Física I. Momento Linear,

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Física I. Momento Linear,"

Transcrição

1 Física I Momento Linea, Impulso e Colisões Pofesso: Rogeio M. de Almeida Sala: C9

2 Momento linea O momento linea (ou quantidade de movimento) de uma patícula é uma quantidade vetoial definida como: p = mv A 2 a d v d p lei de Newton pode se escita como: F = m = dt dt O momento linea de um sistema de N patículas é a soma vetoial dos momentos lineaes individuais: P= p1 + p pn = m1v1 + L+ mn vn Deivando em elação ao tempo a expessão do cento de massa: CM N 1 = m i i M i= 1 N i=1 m i v i = P = M v Deivando novamente e usando a 2a lei de Newton paa um sistema de patículas: ( ext) dp M acm = F = dt CM

3 Consevação de momento linea Uma conseqüência imediata da 2 a lei de Newton paa um sistema de patículas é a consevação do momento linea total do sistema na ausência de foças extenas: ( F ext ) = 0 P= cte. Assim como no caso da consevação da enegia mecânica, essa lei pode se muito útil paa esolve poblemas, sem te que lida com a dinâmica detalhada do sistema. Note que a única condição paa a consevação do momento linea total é a ausência de foças extenas. Não há nenhuma estição quanto à pesença de foças dissipativas, desde que elas sejam intenas.

4 Nesta figua, um neutino (n) colide com um póton (p) estacionáio. O neutino se tansfoma num múon (m - ) e há a ciação de um píon (p + ). O neutino, po se neuto, não deixa asto na câmaa de bolhas. Obseve que não haveia consevação de momento linea, se não houvesse uma patícula neuta colidindo pela dieita. (p + ν p + µ - + π + )

5 O que é uma colisão? Em Física, dá-se o nome de colisão a uma inteação ente duas patículas (dois copos) cuja duação é extemamente cuta na escala de tempo humana e onde há toca de momento linea e enegia. Queemos estuda as possíveis situações finais depois que as patículas se afastam da egião de inteação. m 1 Antes v 1a Duante m 1 Depois v 1d m 2 v 2a v 2d m 2

6

7 Exemplo históico: estutua do átomo Enest Ruthefod (1911): analisando o esultado do bombadeio de átomos de ouo com patículas alfa, ciou o pimeio modelo paa o átomo: um núcleo maciço duo e pequeno positivo, cecado po uma nuvem eletônica negativa. Pimeio expeimento de colisão de patículas sub-atômicas. Modelo de Thompson: pevia deflexão pequena das patículas alfa Ruthefod obsevou gandes deflexões, sugeindo um núcleo duo e pequeno

8 Exemplo: Patículas elementaes Colisões ente patículas elementaes (eléton-eléton, eléton-póton, etc.) são esponsáveis po quase toda a infomação que temos sobe as foças fundamentais da natueza (exceto a gavitacional). Essas colisões são geadas a pati da aceleação das patículas elementaes em gandes aceleadoes de patículas (FemiLab, SLAC e, em beve, no LHC, Lage Hadon Collide ). Ciação de paes eléton-pósiton

9 Caacteísticas geais de uma colisão a) Foças de inteação As foças de inteação ente duas patículas que colidem são foças muito intensas e agem duante um intevalo de tempo extemamente cuto. F 12 m F 21 m 1 m 2 Não é necessáio conhece-se exatamente a foma do gáfico F x t, pois não nos inteessa sabe o que acontece duante a colisão. O que inteessa sabe é como se enconta o sistema imediatamente depois da colisão, conhecendo-se como se encontava imediatamente antes dela. Na ealidade, é o esultado da colisão que podeá nos da infomações a espeito da foça de inteação no sistema que colide, e não o inveso. Essencialmente, é isso que se faz num aceleado de patículas como o Femilab ou o LHC.

10 Foças de inteação O esultado líquido da foça de inteação é faze vaia o momento linea das patículas. Pela 2 a lei de Newton: t f t f p f dp Fdt= dt= dp= p f pi = p dt t i t i p i A integal tempoal da foça é chamada impulso da foça: t f J Fdt= p = t i Ou seja, a vaiação do momento linea da patícula duante um intevalo de tempo é igual ao impulso da foça que age sobe ela neste intevalo. Como não conhecemos F(t), ecoemos à definição da foça média duante o intevalo de tempo da colisão: t f Fdt = F t ti Então: p p = F t ou F = t Impulso = áea sob a cuva (1D) p F = t

11 Exemplo Suponha que você tenha de escolhe ente agaa uma bola de 0,50 kg que se desloca a 4,0 m/s, ou uma bola de 0,10 kg que se desloca a 20 m/s. Qual das duas bolas seia mais fácil de agaa??

12 Exemplo: impulso numa colisão de bolas de bilha. Suponhamos que, ao se atingida pela bola banca, uma bola de bilha adquie a velocidade de 1,0 m/s. m 0,3 kg v= 1,0 m/s A vaiação de seu momento linea da bola atingida é, em módulo: que é o impulso tansmitido pela bola banca na colisão. Se o contacto dua t = 10-3 s, a foça média execida na bola é p J F = = = 300N t t F p = m v 0,3 kg m/s = J, (Compaando com a foça peso das bolas, P 3 N, vê-se que a foça de inteação é muito maio que as foças extenas.)

13 Execício 8.3 A massa de uma bola de futebol é igual a 0,40 kg. Inicialmente ela se desloca da dieita paa a esqueda a 20 m/s, a segui é chutada, deslocando-se com velocidade, a 45 º paa cima e paa a dieita, com módulo igual a 30 m/s. Calcule o impulso da foça esultante a foça esultante média, supondo um intevalo de tempo de colisão Dt = 0,010 s.

14 Enegia cinética total: Colisões elásticas e inelásticas Já vimos que colisões, po envolveem basicamente apenas foças intenas, consevam o momento linea. E a enegia? Emboa a enegia total seja sempe consevada, pode have tansfomação da enegia cinética inicial (inicialmente só há enegia cinética) em outas fomas de enegia (potencial, intena na foma de vibações, calo, pedas po geação de ondas sonoas, etc.). Se a enegia cinética inicial do sistema é totalmente ecupeada após a colisão, a colisão é chamada de colisão elástica.. Se não, a colisão é chamada de colisão inelástica. Note que se houve aumento da enegia cinética (quando há convesão de enegia intena em cinética: explosão), a colisão também é inelástica. Em uma colisão elástica K a = K d

15 Colisões elásticas unidimensionais Antes: v 1a v 2 a = 0 Depois: m 1 v 1d v 2d m 2 m 1 m 2 Assim, as equações básicas paa uma colisão elástica são: p 1a = p1d + p 2 d (Consevação de momento linea) m1v1a m1v1d m 2v2 d ( Consevação de enegia cinética) = Analisa m 2 >> m 1 e m 1 >> m 2 e m 1 = m 2 colisão elástica: o módulo da velocidade elativa ente os dois copos antes da colisão é igual ao módulo da velocidade elativa depois da colisão V V el, afast el, apox = 1

16 Colisões elásticas unidimensionais: casos paticulaes (1) massas iguais: (k =1) v = 1 d v2a v2 d = v1 a ( o estado final do sistema é idêntico ao estado inicial: As patículas tocam de velocidades! Em paticula, se a patícula alvo está inicialmente em epouso, a patícula incidente paa após a colisão, como no bilha. Isto é: se v v 0. 2 a = 0 1d = Antes: Depois: m 1 v 1a v 1a m 2 ( v apox = vafast ) m 1 m 2

17 Colisões elásticas unidimensionais: casos paticulaes (2) Alvo em epouso ( m << ) m m v d = v1 a m1 + m2 1 m 2 v 1a 2m 1 v2d = v1 a m1 + m 2 Resultam: m 1 v 1d m 2 v 2d v v 1d 2d v1 a 2m m2 1 v 1a << v 1a m 1 m 2 ( v apox = vafast ) A patícula incidente evete sua velocidade e a patícula alvo passa a se move lentamente, paticamente pemanecendo em epouso.

18 Colisões elásticas unidimensionais: casos paticulaes (3) Alvo em epouso ( m 1 >> m 2 ) m m 1 = 1 2 v d v1 a m1 + m2 2m 1 v2d = v1 a m m v 1 a Antes 1+ 2 Resultam: m 1 m 2 v v 1d 2d v 1a 2v 1a Depois v 1d m 2 v 2d m 1 A patícula incidente não sente a colisão. A patícula alvo passa a se move com o dobo da velocidade da patícula incidente.

19 Modeação de nêutons em eatoes nucleaes Reatoes nucleaes a base de Uânio: p. ex. 235 U + n 140 Xe + 94 S + 2n Os nêutons poduzidos devem leva a novos pocessos de fissão, numa eação em cadeia. Entetanto, eles são muito enegéticos e, po isso, pouco eficientes paa gea novas eações. É peciso desaceleá-los ( modeá-los ). Nêutons patículas incidentes (m 1 )??????? patículas alvo (m 2 ) Se m 2 <<m 1, os nêutons não sentem as colisões. Se m 2 >>m 1, os nêutons só são efletidos. Situação ideal m 1 m 2 m m 1 = 1 2 v d v1 a m1+ m2 Hidogênio seia pefeito (m póton m nêuton ), mas o póton captua o nêuton paa foma o dêuteon. Deutéio funciona D 2 O (água pesada). Também se usa cabono (gafite ou paafina) ou beílio.

20 Colisões unidimensionais totalmente inelásticas v 1a antes v 2a depois v d m 1 m 2 m1+m 2 Neste tipo de colisão, a patícula incidente guda na patícula alvo. Pode-se pova que essa situação epesenta a peda máxima de enegia cinética numa colisão inelástica em uma dimensão. ( m + m ) v m v + m v v = = v 1 1a 2 2a m1v1 a + m2v2a = 1 2 d d CM m1+ m2 Como o cento de massa coincide com as duas patículas gudadas, elas têm que se move com a velocidade do cento de massa, que se mantém constante. A enegia cinética final é a enegia cinética associada ao movimento do CM.

21 Execício 8.5 Dois cavaleios se deslocam sem sentidos contáios em um tilho de a linea sem atito. Depois da colisão, o cavaleio B se afasta com velocidade final de 2,0 m/s. Qual a velocidade final do cavaleio A? Como se compaam as vaiações de velocidade e de momento linea desses cavaleios? 8.10 Repetimos a mesma expeiências, poém, agoa adicionamos páa-choques ideais nas extemidades dos cavaleios paa que as colisões sejam elásticas. Quais são as velocidades de A e de B após a colisão?

22 Exemplo: Pêndulo balístico Uma bala se aloja num bloco de madeia e o conjunto se eleva de uma altua h. Qual é a velocidade da bala imediatamente antes da colisão? Colisão totalmente inelástica: m 1v1a = ( m1+ m2 ) vd m 1 v f = v1 a m1+ m2 Consevação de enegia mecânica após a colisão: v v 1a 1a a 1 2 ( m + m ) gh v gh 2 ( m1 + m2 ) v = 1 2 d = Então: d 2 m1+ m2 v1 a = 2gh m 1 m b = 5,0g m M = 2,0 kg y = 3,0 cm

23 Colisões elásticas bidimensionais m 1 v 1a Antes Depois v1 d sen θ 1 θ 1 v 1d v1 d cosθ 1 m 2 θ 2 Vamos considea a patícula-alvo em epouso (v 2a =0) p1 a = p1 d + p2d p 1d ( Consevação de momento linea) p 2d p 1a v2 d sen θ 2 v cosθ 2d 2 v 2d Esses 3 vetoes definem um plano, chamado de plano de colisão. Potanto, a colisão sempe ocoe em um plano (bidimensional).

24 Execício 8.12 A situação descita na figua é uma colisão elástica ente dois discos de hóquei sobe uma mesa de a sem atito. O disco A possui massa m A =0,5 kg e o disco B possui massa m B = 0,3 kg. O disco A possui velocidade inicial de 4,0 m/s no sentido positivo do eixo Ox e uma velocidade final de de 2,0 m/s cuja dieção é desconhecida. O disco B está inicialmente em epouso. Calcule a velocidade final v B2 e os ângulos α e β indicados na figua.

25 Momento de um sistema de patículas no R CM Se v CM = constante, um efeencial amaado ao cento de massa (CM) é um efeencial inecial, chamado efeencial do cento de massa (R CM ). Ele tem inteesse físico, pois dado um sistema de patículas, ele está natualmente definido, não dependendo da escolha que se faça paa o efeencial. Vimos: v CM 1 N = m i v M i= 1 i N i=1 m v = P = i i M v CM Como v CM = 0 no R P CM = 0 no R CM. Ou seja, no R CM o momento total de um sistema de patículas é nulo, que o sistema seja isolado ou não.

26 Exemplo Um canhão de massa M = 100 kg dispaa uma bala de massa m = 1,0 kg com velocidade de 300 m/s em elação ao canhão. Imediatamente após o dispao, qual é a velocidade do ecuo do canhão? Tanto inicialmente como imediatamente após a explosão, o momento linea total do sistema é nulo, pois as foças que atuam duante a explosão são todas foças intenas. MV0 = mv0 Os módulos das velocidades estão assim elacionados: Note que v el = v 0 V 0 v V el 0 Resolvendo o sistema de equações, encontamos: V v 0 0 v el = v0 + V m = vel = 2,97 m/s m+ M = v V 297 m/s O movimento de ecuo do canhão sugee um método de populsão! v 0 el 0 0

27 Sistemas de massa vaiável (populsão de foguetes, etc) Um foguete com velocidade instantânea v e massa instantânea M ejeta podutos de exaustão com massa dm e velocidade U (note que aqui dm<0). Depois de um tempo dt, o foguete tem massa M+dM e velocidade v+dv. Todas as velocidades são medidas no efeencial inecial da Tea. Antes Depois x

28 Ex: Gavidade Populsão de foguetes: continuação

IMPULSO E QUANTIDADE DE MOVIMENTO

IMPULSO E QUANTIDADE DE MOVIMENTO AULA 10 IMPULSO E QUANTIDADE DE MOVIMENTO 1- INTRODUÇÃO Nesta aula estudaemos Impulso de uma foça e a Quantidade de Movimento de uma patícula. Veemos que estas gandezas são vetoiais e que possuem a mesma

Leia mais

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos.

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos. DA TEA À LUA INTEAÇÃO ENTE COPOS Uma inteação ente dois copos significa uma ação ecípoca ente os mesmos. As inteações, em Física, são taduzidas pelas foças que atuam ente os copos. Estas foças podem se

Leia mais

- Física e Segurança no Trânsito -

- Física e Segurança no Trânsito - - Física e Seguança no Tânsito - - COLISÕES E MOMENTUM LINEAR - COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES COLISÕES O QUE É MELHOR: - Se atopelado

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática UNIVERSIDDE PRESITERIN MKENZIE Escola de Engenhaia 1 inemática 2 Dinâmica 3 Estática 1ºs/2006 1) Uma patícula movimenta-se, pecoendo uma tajetóia etilínea, duante 30 min com uma velocidade de 80 km/h.

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.1: Rotação de um Copo Rígido Do pofesso paa o aluno ajudando na avaliação de compeensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 1.8 Equilíbio Estático Estudamos que uma patícula

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

TRABALHO E POTÊNCIA. O trabalho pode ser positivo ou motor, quando o corpo está recebendo energia através da ação da força.

TRABALHO E POTÊNCIA. O trabalho pode ser positivo ou motor, quando o corpo está recebendo energia através da ação da força. AULA 08 TRABALHO E POTÊNCIA 1- INTRODUÇÃO Uma foça ealiza tabalho quando ela tansfee enegia de um copo paa outo e quando tansfoma uma modalidade de enegia em outa. 2- TRABALHO DE UMA FORÇA CONSTANTE. Um

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia Física Aistotélica of. Roseli Constantino Schwez constantino@utfp.edu.b Aistóteles: Um copo só enta em movimento ou pemanece em movimento se houve alguma foça atuando sobe ele. Aistóteles (384 a.c. - 3

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

Movimento unidimensional com aceleração constante

Movimento unidimensional com aceleração constante Movimento unidimensional com aceleação constante Movimento Unifomemente Vaiado Pof. Luís C. Pena MOVIMENTO VARIADO Os movimentos que conhecemos da vida diáia não são unifomes. As velocidades dos móveis

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear).

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear). TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linea). Cao Aluno: Este texto de evisão apesenta um dos conceitos mais impotantes da física, o conceito de quantidade de movimento. Adotamos

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

1ª Ficha Global de Física 12º ano

1ª Ficha Global de Física 12º ano 1ª Ficha Global de Física 1º ano Duação: 10 minutos Toleância: não há. Todos os cálculos devem se apesentados de modo clao e sucinto Note: 1º - as figuas não estão desenhadas a escala; º - o enunciado

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

Dinâmica do Movimento Circular

Dinâmica do Movimento Circular Dinâmica do Movimento Cicula Gabaito: Resposta da questão 1: [E] A fita F 1 impede que a gaota da cicunfeência extena saia pela tangente, enquanto que a fita F impede que as duas gaotas saiam pela tangente.

Leia mais

Figura 14.0(inicio do capítulo)

Figura 14.0(inicio do capítulo) NOTA DE AULA 05 UNIVESIDADE CATÓLICA DE GOIÁS DEPATAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GEAL E EXPEIMENTAL II (MAF 0) Coodenação: Pof. D. Elias Calixto Caijo CAPÍTULO 14 GAVITAÇÃO 1. O MUNDO

Leia mais

a) Qual é a energia potencial gravitacional, em relação à superfície da água, de um piloto de 60kg, quando elevado a 10 metros de altura?

a) Qual é a energia potencial gravitacional, em relação à superfície da água, de um piloto de 60kg, quando elevado a 10 metros de altura? 1. (Espcex (Aan) 17) U cubo de assa 4 kg está inicialente e epouso sobe u plano hoizontal se atito. Duante 3 s, aplica-se sobe o cubo ua foça constante, hoizontal e pependicula no cento de ua de suas faces,

Leia mais

Problema de três corpos. Caso: Circular e Restrito

Problema de três corpos. Caso: Circular e Restrito Poblema de tês copos Caso: Cicula e Restito Tópicos Intodução Aplicações do Poblema de tês copos Equações Geais Fomulação do Poblema Outas vaiantes Equações do Poblema Restito-Plano-Cicula Integal de Jacobi

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I IF 437 Eleticidade e Magnetismo I Enegia potencial elética Já tatamos de enegia em divesos aspectos: enegia cinética, gavitacional, enegia potencial elástica e enegia témica. segui vamos adiciona a enegia

Leia mais

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular*

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular* 48 APOSTILA AGA0501 - Física da Tea e do Univeso 1º semeste de 014 Pofa. Jane Gegoio-Hetem CAPÍTULO 4 Movimento Cicula* 4.1 O movimento cicula unifome 4. Mudança paa coodenadas polaes 4.3 Pojeções do movimento

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

Física II F 228 2º semestre aula 2: gravimetria, matéria escura, energia potencial gravitacional e a expansão do universo

Física II F 228 2º semestre aula 2: gravimetria, matéria escura, energia potencial gravitacional e a expansão do universo Física II F 8 º semeste 01 aula : gavimetia, matéia escua, enegia potencial gavitacional e a expansão do univeso Revendo a aula passada: pincípio de supeposição (e coigindo um eo) m F F 1 z M b a M 1 Discussão

Leia mais

do sistema. A aceleração do centro de massa é dada pela razão entre a resultante das forças externas ao sistema e a massa total do sistema:

do sistema. A aceleração do centro de massa é dada pela razão entre a resultante das forças externas ao sistema e a massa total do sistema: Colisões.F.B, 004 Física 004/ tua IFA AULA 3 Objetio: discuti a obseação de colisões no efeencial do cento de assa Assuntos:a passage da descição no efeencial do laboatóio paa o efeencial do cento de assa;

Leia mais

Halliday Fundamentos de Física Volume 1

Halliday Fundamentos de Física Volume 1 Halliday Fundamentos de Física Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

Forma Integral das Equações Básicas para Volume de Controle

Forma Integral das Equações Básicas para Volume de Controle Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez Foma Integal das Equações Básicas paa olume de Contole Fomulação paa vs Fomulação paa volume de contole: fluidos

Leia mais

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições.

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições. d d A Cinemática Escala estuda as gandezas: Posição, Deslocamento, Velocidade Média, Velocidade Instantânea, Aceleação Média e Instantânea, dando a elas um tatamento apenas numéico, escala. A Cinemática

Leia mais

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm) INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício

Leia mais

MOVIMENTO DE QUEDA LIVRE

MOVIMENTO DE QUEDA LIVRE I-MOVIMENTO DE QUEDA LIVRE II-MOVIMENTO DE QUEDA COM RESISTÊNCIA DO AR MOVIMENTO DE QUEDA LIVRE 1 1 QUEDA LIVRE A queda live é um movimento de um copo que, patindo do epouso, apenas está sujeito à inteacção

Leia mais

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO AULA 6 MECÂNICA Dinâmica Atito e plano inclinado 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de

Leia mais

DINÂMICA ATRITO E PLANO INCLINADO

DINÂMICA ATRITO E PLANO INCLINADO AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

ASPECTOS GERAIS E AS LEIS DE KEPLER

ASPECTOS GERAIS E AS LEIS DE KEPLER 16 ASPECTOS GERAIS E AS LEIS DE KEPLER Gil da Costa Maques Dinâmica do Movimento dos Copos 16.1 Intodução 16. Foças Centais 16.3 Dinâmica do movimento 16.4 Consevação do Momento Angula 16.5 Enegias positivas,

Leia mais

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11 Mecânica Gavitação 2ª Pate Pof. Luís Pena 2010/11 Conceito de campo O conceito de campo foi intoduzido, pela pimeia vez po Faaday no estudo das inteacções elécticas e magnéticas. Michael Faaday (1791-1867)

Leia mais

CAPÍTULO 7: CAPILARIDADE

CAPÍTULO 7: CAPILARIDADE LCE000 Física do Ambiente Agícola CAPÍTULO 7: CAPILARIDADE inteface líquido-gás M M 4 esfea de ação molecula M 3 Ao colocamos uma das extemidades de um tubo capila de vido dento de um ecipiente com água,

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

Lei da indução, de Faraday. Com a Lei de Faraday, completamos a introdução às leis fundamentais do electromagnetismo.

Lei da indução, de Faraday. Com a Lei de Faraday, completamos a introdução às leis fundamentais do electromagnetismo. 10. Lei de Faaday 10.1. A Lei de Faaday da Indução 10.2. A fem de indução num conduto em movimento 10.3. A Lei de Lenz 10.4. Fems Induzidas e Campos Elécticos Induzidos 10.5. Geadoes e Motoes 10.6. As

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da

Leia mais

3. Potencial Eléctrico

3. Potencial Eléctrico 3. Potencial Eléctico 3.1. Difeença de Potencial e Potencial Eléctico. 3.2. Difeenças de Potencial num Campo Eléctico Unifome. 3.3. Potencial Eléctico e Enegia Potencial de Cagas pontuais. 3.4. Potencial

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS A figua acima ilusta um sistema constuído de dois blocos de massas M e m, com M > m, ligados po um fio que passa po uma polia de aio R de massa não despezível. Os blocos, ao se

Leia mais

Cap. 44 Exercício. Partículas, e o início do Universo... Obs. - Levar a calculadora científica para a prova 3.

Cap. 44 Exercício. Partículas, e o início do Universo... Obs. - Levar a calculadora científica para a prova 3. Cap. 44 Execício Patículas, e o início do Univeso... Obs. - Leva a calculadoa científica paa a pova 3. Classificação de patículas: Léptons: eléton, neutino-e - ; úon, neutino-; tau, neutino-τ Não sofe

Leia mais

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo:

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo: P1 - MA 1-011 Questão 1 Considee a sequência (a n ) n 1 definida como indicado abaixo: a 1 = 1 a = + 3 a 3 = + 5 + 6 a = 7 + 8 + 9 + 10 (05) (a) O temo a 10 é a soma de 10 inteios consecutivos Qual é o

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

Bola, taco, sinuca e física

Bola, taco, sinuca e física Revista Basileia de Ensino de ísica, v. 29, n. 2, p. 225-229, (2007) www.sfisica.og. Bola, taco, sinuca e física (Ball, cue, snooke and physics) Eden V. Costa 1 Instituto de ísica, Univesidade edeal luminense,

Leia mais

Física Geral I - F Aula 13 Conservação do Momento Angular e Rolamento. 2 0 semestre, 2010

Física Geral I - F Aula 13 Conservação do Momento Angular e Rolamento. 2 0 semestre, 2010 Físca Geal - F -18 Aula 13 Consevação do Momento Angula e Rolamento 0 semeste, 010 Consevação do momento angula No sstema homem - haltees só há foças ntenas e, potanto: f f z constante ) ( f f Com a apoxmação

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

Vetores Cartesianos. Marcio Varela

Vetores Cartesianos. Marcio Varela Vetoes Catesianos Macio Vaela Sistemas de Coodenadas Utilizando a Rega da Mão Dieita. Esse sistema seá usado paa desenvolve a teoia da álgeba vetoial. Componentes Retangulaes de um Veto Um veto pode te

Leia mais

Dinâmica do Movimento dos Corpos GRAVITAÇÃO. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Dinâmica do Movimento dos Corpos GRAVITAÇÃO. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques 15 GRAVITAÇÃO Gil da Costa Maques Dinâmica do Movimento dos Copos 15.1 A Inteação Gavitacional 15. Newton, a Lua e a Teoia da Gavitação Univesal 15.4 Massa e Gavitação 15.5 Massas geam dois tipos de campos

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

Componente de Física

Componente de Física Disciplina de Física e Química A 11º ano de escolaidade Componente de Física Componente de Física 1..8 Movimento de queda, na vetical, com efeito da esistência do a apeciável É um facto que nem sempe se

Leia mais

+, a velocidade de reação resultante será expressa

+, a velocidade de reação resultante será expressa 3. - Velocidade de eação velocidade de eação ou taxa de eação de fomação de podutos depende da concentação, pessão e tempeatua dos eagentes e podutos da eação. É uma gandeza extensiva po que tem unidades

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012 Física Geal I - F 18 Aula 8: Enegia Potencial e Consevação de Enegia o Semeste 1 Q1: Tabalho e foça Analise a seguinte afimação sobe um copo, que patindo do epouso, move-se de acodo com a foça mostada

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

3. Estática dos Corpos Rígidos. Sistemas de vectores

3. Estática dos Corpos Rígidos. Sistemas de vectores Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido

Leia mais

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria .5 Aplicações da lei de Gauss paa distibuições de caga com simetia Paa distibuições de caga com alto gau de simetia, a lei de Gauss pemite calcula o campo elético com muita facilidade. Pecisamos explica

Leia mais

20 Exercícios Revisão

20 Exercícios Revisão 0 Execícios Revisão Nome Nº 1ª séie Física Beth/Reinaldo Data / / T cte. G. M. m F v a cp v G. M T.. v R Tea = 6,4 x 10 6 m M Tea = 6,0 x 10 4 kg G = 6,7 x 10 11 N.m /kg g = 10 m/s P = m.g M = F. d m d

Leia mais

Quasi-Neutralidade e Oscilações de Plasma

Quasi-Neutralidade e Oscilações de Plasma Quasi-Neutalidade e Oscilações de Plasma No pocesso de ionização, como é poduzido um pa eléton-íon em cada ionização, é de se espea que o plasma seja macoscopicamente uto, ou seja, que haja tantos elétons

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

Experiência 2 - Filtro de Wien - 7 aulas

Experiência 2 - Filtro de Wien - 7 aulas Instituto de Física - USP FGE0213 - Laboatóio de Física III - LabFlex Estudo de uma patícula em um campo eletomagnético Aula 5 - (Exp 2.1) Filto de Wien Mapeamento de Campo Elético Manfedo H. Tabacniks

Leia mais

Lista 8: Colisões. NOME: Matrícula: Turma: Prof. : Importante:

Lista 8: Colisões. NOME: Matrícula: Turma: Prof. : Importante: Lista 8: Colisões NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

Capítulo 9 Colisões. Num processo de colisão de 2 partículas muitas coisas podem acontecer:

Capítulo 9 Colisões. Num processo de colisão de 2 partículas muitas coisas podem acontecer: Capítulo 9 Colisões Num processo de colisão de 2 partículas muitas coisas podem acontecer: O processo de colisão pode ocorrer tanto por forças de contacto como no jogo de bilhar como por interação à distância

Leia mais

LEIS DE NEWTON APLICADAS AO MOVIMENTO DE FOGUETES

LEIS DE NEWTON APLICADAS AO MOVIMENTO DE FOGUETES LEIS DE NEWTON APLICADAS AO OVIENTO DE OGUETES 1ª Lei de Newton U copo e oviento continuaá e oviento, co velocidade constante, a não se que actue ua foça, ou u sistea de foças, de esultante não-nula, que

Leia mais

Campo Magnético produzido por Bobinas Helmholtz

Campo Magnético produzido por Bobinas Helmholtz defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de

Leia mais

Prova de Física 1 o Série 1 a Mensal 1 o Trimestre TIPO - A

Prova de Física 1 o Série 1 a Mensal 1 o Trimestre TIPO - A Pova de Física 1 o Séie 1 a Mensal 1 o Timeste TIPO - A 01) A fómula matemática a segui mosta a elação que existe ente volume,, em m, de uma pessoa e sua massa, m, em kg. m a) Utilizando a fómula, calcule

Leia mais

II MATRIZES DE RIGIDEZ E FLEXIBILIDADE

II MATRIZES DE RIGIDEZ E FLEXIBILIDADE Cuso de nálise Maticial de stutuas II MTIZS D IGIDZ FXIBIIDD II.- elação ente ações e deslocamentos II.. quação da oça em temos do deslocamento F u Onde a igidez da mola () é a oça po unidade de deslocamento,

Leia mais

Os Fundamentos da Física

Os Fundamentos da Física TEMA ESPECAL DNÂMCA DAS TAÇÕES 1 s Fundamentos da Física (8 a edição) AMALH, NCLAU E TLED Tema especial DNÂMCA DAS TAÇÕES 1. Momento angula de um ponto mateial, 1 2. Momento angula de um sistema de pontos

Leia mais

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6.

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6. 9 &55(1((/e5,&$ Nos capítulos anteioes estudamos os campos eletostáticos, geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo iniciaemos o estudo da coente elética, que nada mais

Leia mais

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático 2. Lei de Gauss 1 2.1. Fluxo Eléctico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Caegados 2.4. Condutoes em Equilíbio Electostático Lei de Gauss: - É uma consequência da lei de Coulomb.

Leia mais

Movimentos dos Satélites Geostacionários

Movimentos dos Satélites Geostacionários Movimentos dos Satélites Geostaionáios Os satélites geostaionáios são satélites que se enontam paados elativamente a um ponto fixo sobe a Tea, gealmente sobe a linha do equado. 6 hoas mais tade Movimentos

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

Introdução à Física. Principio da pesquisa física

Introdução à Física. Principio da pesquisa física Intodução à Física S.J.Toise iência é a ate de estuda a natueza e este estudo pode se feito sob difeentes aspectos. ada um destes aspectos define um dos tês gandes amos da ciência: a iologia, a uímica

Leia mais

Máquinas Eléctricas. Accionamento de máquinas. Motores assíncronos

Máquinas Eléctricas. Accionamento de máquinas. Motores assíncronos Accionamento de máquinas Estudo do moto eléctico, quando acoplado a uma máquina. A máquina accionada impõe duas condicionantes ao aanque: Bináio esistente Inécia das massas. Bináio esistente O conhecimento

Leia mais

Condução Unidimensional em Regime Permanente

Condução Unidimensional em Regime Permanente Condução Unidimensional em Regime Pemanente Num sistema unidimensional os gadientes de tempeatua existem somente ao longo de uma única coodenada, e a tansfeência de calo ocoe exclusivamente nesta dieção.

Leia mais

19 - Potencial Elétrico

19 - Potencial Elétrico PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 4 Adição e Subtação de Vetoes Catesianos Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos Abodados Nesta Aula Opeações com Vetoes Catesianos. Veto Unitáio.

Leia mais

é a variação no custo total dada a variação na quantidade

é a variação no custo total dada a variação na quantidade TP043 Micoeconomia 21/10/2009 AULA 15 Bibliogafia: PINDYCK - CAPÍTULO 7 Custos fixos e vaiáveis: Custos fixos não dependem do nível de podução, enquanto que custos vaiáveis dependem do nível de podução.

Leia mais

Mecânica. Teoria geocêntrica Gravitação 1ª Parte Prof. Luís Perna 2010/11

Mecânica. Teoria geocêntrica Gravitação 1ª Parte Prof. Luís Perna 2010/11 1-0-011 Mecânica Gavitação 1ª Pate Pof. Luís Pena 010/11 Teoia geocêntica Foi com Ptolomeu de Alexandia que sugiu, po volta de 150 d.c. no seu livo Almagest, uma descição pomenoizada do sistema sola. Cláudio

Leia mais

Volume. 2ª edição Joaquim Lopes Neto. Mecânica

Volume. 2ª edição Joaquim Lopes Neto. Mecânica Volume ª edição Joaquim Lopes Neto Mecânica . Mecânica Volume - Módulo ª edição Joaquim Lopes Neto Apoio: Fundação Ceciej / Consócio Cedej Rua Visconde de Niteói, 364 Mangueia Rio de Janeio, RJ CEP 943-

Leia mais

FÍSICA III - FGE a Prova - Gabarito

FÍSICA III - FGE a Prova - Gabarito FÍICA III - FGE211 1 a Pova - Gabaito 1) Consiee uas cagas +2Q e Q. Calcule o fluxo o campo elético esultante essas uas cagas sobe a supefície esféica e aio R a figua. Resposta: Pela lei e Gauss, o fluxo

Leia mais

FORÇA MAGNÉTICA SOBRE CONDUTORES

FORÇA MAGNÉTICA SOBRE CONDUTORES ELETROMAGNETSMO 95 11 FORÇA MAGNÉTCA SOBRE CONDUTORES Até então, nossos estudos sobe campos magnéticos o enfatiaam como sendo oiginado pela ciculação de uma coente elética em um meio conduto. No entanto,

Leia mais

Física GABRIEL DIAS DE CARVALHO JÚNIOR. ELETRICIDADE Carga Elétrica e Lei de Coulomb

Física GABRIEL DIAS DE CARVALHO JÚNIOR. ELETRICIDADE Carga Elétrica e Lei de Coulomb Física ELETRICIDADE Caga Elética e Lei de Coulomb 1 Intodução... 3 2 Condutoes e Isolantes... 3 3 Caga Elética... 3 4 Pocessos de Eletização... 4 5 Eletoscópios... 5 6 Lei de Coulomb... 6 Campo Elético

Leia mais

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL SEUNDA LEI DE NEWON PARA FORÇA RAVIACIONAL, PESO E NORMAL Um copo de ssa m em queda live na ea está submetido a u aceleação de módulo g. Se despezamos os efeitos do a, a única foça que age sobe o copo

Leia mais

( ) ρ = ( kg/m ) ρ = 1000 kg/m 4ºC CAPÍTULO 5 MECÂNICA DOS FLUIDOS

( ) ρ = ( kg/m ) ρ = 1000 kg/m 4ºC CAPÍTULO 5 MECÂNICA DOS FLUIDOS CAPÍTULO 5 MECÂNICA DOS LUIDOS luidos são substâncias que odem flui, escoa-se com maio ou meno facilidade oque as suas moléculas: movem-se umas em edo das outas com equeno atito, como nos líquidos e estão

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues.

NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. Lista 7: Colisões NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para serem resolvidos e entregues. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais