Em termos temporais há duas formas possíveis de operação dos sistemas: estacionária e dinâmica.

Tamanho: px
Começar a partir da página:

Download "Em termos temporais há duas formas possíveis de operação dos sistemas: estacionária e dinâmica."

Transcrição

1 INTRODUÇÃO N curo ão arnada uada frramna ncária ara a análi do comoramno dinâmico d ima (roco oraçõ uniária) da ngnharia química. Numa abordagm baan imlia, m rmo do númro d alavra uilizada, orm abrangn m rmo d conúdo, od- dizr qu a dua rinciai aividad do ngnhiro químico ão rojar orar. O qu baicamn dja do ima da ngnharia química é uma oração ficin (com gurança, rrvando o mio ambin, obndo boa qualidad grand quanidad d roduo) riando limi (rriçõ d divro io orign). m rmo morai há dua forma oívi d oração do ima: acionária dinâmica. oração acionária é alvz a forma mai comum na indúria d roco químico (raa- d uma imlificação, oi é difícil imaginar alguma coia ral qu coniga ficar liralmn acionária). forma d oração dinâmica é obrvada no cao d arida ou arada do roco, no ima m balada, na roa a rurbaçõ, ainda, m cro cao m qu a ocilação da variávi é djada. Para orar um roco d forma ficin é ncário conhcr rofundamn ua rinciai caracríica (um orador xrin - cialia, xr - é aqul qu domina conhcimno) m rmo d nibilidad a rurbaçõ, vlocidad d roa abilidad. Uma boa ráica ara acomanhar o ninamno da dicilina é aocia-lo a ouro ima comun do noo dia a dia: o auomóvl, o coro humano, um coro d água, um ima conômico, c. análi do comoramno do ima buca idnificar a rinciai caracríica qu drminam comoramno. O comoramno dinâmico, qu é o objivo rincial do curo, á rn na oração d odo roco, oração uniária ou ima m gral.

2 m rmo mamáico, comoramno dinâmico é quivaln à olução d quaçõ difrnciai ou d difrncia finia na variávl indndn mo. O curo baia na análi da oluçõ, ao caracrizar o ima da ngnharia química aravé d modlo mamáico formado or quaçõ difrnciai, quaçõ d difrncia finia ou ua ranformaçõ.. xmlo inroduório: o raor CSTR O raor anqu agiado conínuo, CSTR (coninuou irrd ank racor), é o roco mai uilizado ara xmlificar o ma a rm dnvolvido no udo qu amo iniciando. l arna divra caracríica comun à maior ar do roco, ai como múlila nrada aída não linaridad, ma, ao mmo mo, od r rrnado aravé d um modlo mamáico d dimnõ rduzida, io é, um modlo iml. É or moivo qu vamo conidrar como xmlo um raor cr com a guin caracríica: k - é rocada uma ração xoérmica d rimira ordm B H - a roridad do mio racional ão conan. - a li do rfriamno d Nwon xlica a roca érmica com um mio d rfrigração. - a li d rrhniu xlica a dndência do coficin da axa d ração com a mraura. 2

3 .. Modlo mamáico lém da já nunciada, oura conidraçõ foram adoada ara a obnção do modlo arnado a guir ( modlo rá dnvolvido mai adian) dv V V dc V c V c RT k c c c dt V T V T H RT k c c U T Tq T T c V Traa- d um ima d quaçõ difrnciai ordinária não linar. O arâmro ão conan no mo no aço...2 ado acionário Num ado acionário a variávi não variam com o mo, o qu mamaicamn é conguido fazndo dv dc dt. O rulado da oração é um ima d quaçõ algébrica não linar. Uando o ub-índic ara indicar ado acionário, xliciando c ft, na S 2 a quação do ima d quaçõ algébrica, ubiuindo na 3 a rordnando rmo vm: c RT H k c T T U T T q RT k V Io od r xro d forma comaca como Q T Q T g r 3

4 forma grai da funçõ ão rrnada graficamn a guir. inrção da curva aifaz a quação anrior, indicando aé rê mraura (ono) d ado acionário. a mulilicidad é uma caracríica do ima não linar...3 Linarização Conidrando volum conan,. dc RT V k c c RT RT k c T T 2 c dt c V V c c H H U RT RT k c c k c c V RT c cv T T 2 T T V T T cv q UU q q V T T U cv T T Rdfinindo conan é variávi, ima od r crio da guin forma, dx dx 2 a x a x b u b u b u b u b u a x a x b u b u b u b u b u Ou, uilizando noação maricial, 4

5 x.x B.u mariz - or xmlo - ão caracrizada or calar vor, chamado valor caracríico (auovalor) vor caracríico (auovor) valor ingular...4 unçõ d ranfrência funçõ d ranfrência ão rrnaçõ nrada/aída m um domínio ranformado da variávl indndn. No cao do CSTR, o vínculo nr a variávl d aída "x " a d nrada "u " é rrnado la guin quação: b b 2a 2 ba 22 a a a a a a u 2 G u x Dvido ao uo d comuador digiai, ão d grand imorância o modlo qu rrnam o comoramno dinâmico do ima m drminado mo dicro d amoragm. N cao a funçõ d ranfrência ão rrnada m rmo da variávi z, rulado da ranformada Z, qu é um cao aricular da ranformada d Lalac quando alicada a variávi indndn dicra. São a funçõ d ranfrência ulo. Gz m b b z... b z b z m m m n n n a a z... a z a z n Ouro io d rrnação nrada/aída é no domínio do mo. No cao do mo conínuo rula a ingral d convolução, y g ud, no cao do mo dicro, o omaório d convolução, y(k) = k i= h(k - i) u(i) 5

6 ..5 náli naliar ignifica dcomor na ar coniuin, no noo conxo, o xam d cada ar coniuin, rocurando conhcr a ua naurza. Par coniuin do ima ão, or xmlo, ólo; zro; ganho áico (valor caracríico, valor ingular). ua naurza drmina, or xmlo, a abilidad; a forma da roa a nrada íica; a forma da roa frqüncial. O udo da roa a nrada íica, quando no domínio ranformado, rqur, m gral, o rorno ao domínio "mo", o qu congu calculando a invra da "função ranformada". L G u x..6 ado O ado d um ima é um conjuno d informaçõ num dado inan d mo qu, juno com o conhcimno da fuura rurbaçõ, rmi conhcr o fuuro comoramno. c T ão variávi d ado ara o CSTR (é normal indicá-la com a lra "x") O modlo d quaçõ difrnciai ordinária não linar ficam xro da forma x f x, u ou, no cao dicro no mo, a quaçõ d difrnça finia, x k f xk, uk Na forma linar x. x B. u ou x k.xk B.u k olução gral da quaçõ é: 6

7 x x Bud ou k k k-i- xk x B i u i análi da quação (raa- d um ima d quaçõ xro na forma maricial) rmi drminar o fio do lmno qu a conium obr o comoramno dinâmico da variávi d ado, x. S lmno odm r aociado à ar qu formam o ima ral modlado, odm- infrir quai a caracríica fíica d ima qu drminam um vnual comoramno, ncário, vr uma forma d alrálo. 7

3. TRANSFORMADA DE LAPLACE. Prof. JOSÉ RODRIGO DE OLIVEIRA

3. TRANSFORMADA DE LAPLACE. Prof. JOSÉ RODRIGO DE OLIVEIRA 3 TRNSFORMD DE LPLCE Prof JOSÉ RODRIGO DE OLIVEIR CONCEITOS BÁSICOS Númro complxo: ond α β prncm ao nº rai Módulo fa d um númro complxo Torma d Eulr: b a an a co co n n Prof Joé Rodrigo CONCEITOS BÁSICOS

Leia mais

Sistemas: Propriedades

Sistemas: Propriedades SS-TSS 6 Sima: Propridad. Conidrando o ima cuja função aprna (x() nrada y() aíd, drmin quai da guin propridad vrificam: i) mmória; ii) invariância no mpo; iii) linaridad; iv) caualidad; v) abilidad. (

Leia mais

A Transformada de Laplace

A Transformada de Laplace UFPEL IFM/DME - Equaçõ Difrnciai Tranformada ingrai: A Tranformada d Laplac Uma da difrn manira d rolvr quaçõ difrnciai linar é conidrar a chamada ranformada ingrai. Uma ranformada ingral é uma rlação

Leia mais

1ª. Lei da Termodinâmica para um Volume de Controle

1ª. Lei da Termodinâmica para um Volume de Controle ª. Li da Trmodinâmica ara um Volum d Conrol Grand ar do roblma d inr na ngnharia nol ima abro, ou ja, ima no quai há fluo d maa araé d ua fronira. É, orano, connin obrmo uma rão da ª. Li álida ara ima

Leia mais

ESZO Fenômenos de Transporte

ESZO Fenômenos de Transporte Univridad Fdral do ABC ESZO 001-15 Fnôno d Tranpor Profa. Dra. Ana Maria Prira No ana.no@ufabc.du.br Bloco A, orr 1, ala 637 1ª Li da Trodinâica para olu d Conrol ESZO 001-15_Ana Maria Prira No 1ª Li da

Leia mais

que representa uma sinusoide com a amplitude modulada por uma exponencial. Com s real, tem-se,

que representa uma sinusoide com a amplitude modulada por uma exponencial. Com s real, tem-se, Curo d Engnharia Elcrónica d Compuador - Elcrónica III Frquência Complxa rvião n Conidr- a xprão, σ v V co qu rprna uma inuoid com a ampliud modulada por uma xponncial. Com ral, m-, n σ>0 a ampliud d v

Leia mais

A TRANSFORMADA DE LAPLACE

A TRANSFORMADA DE LAPLACE A TRANSFORMADA DE APACE Prof M Ayron Barboni SUMÁRIO INTRODUÇÃO TRANSFORMADA DE APACE Dfinição Cálculo da ranformada d aplac Exrcício rolvido 4 4 Exrcício propoo 8 TRANSFORMADA INVERSA DE APACE 9 Exrcício

Leia mais

TRANSFORMADA DE LAPLACE- PARTE I

TRANSFORMADA DE LAPLACE- PARTE I TRNSFORMD DE LLE- RTE I Eor. d Barro. INTRODUÇÃO odmo dfiir a Traformada d Laplac como uma opração mamáica qu covr uma fução d variávl ral m uma fução d variávl complxa: Od, F f d i f é uma fução ral da

Leia mais

Aula Teórica nº 32 LEM-2006/2007. Prof. responsável de EO: Mário J. Pinheiro. Oscilações eléctricas num circuito RLC

Aula Teórica nº 32 LEM-2006/2007. Prof. responsável de EO: Mário J. Pinheiro. Oscilações eléctricas num circuito RLC Aula órica nº 3 LEM-6/7 Prof. rponávl d EO: Mário J. Pinhiro Ocilaçõ lécrica num circuio RLC Conidr- agora um condnador inicialmn carrgado com a carga q qu no inan é dcarrgado obr um circuio lécrico d

Leia mais

EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS

EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS EQUAÇÕES DIFERENCIAIS APLICADAS EM MODELOS DE COMPARTIMENTOS Tiago Novllo d Brio Fcilcam, iago-novllo@homail.com ald dos Sanos Coquiro Fcilcam, vcoquiro@yahoo.com.br Rosangla Tixira Guds UTFPR, r_guds@homail.com

Leia mais

RESPOSTA TEMPORAL. 1. Motivação. 2. Solução homogênea. Calcular a resposta temporal de sistemas dinâmicos LIT na forma SS.

RESPOSTA TEMPORAL. 1. Motivação. 2. Solução homogênea. Calcular a resposta temporal de sistemas dinâmicos LIT na forma SS. Euaro Lobo Luoa Cabral RESPOST TEMPORL. Moiação Calcular a rpoa mporal ima inâmico LT na forma SS. Rpoa mporal prmi analiar comporamno inâmico o ima no omínio o mpo. Dua oluçõ: Solução homogêna rpoa à

Leia mais

6 Resposta do Sistema Não-Linear

6 Resposta do Sistema Não-Linear 6 Roa do Sima Não-Linar A quaçõ d movimno 4.1 arnam não-linaridad goméria inrial m virud do movimno do êndulo. Ao onidrar a não-linaridad, o ima aa a não ouir uma olução fhada. Aim, dv- rourar uma olução

Leia mais

Probabilidade II Aula 6

Probabilidade II Aula 6 obabilidad II Aula 6 Março d 9 Mônica Barros, DSc Conúdo Mais sobr momnos condicionais Cálculo d valors srados aravés do condicionamno numa variávl rlação nr valors srados condicionais incondicionais fórmulas

Leia mais

VARIÁVEIS ALEATÓRIAS DISCRETAS. Vamos agora analisar em detalhe algumas variáveis aleatórias discretas, nomeadamente:

VARIÁVEIS ALEATÓRIAS DISCRETAS. Vamos agora analisar em detalhe algumas variáveis aleatórias discretas, nomeadamente: 98 99 VARIÁVEIS ALEATÓRIAS DISCRETAS Vamos agora analisar m dalh algumas variávis alaórias discras, nomadamn: uniform Brnoulli binomial binomial ngaiva (ou d Pascal) gomérica hirgomérica oisson mulinomial

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Univridad Salvador UNIFACS Curo d Engnharia Método Matmático Alicado / Cálculo Avançado / Cálculo IV Profa: Ilka Rbouça Frir A Tranformada d Lalac Txto 3: Dlocamnto obr o ixo t. A Função Dgrau Unitário.

Leia mais

Capítulo 2.1: Equações Lineares 1 a ordem; Método dos Fatores Integrantes

Capítulo 2.1: Equações Lineares 1 a ordem; Método dos Fatores Integrantes Capíulo.1: Equaçõs Linars 1 a ordm; Méodo dos Faors Ingrans Uma EDO d primira ordm m a forma gral d f, ond f é linar m. Exmplo: a Equaçõs com coficins consans; a b b Equaçõs com coficins variavis: d p

Leia mais

Amostragem de sinais contínuos

Amostragem de sinais contínuos Amoragm inai conínuo 0.8 0.6 0.4 0. 0 0 0. 0. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SS MIEIC 008/009 Programa SS Sinai Sima aula Sima Linar Invarian aula Análi Fourir (mpo conínuo 3 aula Análi Fourir (mpo icro aula

Leia mais

Escoamento incompressível, tubo rígido I

Escoamento incompressível, tubo rígido I Balanço d aa: coano incorívl, ubo ríido I ) 0 ) Balanço d ono linar: Inrando nr a oiçõ, rula: vaão voluérica conan na oição d d ) nθ d ) ) uda d rão á cooa d uda d rão or nria oncial ravidad), nria cinéica

Leia mais

Transformada Inversa de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior

Transformada Inversa de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior Tanfomada Inva d Lalac Pof Eng nonio Calo Lmo Júnio GEND Tanfomada Inva d Lalac Excício Conol d Sima Mcânico Tanfomada Inva d Lalac Obivo: O obivo da ção é faz uma odução à Tanfomada Inva d Lalac ua alicação

Leia mais

Aula #20 ESCOAMENTOS INTERNOS Resumo Feito por Joana Martins

Aula #20 ESCOAMENTOS INTERNOS Resumo Feito por Joana Martins Aula #20 ESCOAMENOS INERNOS Rumo Fito or Joana Martin 2001.2 Caractrítica rinciai O tudo d coamnto intrno é d grand intr ara a ngnharia já qu é or mio d duto qu ão tranortado ga trólo outro fluido or grand

Leia mais

3 a Prova - CONTROLE DINÂMICO - 2 /2018

3 a Prova - CONTROLE DINÂMICO - 2 /2018 ENE/FT/UnB Dpartamnto d Engnharia Elétrica Prova individual, m conulta. Faculdad d Tcnologia Só é prmitido o uo d calculadora cintífica báica. Univridad d Braília (Númro complxo & funçõ trigonométrica)

Leia mais

2. Processo Estocástico para o Preço do Gás Natural

2. Processo Estocástico para o Preço do Gás Natural . Proco ocáico para o Prço do Gá Naural Viando proporcionar uma ba para a comprnão do fundamno da modologia d drminação d prço do GN, é analiado o modlo d doi faor d chwarz mih 000 qu pod r uilizado para

Leia mais

Este texto trata do estudo analítico de sistemas de controle. Falando de forma geral, ele consiste de quatro partes:

Este texto trata do estudo analítico de sistemas de controle. Falando de forma geral, ele consiste de quatro partes: . Mamáica.. Sima Fíico Modlo E o raa do udo analíico d ima d conrol. Falando d forma gral, l coni d quaro par:. Modlagm. Dnvolvimno d quaçõ mamáica. Análi 4. Projo E capíulo dicu a dua primira par. A diinção

Leia mais

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0

Grupo I. 1) Calcule os integrais: (4.5) 2) Mostre que toda a equação do tipo yf( xydx ) xg( xydy ) 0 Mamáica III / ºSmsr Grupo I ) Calcul os ingrais: a) b) D () ( ) dd sndo D d d d d (.) ) Mosr qu oda a quação do ipo f( d ) g( d ) s ransforma numa quação d variávis sparadas fazndo a subsiuição (.) ) A

Leia mais

TRASITÓRIOS PARTE 2. 1 Fluxo magnético. 2 Ímã permanente. 2 Ímã. 3 Fluxo magnético de um condutor retilíneo 27/4/2015

TRASITÓRIOS PARTE 2. 1 Fluxo magnético. 2 Ímã permanente. 2 Ímã. 3 Fluxo magnético de um condutor retilíneo 27/4/2015 7/4/5 TTÓO PTE 7/4/5 7/4/5 Fluxo magnéico Ímã prmann N há corrn lérica [], xi fluxo magnéico. há fluxo magnéico [Wb], xi corrn lérica. 7/4/5 7/4/5 4 Ímã Da mma forma qu não lérica fluxo lérico ão inparávi,

Leia mais

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos

Questão. Sinais periódicos e não periódicos. Situação limite. Transformada de Fourier de Sinais Contínuos Qusão Srá possívl rprsnar sinais não priódicos como soma d xponnciais? ransformada d Fourir d Sinais Conínuos jorg s. marqus, jorg s. marqus, Sinais priódicos não priódicos Siuação limi Um sinal não priódico

Leia mais

7. Aplicação do Principio do Máximo

7. Aplicação do Principio do Máximo 7. Aplicação do Principio do Máximo Ns capiulo vamos implmnar um algorimo qu uiliz a oria do Principio do Máximo para drminar o conjuno dos sados aingívis. Com o rsulados obidos vamos nar fazr um parallo

Leia mais

log 2, qual o valor aproximado de 0, 70

log 2, qual o valor aproximado de 0, 70 UNIERSIDADE FEDERAL DE ITAJUBÁ GABARITO DE FUNDAMENTOS DA MATEMÁTICA PROA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR // CANDIDATO: CURSO PRETENDIDO: OBSERAÇÕES: Prova

Leia mais

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem.

TÓPICOS. EDO de variáveis separadas. EDO de variáveis separáveis. EDO homogénea. 2. Equações Diferenciais de 1ª Ordem. ot bm a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliograia principal da cadira Cama-s à atnção para a importância do trabalo pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 07. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA FINANÇAS Disiplina d Compuação Aula 7 Prof. Dr. Maro Anonio Lonl Caano Guia d Esudo para Aula 7 Vors Linarmn Indpndns - Vrifiação d vors LI - Cálulo do Wronsiano Equaçõs Difrniais

Leia mais

5 Simulação do sistema de cogeração

5 Simulação do sistema de cogeração 5 Simulação do itma d cogração Para imular numricamnt o comportamnto do itma foram ralizado tt xprimntai com a finalidad d lvantamnto d parâmtro rlvant d dmpnho comparação com o rultado numérico obtido.

Leia mais

INSTITUTO POLITÉCNICO DE VISEU. f x = x em relação à partição do intervalo. em 4 subintervalos de igual amplitude e tal que o ponto ω

INSTITUTO POLITÉCNICO DE VISEU. f x = x em relação à partição do intervalo. em 4 subintervalos de igual amplitude e tal que o ponto ω INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA Dparamno Mamáica Disciplina Anális Mamáica Curso Engnharia Informáica º Smsr º Ficha nº : Cálculo ingral m IR Drmin a soma d Rimann da função

Leia mais

Física IV. Instituto de Física - Universidade de São Paulo. Aula: Interferência

Física IV. Instituto de Física - Universidade de São Paulo. Aula: Interferência Física IV Insiuo d Física - Univrsidad d São Paulo Profssor: Valdir Guimarãs -mail: valdirg@if.usp.br Aula: Inrfrência Inrfrência d ondas Inrfrência d ondas O qu aconc quando duas ondas s combinam ou inrfrm

Leia mais

7 Solução de um sistema linear

7 Solução de um sistema linear Toria d Conrol (sinops 7 Solução d um sisma linar J. A. M. Flipp d Souza Solução d um sisma linar Dfinição 1 G(,τ mariz cujos lmnos g ij (,τ são as rsposas na i ésima saída ao impulso aplicado na j ésima

Leia mais

Capítulo 4 EQUAÇÃO DA ENERGIA PARA REGIME PERMANENTE

Capítulo 4 EQUAÇÃO DA ENERGIA PARA REGIME PERMANENTE Caítulo EUÇÃO EEI P EIE PEEE t caítulo o liro difrncia- batant d todo o outro obr o aunto. Coo já foi fito rlação à quação da continuidad no Caítulo, rtrin- a quação a alicaçõ ri rannt. oant, a auência

Leia mais

Efeito da pressão decrescente da atmosfera com o aumento da altitude

Efeito da pressão decrescente da atmosfera com o aumento da altitude Efio da prssão dcrscn da amosfra com o aumno da aliud S lançarmos um projéil com uma vlocidad inicial suficinmn ala l aingirá aliuds ond o ar é mais rarfio do qu próximo à suprfíci da Trra Logo a rsisência

Leia mais

WEB YOUTUBE. Alemão MecFlu Resolve

WEB YOUTUBE.   Alemão MecFlu Resolve WE YOUTUE www.coladavida.n.br Almão McFlu Rolv 1 Por ond comçar? D ond aramo! Podmo comçar com uma qutão do xam d FT do undo mtr d 017? Ótima idia, vamo ar o da turma 11! 3 Para rolvr t roblma, tmo qu

Leia mais

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 4-018.1 EXAME FINAL Nome Legível Turma RG CPF Repoa em juificaiva ou com fórmula prona

Leia mais

( 1). β β. 4.2 Funções Densidades Con2nuas

( 1). β β. 4.2 Funções Densidades Con2nuas 4 Funçõs Dnsidads Connuas Dnsidad Eponncial A dnsidad ponncial é u:lizada comumn para sablcr sruuras d probabilidads m primnos cujos nos são siuados na ra ral [, ] Uma aplicação gral comum corrspond à

Leia mais

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza

Teoria de Controle (sinopse) 4 Função de matriz. J. A. M. Felippe de Souza Toria d Conrol (sinops) 4 Função d mariz J. A. M. Flipp d Souza Função d mariz Primiramn vamos dfinir polinómio d mariz. Dfinição: Polinómio d mariz (quadrada) Sja p(λ)um polinómio m λd grau n (finio),

Leia mais

Quarta aula de laboratório de ME5330. Primeiro semestre de 2015

Quarta aula de laboratório de ME5330. Primeiro semestre de 2015 Quarta aula d laboratório d ME5330 Primiro mtr d 015 Vamo obtr xrimntalmnt a curva =f(q) h =f(q) ara uma dada rotação comará-la com a curva forncida lo fabricant da bomba. E como vamo chamar ta nova xriência?

Leia mais

Capítulo 3 Transmissão de Sinais e Filtragem

Capítulo 3 Transmissão de Sinais e Filtragem Capíulo 3 Transmissão d Sinais Filragm 3.1 Rsposa d Sismas Linars Invarians no Tmpo No diagrama d blocos da Figura 3.1-1, é o sinal d nrada é o sinal d saída. Elmnos qu armaznam nrgia ouros ios inrnos

Leia mais

MEEC Mestrado em Engenharia Electrotécnica e de Computadores. MCSDI Modelação e Controlo de Sistemas Dinâmicos. Exercícios de.

MEEC Mestrado em Engenharia Electrotécnica e de Computadores. MCSDI Modelação e Controlo de Sistemas Dinâmicos. Exercícios de. EEC rado Engnharia Elroénia d Copuador CDI odlação Conrolo d ia Dinâio Exríio d Função Driiva Conuno d xríio laborado plo don Joé Tnriro ahado JT, anul ano ilva, Víor Rodrigu da Cunha VRC Jorg Erla da

Leia mais

BC1309 Termodinâmica Aplicada

BC1309 Termodinâmica Aplicada //0 Univridad Fdral do ABC BC09 rmodinâmica Alicada Profa. Dra. Ana Maria Prira Nto ana.nto@ufabc.du.br Ciclo d Potência a Gá BC09_Ana Maria Prira Nto //0 Ciclo Brayton Ciclo Brayton- Dfinição; Diagrama

Leia mais

Actividade Laboratorial TL 01. Assunto: Força de atrito estático e cinético

Actividade Laboratorial TL 01. Assunto: Força de atrito estático e cinético Dparano d Maáia Ciênias Exprinais Curso d Eduação oração Tipo 6 Nívl Aividad Laboraorial TL 0 Assuno: orça d ario sáio inéio Objivo: Esudar as forças d ario sáio inéio drinando os faors d qu dpnd. Inrodução

Leia mais

UTFPR Termodinâmica 1 Análise Energética para Sistemas Abertos (Volumes de Controles)

UTFPR Termodinâmica 1 Análise Energética para Sistemas Abertos (Volumes de Controles) UTFPR Trmodinâmica 1 Análi Enrgética para Sitma Abrto (Volum d Control) Princípio d Trmodinâmica para Engnharia Capítulo 4 Part 1 Objtivo Dnvolvr Ilutrar o uo do princípio d conrvação d maa d nrgia na

Leia mais

3.5 Métodos Numéricos para a Solução de Problemas de Contorno

3.5 Métodos Numéricos para a Solução de Problemas de Contorno 3.5 Métd Numéric ara a Sluçã d Prblma d Cntrn Equaçõ difrnciai rdinária Eml 3.7. Difuã-raçã m uma artícula catalítica ra: Figura 3.6. Partícula catalítica férica. Balanç d maa: (tad tacinári, itérmic)

Leia mais

+ (1) A primeira lei da termodinâmica para o volume de controle é:

+ (1) A primeira lei da termodinâmica para o volume de controle é: PROA P do º Str d 007 Nota: Prova conulta; duração: 75 inuto. Aditir a ipót ncária para a olução da qutõ. Indicar clarant todo o dnvolvinto para obtr a oluçõ. 1 a Qutão: (3,0) Ua indútria ncita d água

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana o Eduardo, o bloco os rstants st amigos prmutam

Leia mais

Sumário Propagação em Meios com perdas Propagação em Meios Dieléctricos e Condutores Energia transportada por uma onda electromagnética

Sumário Propagação em Meios com perdas Propagação em Meios Dieléctricos e Condutores Energia transportada por uma onda electromagnética Sumário Propagação m Mios com prdas Propagação m Mios Dilécricos Conduors nrgia ransporada por uma onda lcromagnéica Livro Chng : pp [354 37] [379 385] Propagação d Ondas m Mios sm Prdas k k x x x k C

Leia mais

CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA

CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA CÁLCULO II MATEMÁTICA PARFOR LISTA DE EXERCICIOS PARA A PROVA SUBSTITUTIVA ) Drmin as Primiivas das funçõs abaio: a) b) ( ) ) ( ) d) ln ) 6ln 6 f) (sn( ) os( )) os( ) sn( ) g) h) / arg ( ) i) j) k) (sn(

Leia mais

CONTROLABILIDADE E OBSERVABILIDADE

CONTROLABILIDADE E OBSERVABILIDADE Eduardo obo uoa Cabral CONTROABIIDADE E OBSERVABIIDADE. oiação Em um iema na forma do epaço do eado podem exiir dinâmica que não ão ia pela aída do iema ou não ão influenciada pela enrada do iema. Se penarmo

Leia mais

Funções de distribuição quânticas

Funções de distribuição quânticas Bos-Einstin: Funçõs d distribuição quânticas f ε) 1 BE ( ε α 1 Frmi-Dirac: f FD (ε) 1 ε-ε F + 1 Boltzmann (clássica): f Boltz (ε) 1 ε α Essas funçõs d distribuição forncm a probabilidad d ocupação, por

Leia mais

Aula 9 de laboratório de ME5330. Experiência do freio dinamométrico

Aula 9 de laboratório de ME5330. Experiência do freio dinamométrico Aula 9 d laboratório d ME5330 Exriência do frio dinamométrico ancada 1 = bomba MARK d 4 CV 6 = manovacuômtro 10 = tubulação d ucção 2 = fita adiva ara dt. n 7 = manômtro 11 = tubulação d rcalqu 3 = motor

Leia mais

TRASITÓRIOS PARTE 1 CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA. 0 q elétron. Itens. 1 Carga elétrica.

TRASITÓRIOS PARTE 1 CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA CAPACITÂNCIA. 0 q elétron. Itens. 1 Carga elétrica. // TÂN TTÓO T TÂN // // TÂN n. nrgia poncial lérica..trabalho lérico..oncial lérico..tnão lérica.. arga lérica..apaciância lérica.. Força lérica..náli mporal.. ampo lérico.. rmiividad lérica ar.. Fluxo

Leia mais

SOLUÇÃO NUMÉRICA DAS EQUAÇÕES DE PROBABILIDADES DE TRANSIÇÃO DE PROCESSOS SEMI MARKOVIANOS UTILIZANDO TRANSFORMADAS DE LAPLACE

SOLUÇÃO NUMÉRICA DAS EQUAÇÕES DE PROBABILIDADES DE TRANSIÇÃO DE PROCESSOS SEMI MARKOVIANOS UTILIZANDO TRANSFORMADAS DE LAPLACE Pquia Opracional na Socidad: Educação, Mio Ambin Dnvolvimno SOLUÇÃO NUMÉRICA DAS EQUAÇÕES DE PROBABILIDADES DE TRANSIÇÃO DE PROCESSOS SEMI MARKOVIANOS UTILIZANDO TRANSFORMADAS DE LAPLACE Márcio Joé da

Leia mais

Análise de Sistemas Lineares

Análise de Sistemas Lineares Aáli d Sima iar Dvolvido plo Prof Dr Emilo Rocha d Olivira, EEEC-UFG, 6 Traformada d aplac A ididad d Eulr dfi uma rlação r o ial xpocial o iai oidai a forma ± j = co ( ) ± j ( ) N cao, é dfiido como a

Leia mais

PROBLEMA DE ALOCAÇÃO ÓTIMA DE RECURSOS DE MANUTENÇÃO: FORMULAÇÃO E ESTUDOS DE CASO

PROBLEMA DE ALOCAÇÃO ÓTIMA DE RECURSOS DE MANUTENÇÃO: FORMULAÇÃO E ESTUDOS DE CASO PROBLEMA DE ALOCAÇÃO ÓTIMA DE RECURSOS DE MANUTENÇÃO: FORMULAÇÃO E ESTUDOS DE CASO Paulo Alxandr Ri, Chriiano Lyra Filho, Clo Cavllucci, Frnando Joé Von Zubn, Fábio Luiz Ubri, Joé Fdrico Vizcaino Gonzálz,

Leia mais

ZEROS DE SISTEMAS MIMO

ZEROS DE SISTEMAS MIMO Edardo Lobo Loa abral ZEROS DE SISTEMAS MIMO. Zro d ranmião O cálclo do ro d m ima SISO é rmamn impl d r fado, poi ão a raí do polinômio do nmrador d a fnção d ranfrência. Por mplo, conidr o ima dinâmico

Leia mais

Análise de Processos ENG 514

Análise de Processos ENG 514 áli d Proco NG 54 apítulo 5 Modlo do Tipo trada-saída Pro. Édlr Li d lbuqurqu Julho d 4 Forma d Rprtação d Modlo Matmático Fomológico Modlo dcrito por quaçõ Dirciai Modlo a orma d paço d tado Modlo do

Leia mais

Após a obtenção da curva H S =f(q), vamos procurar também obter as curvas H B =f(q) e h B =f(q) em uma outra bancada de laboratório!

Após a obtenção da curva H S =f(q), vamos procurar também obter as curvas H B =f(q) e h B =f(q) em uma outra bancada de laboratório! Aó a obtnção da curva S =f(q), vamo rocurar também obtr a curva =f(q) h =f(q) m uma outra bancada d laboratório! E como vamo chamar ta nova xriência? Trcho da bancada utilizado nta xriência 1 = bomba

Leia mais

Curso de linguagem matemática Professor Renato Tião. 3. Sendo. 4. Considere as seguintes matrizes:

Curso de linguagem matemática Professor Renato Tião. 3. Sendo. 4. Considere as seguintes matrizes: Curso d linguagm mamáica Profssor Rnao Tião 1 PUCRS. No projo Sobrmsa Musical, o Insiuo d Culura da PUCRS raliza aprsnaçõs smanais grauias para a comunidad univrsiária. O númro d músicos qu auaram na aprsnação

Leia mais

HIDROGRAMA UNITÁRIO INSTANTÂNEO GEOMORFOLÓGICO APLICADO A BACIAS DESPROVIDAS DE DADOS HIDROLÓGICOS

HIDROGRAMA UNITÁRIO INSTANTÂNEO GEOMORFOLÓGICO APLICADO A BACIAS DESPROVIDAS DE DADOS HIDROLÓGICOS HIDOGM UNITÁIO INSTNTÂNEO GEOMOFOLÓGIO PLIDO IS DESPOVIDS DE DDOS HIDOLÓGIOS Jorg Luiz STEFFEN, lin riina d Souza NDDE, Todorico LVES SOINHO, Paulo Taro Sanch d OLIVEI, Dulc uchala icca ODIGUES Daramno

Leia mais

4. Modelos matemáticos de crescimento

4. Modelos matemáticos de crescimento 2 Sumário (3ª aula) Exrcícios d consolidação (coninuação) 4. Modlos mamáicos d crscimno 4..Progrssão ariméica (variação absolua consan) 4.2.Progrssão goméricas (variação rlaiva consan) Exrcício 2) Compaibiliz

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Uivridad Salvador UNIFACS Curo d Egharia Méodo Mmáico Aplicado / Cálculo Avaçado / Cálculo IV Profa: Ilka Rouça Frir A Traformada d Laplac Txo : Irodução. Dfiição. Codiçõ d Exiêcia. Propridad. Irodução

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1

Funções de Várias Variáveis (FVV) UFABC, 2019-Q1 Funçõs d Várias Variávis (FVV UFABC, 209-Q Pr Hazard 4 Drivadas Toal, Dircional Parcial 4. Drivadas a rspio d um vor. Dfinição 4.. Sja A R n um abro, sja f: A R, P A v R n. Digamos qu f é drivávl (ou difrnciávl

Leia mais

FENOMENOS DE TRANSPORTE 2 o Semestre de 2013 Prof. Maurício Fabbri

FENOMENOS DE TRANSPORTE 2 o Semestre de 2013 Prof. Maurício Fabbri FENOMENOS DE TRANSPORTE o Smsr d 03 Prof. Maurício Fabbri 3ª SÉRIE DE EXERCÍCIOS Transpor d calor por convcção O ransin ponncial simpls Consrvação da nrgia 0-3. O coficin d ransfrência d calor Lia o marial

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

Notas de aulas de Mecânica dos Solos I (parte 5)

Notas de aulas de Mecânica dos Solos I (parte 5) 1 Noas d aulas d Mcânica dos olos I (par 5) Hlio Marcos Frnands iana Tma: Índics físicos do solo Conúdo da par 5 1 Inrodução 2 Ddução dos índics físicos do solo 3 Limis d variação dos índics físicos d

Leia mais

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA

EQUAÇÕES DIFERENCIAIS NOTAS DE AULA Minisério da Educação Univrsidad Tcnológica Fdral do Paraná Campus Curiiba Grência d Ensino Psquisa Dparamno Acadêmico d Mamáica EQUAÇÕES DIFERENCIAIS NOTAS DE AULA Prof. a Paula Francis Bnvids Equaçõs

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

Funções reais de n variáveis reais

Funções reais de n variáveis reais Apoio às aulas MAT II 8--6 INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II APOIO ÀS AULAS DE FUNÇÕES REAIS DE MAIS DE UMA VARIÁVEL REAL 5/6 Manul Marins

Leia mais

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1 Univrsidd Fdrl do Rio d Jniro COPPE Progrm d Engnhri Químic COQ 79 ANÁLISE DE SISEMAS DA ENGENHARIA QUÍMICA AULA : Rprsnção m Espço d Esdos 4/ Rprsnção m Espço d Esdos Esdo: O sdo d um sism no mpo é o

Leia mais

Análise de correlação canônica na descrição de potenciais de desenvolvimento nos municípios de Minas Gerais

Análise de correlação canônica na descrição de potenciais de desenvolvimento nos municípios de Minas Gerais Anális d corrlação canônica na dscrição d otnciais d dsnvolvimnto nos municíios d Minas Grais Introdução Naj Clécio Nuns da Silva Wdrson Landro Frrira Gilbrto Rodrigus Liska João Domingos Scalon Marclo

Leia mais

Oitava aula de laboratório de ME5330. Segundo semestre de 2014

Oitava aula de laboratório de ME5330. Segundo semestre de 2014 Oitava aula d laboratório d ME5330 Sgundo mtr d 2014 Vamo obtr a curva H =f(q) h =f(q) ara uma dada rotação utilizar o invror d frquência tanto ara obtr a curva H =f(q) ara dua rotaçõ tablcida, como ara

Leia mais

enquanto que um exemplo de e.d.p. é uma equação do tipo potencial

enquanto que um exemplo de e.d.p. é uma equação do tipo potencial 6- EDO s: TEORIA E TRATAMENTO NUMÉRICO Inrodução Muios problmas imporans significaivos da ngnharia, das ciências físicas das ciências sociais, formulados m rmos mamáicos, igm a drminação d uma função qu

Leia mais

ANALISE DE CIRCUITOS DE 1 a E 2 a. J.R. Kaschny ORDENS

ANALISE DE CIRCUITOS DE 1 a E 2 a. J.R. Kaschny ORDENS ANAISE DE IRUITOS DE a E a J.R. Kaschny ORDENS Inrodução As caracrísicas nsão-corrn do capacior do induor inroduzm as quaçõs difrnciais na anális dos circuios léricos. As is d Kirchhoff as caracrísicas

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

TRANSFORMADA DE LAPLACE Conceitos e exemplos

TRANSFORMADA DE LAPLACE Conceitos e exemplos TRANSFORMADA DE LAPLACE Conceio e exemplo Diciplina MR7 A finalidade dea apoila é dar o conceio da ranformada de Laplace, eu uo na olução de problema e por fim um aprendizado do méodo de reoluçõe. Muia

Leia mais

MODELOS CONSTITUTIVOS

MODELOS CONSTITUTIVOS Prgrama de Pó-Graduaçã em ngenharia Civil Univeridade Federal de Alaga MODOS CONSIUIVOS Prf. Severin Pereira Cavalcani Marque VISCOASICIDAD INAR ORD KVIN 84-97 JAMS CRK MAXW 83 879 MODOS VISCOÁSICOS INARS

Leia mais

Análise Matemática III

Análise Matemática III João Paulo Pais d Almida Ilda Marisa d Sá Ris Ana Esr da Viga Rodrigus Víor Luis Prira d Sousa Anális Mamáica III Dparamno d Mamáica Escola Suprior d Tcnologia d Gsão Insiuo Poliécnico d Bragança Smbro

Leia mais

Algoritmo de integração numérica - Euler: Considerando a seguinte equação diferencial:

Algoritmo de integração numérica - Euler: Considerando a seguinte equação diferencial: Lista B Aulas Práticas d Scilab Equaçõs difrnciais Introdução: Considr um corpo d massa m fito d um matrial cujo calor spcífico à prssão constant sja c p. Est corpo stá inicialmnt a uma tmpratura T 0,

Leia mais

1. O tempo que a partícula sai do ponto de deslocamento máximo e atinge o ponto de equilíbrio corresponde a. x m, o que nos conduz a:

1. O tempo que a partícula sai do ponto de deslocamento máximo e atinge o ponto de equilíbrio corresponde a. x m, o que nos conduz a: I INSIUO DE FÍSIC D UFB DEPRMENO DE FÍSIC GERL DISCIPLIN: FÍSIC GERL E EXPERIMENL II (FIS ) URM: 0 SEMESRE: /00 RESOLUÇÃO D a PROV D URM 0 O tp qu a partícula ai d pnt d dlcant áxi ating pnt d quilíbri

Leia mais

Equações de Maxwell. Métodos Eletromagnéticos. Equações de Maxwell. Equações de Maxwell

Equações de Maxwell. Métodos Eletromagnéticos. Equações de Maxwell. Equações de Maxwell Méodos Elromagnéicos agoso d 9 Fundamnos Equaçõs d Mawll no domínio do mpo da frqüência Onda plana édison K. ao Equaçõs d Mawll Todos os fnômnos lromagnéicos obdcm às quaçõs mpíricas d Mawll. b d h j ond

Leia mais

ANO LECTIVO 2001/2002

ANO LECTIVO 2001/2002 ANO LECTIVO 00/00 ª Fas, ª Chamada 00 Doss rapêuicas iguais d um cro anibióico são adminisradas, pla primira vz, a duas pssoa: a Ana o Carlos Admia qu, duran as doz primiras horas após a omada simulâna

Leia mais

4 PROBLEMA ESTRUTURAL DINÂMICO NÃO-LINEAR

4 PROBLEMA ESTRUTURAL DINÂMICO NÃO-LINEAR 4 PROBLEMA ESTRTRAL DINÂMICO NÃO-LINEAR 4. INTRODÇÃO Ns capíulo, a dfinição das quaçõs difrnciais ordinárias d movimno, caracrizando o quilíbrio dinâmico do sisma sruural, bm como as xprssõs das marizs

Leia mais

MATEMÁTICA ATUARIAL DE VIDA Modelos de Sobrevivência

MATEMÁTICA ATUARIAL DE VIDA Modelos de Sobrevivência EAC 44 Maáica Auaria II Ciêcia Auariai Nouro FEA USP Prof. Dr. Ricaro Pachco MAEMÁICA AUARIAL DE VIDA Moo Sobrvivêcia Uivria São Pauo º Sr 5 A ábua oraia u oo icro obrvivêcia. Daa a ábua Moraia hipoéica:

Leia mais

Capítulo 5: Análise através de volume de controle

Capítulo 5: Análise através de volume de controle Capítulo 5: Análi atravé d volu d control Conrvação d nrgia (Priira li da trodinâica aplicada ao ) EM-54 Fnôno d Tranport Princípio d conrvação U difr d u ita pla prnça d ua quantidad d aa coando ao longo

Leia mais

Índices Físico do Solo e Estado das areias e argilas

Índices Físico do Solo e Estado das areias e argilas Univridad d Várza Grand Índic Fíico do Solo Etado da aria argila Diciplina: Mcânica do olo Prof.: Marcl Sna Campo nagl@gmail.com Índic Fíico Elmnto Contituint d um olo O olo é um matrial contituído por

Leia mais

II Funções em IR n. INSTITUTO POLITÉCNICO DE TOMAR Escola Superior de Tecnologia de Tomar. Área Interdepartamental de Matemática Análise Matemática II

II Funções em IR n. INSTITUTO POLITÉCNICO DE TOMAR Escola Superior de Tecnologia de Tomar. Área Interdepartamental de Matemática Análise Matemática II INSTITUTO POLITÉCNICO DE TOMAR Ecola Supio d Tcnologia d Toma Áa Intdpatamntal d Matmática Análi Matmática II II Funçõ m IR n Dtmin o domínio da guint funçõ: b) f ( c) f ( d) f ( ) f ( ln( ln ( ) ) f)

Leia mais

3 SISTEMAS DE COMPRESSÃO A VAPOR DE MÚLTIPLOS ESTÁGIOS Câmaras frigoríficas com temperaturas próximas

3 SISTEMAS DE COMPRESSÃO A VAPOR DE MÚLTIPLOS ESTÁGIOS Câmaras frigoríficas com temperaturas próximas 36 3 SISTEMAS DE COMPRESSÃO A VAPOR DE MÚLTIPLOS ESTÁGIOS Os sismas d múlilos ságios visam andr insalaçõs na ára d rfrigração omo surmrados, om várias âmaras frias qu nssiam mais d um vaorador ou insalaçõs

Leia mais

Aula 7 de FT II. Prof. Gerônimo

Aula 7 de FT II. Prof. Gerônimo Aula 7 de FT II Prof. Gerônimo Condução Traniene Quando energia érmica é adicionada ou removida de um corpo (volume de conrole), eu eado não pode er conane e, aim, a emperaura do corpo variará em geral

Leia mais

VI- MOMENTOS E FUNÇÃO GERATRIZ DE MOMENTO.

VI- MOMENTOS E FUNÇÃO GERATRIZ DE MOMENTO. VI- MOMENTOS E FUNÇÃO GERATRIZ DE MOMENTO. 6.- ESPERANÇA DE UMA FUNÇÃO: CASO DISCRETO: E[g()] i g( i )(i ) CASO CONTÍNUO: E [g()] 6.- MOMENTO: + - g(). () d DEFINIÇÃO DE MOMENTOS: srado Din-s momno d uma

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

J, o termo de tendência é positivo, ( J - J

J, o termo de tendência é positivo, ( J - J 6. Anxo 6.. Dinâmica da Economia A axa d juros (axa SEL LBO) sgu um modlo. Ou sja, o procsso da axa d juros (nuro ao risco) é dscrio por: dj ( J J ) d J ond: J : axa d juros (SEL ou LBO) no insan : vlocidad

Leia mais

3 ANALISE ESTÁTICA DA ESTABILIDADE - MÉTODO RAYLEIGH RITZ.

3 ANALISE ESTÁTICA DA ESTABILIDADE - MÉTODO RAYLEIGH RITZ. ANALISE ESTÁTICA DA ESTABILIDADE MÉTODO RAYLEIGH RITZ Alguns roblmas d stabilidad d struturas não odm sr rsolvidos or métodos analíticos ou são rsolvidos d forma mais fácil utilizando métodos aroximados

Leia mais

O modelo Von Bertalanffy adaptado para suínos de corte

O modelo Von Bertalanffy adaptado para suínos de corte O modlo Von Bralanffy adapado para suínos d cor Lucas d Olivira nro Fdral d Educação Fdral Tcnológica EFET-MG.5-, Av. Amazonas 525 - Nova Suíça - Blo Horizon - MG - Brasil E-mail: lucasdolivira@gmail.com

Leia mais

A solução mais geral da equação anterior tem a forma: α 2 2. Aplicando estes resultados na equação do MHS, temos que:

A solução mais geral da equação anterior tem a forma: α 2 2. Aplicando estes resultados na equação do MHS, temos que: . qação para o MHS Qano o oino corpo cr a rajória, a parir cro inan coça a rpir a rajória, izo q oino é prióico. O po q o corpo gaa para olar a prcorrr o o pono a rajória é chaao príoo. No noo coiiano

Leia mais