemas de equações. Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria IV Paralelismo e perpendicularidade. Sistemas de equações. 11º Ano Paralelismo e perpendicularidade de retas No espaço, duas

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA:

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: ANO LETIVO 2016/2017 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) Metas Curriculares Conteúdos Aulas

Leia mais

PLANIFICAÇÃO ANUAL. 3º Período Até 16 de junho 2.ª ª ª ª ª º Período 2º Período

PLANIFICAÇÃO ANUAL. 3º Período Até 16 de junho 2.ª ª ª ª ª º Período 2º Período ESCOLA SECUNDÁRIA INFAN TA D. MAR IA GEOMETRIA DESCRITIVA 10º ANO PLANIFICAÇÃO ANUAL Ano letivo 2016/17 Dias da semana 1º Período 2º Período 3º Período Até 16 de junho 2.ª 13 12 7 3.ª 12 13 7 4.ª 12 12

Leia mais