Vetor Quantização e Aglomeramento (Clustering)

Tamanho: px
Começar a partir da página:

Download "Vetor Quantização e Aglomeramento (Clustering)"

Transcrição

1 (Clustering) Introdução Aglomeramento de K-partes Desafios do Aglomeramento Aglomeramento Hierárquico Aglomeramento divisivo (top-down) Aglomeramento inclusivo (bottom-up) Aplicações para o reconhecimento da voz 1

2 Modelamento Acústico Representação do Sinal Vetor Quantização Forma de Onda Vetores Característicos Símbolos Representação do Sinal produz seqüência de vetor características, Seqüências multi- dimensionais podem ser processadas por: Métodos que modelam diretamente espaço contínuo; Quantização e modelamento de símbolos discretos; Principais vantagens e desvantagens da quantização: Redução no armazenamento e nos custos computacionais; Potencial perda de informação devido à quantização; 2

3 Vetor Quantização (VQ) Usado na compressão do sinal, codificação da voz e imagem. Transmissão da informação mais eficiente que a quantização escalar (pode obter menos que 1 bit/parâmetro). Usado para modelamento acústico discreto desde os primórdios dos anos 80. Baseado em algoritmos padrões de aglomeramento: Aglomerados individuais centralizados são denominados de codewords. Um conjunto de aglomerados centralizados é denominado de codebook. VQ básico é um aglomerado de K- partes. VQ binário é uma forma de aglomeramento top-down (usado para quantização eficiente). 3

4 VQ & Aglomeramento Aglomeramento é um exemplo de conhecimento não supervisionado. Número e forma das classes {C i } desconhecida. Amostras de dados disponíveis {x i } não são classificadas. Útil para descobrir estrutura de dados antes da classificação ou adaptação dos classificadores. Resulta fortemente dependente do algoritmo de aglomeramento. 4

5 Exemplo de Modelamento Acústico 5

6 Desafios do Aglomeramento O que define um aglomerado? Existe um protótipo representando cada aglomerado? Como é definido um membro associado a um determinado aglomerado? O que é a distância métrica, d(x; y)? Quantos aglomerados existem? O número de aglomerados é escolhido antes do aglomeramento? Quanto bem os aglomerados representam dados não vistos? Como um novo dado é atribuído para um dado aglomerado? 6

7 Aglomeramento de K-Partes Usado para agrupar dados em K aglomerados, {C 1,...,C K } Cada aglomerado é representado por meio de dados atribuídos O algoritmo converge de forma iterativa para um ótimo local: Seleciona K aglomerados médios iniciais, {µ 1,, µ K }. Calcula iterativamente até o critério de termino ser satisfeito: 1. Atribui cada amostra de dados para o aglomerado mais próximo. x C i ; d(x;µ i ) d(x;µ j ); i j 1. Atualiza as K médias a partir das amostras atribuídas. µ i = E(x); x C i ;1 i K Quantizado vizinho mais próximo usado para dados não vistos. 7

8 K-Partes Exemplo: K = 3 Seleção aleatória 3 amostras de dados para medias iniciais. Distância métrica Euclidiana entre médias e amostras. 8

9 Propriedades do K-Partes Geralmente usado com uma distância métrica Euclidiana d(x;µ i ) = x - µ i 2 = (x - µ i ) t (x - µ i ) A distorção, D, é a soma do erro quadrático D = K i= 1 x C i x 2 µ D decresce entre a n th e n + 1 st iteração D(n + 1) D(n) Também conhecido como Isodata, ou algoritmo de Lloyd generalizado. Semelhanças com o algoritmo Maximização-Expectativa para conhecimento de parâmetros a partir de dados não classificados. 9

10 Aglomeramento K-Partes: Inicialização K-partes converge para um ótimo local. Ótimo Global não é garantido. Escolha inicial pode influenciar o resultado final. K-partes inicial pode ser escolhido aleatoriamente. Aglomeramento pode ser repetido múltiplas vezes. Estratégias Hierárquicas são freqüentemente utilizadas para iniciar os aglomerados. Top-down (divisiva) (ex., binary VQ). Bottom-up (inclusiva). 10

11 Aglomeramento K- Partes: Critério de Término Muitos critérios podem ser utilizados para terminar K-partes: Não há mudança nas atribuições dos dados. Máximo número de iterações foi excedido. Mudança na distorção total, D, cai abaixo de um limiar. 1 ( + 1) ( ) D n D n < T 11

12 Exemplo de Aglomeramento Acústico 12 aglomerados, iniciados com aglomeramento inclusivo. Representação Espectral baseada no modelo de audição. 12

13 Desafios do Aglomeramento: Número de Aglomerados Em geral, o número de aglomerados é desconhecido. Depende do critério de aglomeramento, espaço, computação ou requisitos de distorção ou métricas de reconhecimento 13

14 Desafios do Aglomeramento: Critério de Aglomeramento O critério utilizado em particionar os dados em aglomerados tem um papel importante na determinação do resultado final. 14

15 Desafios do Aglomeramento: Distância Métrica A distância métrica geralmente tem as seguintes propriedades: 1. 0 d(x; y) 2. d(x; y) = 0 if x = y 3. d(x; y) = d(y; x) 4. d(x; y) d(x; z) + d(y; z) 5. d(x + z; y + z) = d(x; y) (invariante) Na prática,a distância métrica pode não seguir algumas destas propriedades mas são uma medida das dissimilaridades. 15

16 Desafios do Aglomeramento: Distância Métrica Distância métrica influencia fortemente a forma dos aglomerados: Produto escalar normalizado: Euclidiana: x - µ i 2 = (x - µi) t (x - µ i ) Euclidiana pesada: (x - µi) t W(x - µ i ) (ex., W = -1 ) Distância Mínima (cadeia): min d(x; x i ); x i C i Representação específica... x t x y y 16

17 Desafios do Aglomeramento: Impacto da Escala A escala das dimensões do vetor característica pode influenciar significativamente os resultados do aglomeramento. A escala pode ser utilizada para normalizar dimensões e portanto uma simples distância métrica é um critério razoável para a similaridade. 17

18 Desafios do Aglomeramento: Treinamento e Teste de Dados O desempenho do treinamento de dados pode ser arbitrariamente bom ex., lim D = 0 k Teste independente dos dados é necessário para medir o desempenho. Desempenho pode ser medido pela distorção, D, ou alguma outra métrica de reconhecimento de voz relevante. Treinamento robusto irá degradar minimamente durante o teste Bons dados de treinamento casam bastante bem com as condições do teste. Dados de Desenvolvimento são freqüentemente utilizados para refinamentos, pois através testes iterativos podem implicitamente se tornar uma forma de dados de treinamento. k 18

19 Critério de Avaliação Alternativo: Exemplo LPC VQ Autumn (Outono) Autumn LPC (tamanho codebook = 1024) 19

20 Aglomeramento Hierárquico Aglomere os dados em uma estrutura de classes hierárquicas. Top-down (divisiva) ou bottom-up (inclusiva). Freqüentemente baseado na formulação stepwise-optimal, ou greedy. Estrutura Hierárquica útil para supor classes. Usado para iniciar algoritmos de aglomeramento tais como K- partes. 20

21 Aglomeramento Divisivo Cria hierarquia dividindo sucessivamente os aglomerados em grupos menores. Em cada iteração, um ou mais dos existentes aglomerados são divididos para formar novos aglomerados. O processo é repetido até que um critério de término seja atingido. Técnicas divisivas podem incorporar heurísticas de cortes e de união para melhorar o resultado final. 21

22 Exemplo de Aglomeramento Divisivo Não-Uniforme 22

23 Exemplo de Aglomeramento Divisivo Uniforme 23

24 Desafios no Aglomeramento Divisivo Inicialização de novos aglomerados: Seleção Aleatória a partir de amostras de aglomerados; Seleção de membros amostra distantes do centro; Perturba dimensão de máxima variância; Perturba todas as dimensões ligeiramente. Estruturas Árvore Uniforme ou não-uniforme. Corte de Aglomerados (devido a uma pobre expansão). Atribuição de Aglomerado (distância métrica). Critério de Término: Decréscimo na taxa de distorção; Não pode aumentar o tamanho do aglomerado. 24

25 Exemplo de Aglomeramento Divisivo: VQ Binário Freqüentemente usado para criar codebook de tamanho M = 2 B (B bit codebook, codebook tamanho M). É utilizado o aglomeramento divisivo binário uniforme. Em cada iteração cada aglomerado é dividido em dois: + µ i = µ i µ i = µ i ( 1+ ) ( 1 ) K-partes é utilizado para determinar o centróide do aglomerado. Também conhecido como algoritmo LBG (Linde, Buzo, Gray). Uma versão mais eficiente faz K-partes somente entre cada divisão binária, e mantém a árvore para uma procura eficiente. 25

26 Aglomeramento Inclusivo Estruture N amostras ou inicie aglomerados em uma hierarquia; Em cada iteração, os aglomerados mais semelhantes são reunidos para formar um novo aglomerado; Após N -1 iterações, a hierarquia é completada; A estrutura é apresentada na forma de um dendrograma; Levando em consideração o grau de semelhança quando novos aglomerados são criados, o dendrograma pode freqüentemente fornecer ajuda no agrupamento natural dos dados. 26

27 Dendrograma Exemplo (Uma Dimensão) 27

28 Desafios com o Aglomeramento Inclusivo Medindo distâncias entre aglomerados C i e C j com número respectivo de tokens n i e n j. Distância média: 1 n n i j ij d ( x, x ) i j Máxima distância (compacta): max d, ij ( x x ) i j Mínima distância (cadeia): ( x x ) min d, ij i j Distância entre dois vetores representativos de cada aglomerado tal como suas médias: d(µ i ;µ j ). 28

29 Aglomeramento Stepwise-Optimal Comum para minimizar o incremento na distorção total em cada interação de junção: stepwise-optimal ou greedy. A cada iteração, juntar os dois aglomerados que produzem o menor aumento na distorção. Distância métrica para minimizar a distorção, D, é: n n n i i j + n j µ + µ i j Tende a combinar pequenos aglomerados com grandes aglomerados antes de juntar aglomerados de tamanho similar. 29

30 Aglomeramento por Segmentação 30

31 Aglomeramento de pessoas falando 23 mulheres e 53 homens falando a partir do TIMIT corpus. Vetor baseado na media de F1 e F2 para 9 vogais. Distância d(c i ;C j ) é a media das distâncias entre membros. 31

32 Velar Oclusiva Alofônica 32

33 Velar Oclusiva Alofônica (continuação) 33

34 Hierarquia Acústica - Fonética Aglomeramento das distribuições fonéticas ao longo de 12 aglomerados. 34

35 Aglomeramento de Palavras 35

36 Aplicações VQ Normalmente usada para reduzir a computação. Pode ser utilizada sozinha para a classificação. Usada em dynamic time warping (DTW) e discrete hidden Markov models (HMMs). Codebooks Multiplos são usados quando espaços são estatisticamente independentes (product codebooks). Codebooks Matrizes são às vezes utilizados para capturar a correlação entre quadros sucessivos. Usado para estimação semi-paramétrica da densidade (ex., misturas semi-contínuas). 36

37 Referências Huang, Acero, and Hon, Spoken Language Processing, Prentice- Hall, Duda, Hart and Stork, Pattern Classification, John Wiley & Sons, A. Gersho and R. Gray, Vector Quantization and Signal Compression, Kluwer Academic Press, R. Gray, Vector Quantization, IEEE ASSP Magazine, 1(2), A. Juang, D. Wang, A. Gray, Distortion Performance of Vector Quantization for LPC Voice Coding, IEEE Trans ASSP, 30(2), J. Makhoul, S. Roucos, H. Gish, Vector Quantization in Speech Coding, Proc. IEEE, 73(11), L. Rabiner and B. Juang, Fundamentals of Speech Recognition, Prentice-Hall,

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerich Algoritmo k Means Mestrado/Doutorado em Informática (PPGIa) Pontifícia Universidade Católica do Paraná (PUCPR) 2 Problema do Agrupamento Seja x = (x 1, x 2,,

Leia mais

Agrupamento de dados

Agrupamento de dados Organização e Recuperação de Informação: Agrupamento de dados Marcelo K. A. Faculdade de Computação - UFU Agrupamento de dados / 7 Overview Agrupamento: introdução Agrupamento em ORI 3 K-médias 4 Avaliação

Leia mais

Reconhecimento de Locutor pela Voz usando o Classificador Polinomial e Quantização Vetorial

Reconhecimento de Locutor pela Voz usando o Classificador Polinomial e Quantização Vetorial Reconhecimento de Locutor pela Voz usando o Classificador Polinomial e Quantização Vetorial Wemerson D. Parreira, Faculdade de Engenharia Elétrica, UFU, 38400-902, Uberlândia, MG E-mail: wdparreira@yahoo.com.br,

Leia mais

Redes Neurais. Mapas Auto-Organizáveis. 1. O Mapa Auto-Organizável (SOM) Prof. Paulo Martins Engel. Formação auto-organizada de mapas sensoriais

Redes Neurais. Mapas Auto-Organizáveis. 1. O Mapa Auto-Organizável (SOM) Prof. Paulo Martins Engel. Formação auto-organizada de mapas sensoriais . O Mapa Auto-Organizável (SOM) Redes Neurais Mapas Auto-Organizáveis Sistema auto-organizável inspirado no córtex cerebral. Nos mapas tonotópicos do córtex, p. ex., neurônios vizinhos respondem a freqüências

Leia mais

Codificadores de voz do MPEG-4. Eriko Porto eriko_porto@uol.com.br

Codificadores de voz do MPEG-4. Eriko Porto eriko_porto@uol.com.br Codificadores de voz do MPEG-4 Eriko Porto eriko_porto@uol.com.br Roteiro Introdução Waveform Codecs Source Codecs Hybrid Codecs Áudio no MPEG-4 Comparação entre alguns codecs Codificadores de Voz Introdução

Leia mais

Prof. Júlio Cesar Nievola Data Mining PPGIa PUCPR

Prof. Júlio Cesar Nievola Data Mining PPGIa PUCPR Encontrar grupos de objetos tal que objetos em um grupo são similares (ou relacionados) uns aos outros e diferentes de (ou não relacionados) a objetos em outros grupos Compreensão Agrupa documentos relacionados

Leia mais

Introdução ao Reconhecimento Automático da Voz (RAV)

Introdução ao Reconhecimento Automático da Voz (RAV) ao Reconhecimento Automático da Voz (RAV) Professores: Jim Glass & Professores convidados ao RAV Definição do problema Exemplos do estado da arte Visão do curso Resumo da aula Tarefas Projeto Avaliação

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS. Instituto de Matemática, Estatística e Computação Científica

UNIVERSIDADE ESTADUAL DE CAMPINAS. Instituto de Matemática, Estatística e Computação Científica UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Matemática, Estatística e Computação Científica Relatório Final - MS777 Modelagem matemático/probabilística dos módulos acústicos e de linguagem de sistemas

Leia mais

PLANO DE ENSINO. Mestrado em Matemática - Área de Concentração em Estatística

PLANO DE ENSINO. Mestrado em Matemática - Área de Concentração em Estatística 1. IDENTIFICAÇÃO PLANO DE ENSINO Disciplina: Estatística Multivariada Código: PGMAT568 Pré-Requisito: No. de Créditos: 4 Número de Aulas Teóricas: 60 Práticas: Semestre: 1º Ano: 2015 Turma(s): 01 Professor(a):

Leia mais

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática (1) Data Mining Conceitos apresentados por 1 2 (2) ANÁLISE DE AGRUPAMENTOS Conceitos apresentados por. 3 LEMBRE-SE que PROBLEMA em IA Uma busca

Leia mais

Clustering: K-means and Aglomerative

Clustering: K-means and Aglomerative Universidade Federal de Pernambuco UFPE Centro de Informática Cin Pós-graduação em Ciência da Computação U F P E Clustering: K-means and Aglomerative Equipe: Hugo, Jeandro, Rhudney e Tiago Professores:

Leia mais

Modelando Novas Palavras

Modelando Novas Palavras Modelando Novas Palavras Introdução Modelando palavras fora do vocabulário (OOV Out Of- Vocabulary) Formulação Probabilística Métodos independentes do Domínio Conhecendo unidades de subpalavras OOV Modelos

Leia mais

MLP (Multi Layer Perceptron)

MLP (Multi Layer Perceptron) MLP (Multi Layer Perceptron) André Tavares da Silva andre.silva@udesc.br Roteiro Rede neural com mais de uma camada Codificação de entradas e saídas Decorar x generalizar Perceptron Multi-Camada (MLP -

Leia mais

A Preparação dos Dados

A Preparação dos Dados A Preparação dos Dados Escolhas Básicas Objetos, casos, instâncias Objetos do mundo real: carros, arvores, etc Ponto de vista da mineração: um objeto é descrito por uma coleção de características sobre

Leia mais

FERRAMENTA PARA O ENSINO DE QUANTIZAÇÃO VETORIAL EM CURSOS DE ENGENHARIA ELÉTRICA

FERRAMENTA PARA O ENSINO DE QUANTIZAÇÃO VETORIAL EM CURSOS DE ENGENHARIA ELÉTRICA FERRAMENTA PARA O ENSINO DE QUANTIZAÇÃO VETORIAL EM CURSOS DE ENGENHARIA ELÉTRICA Jair Galvão jair.galvao@upe.br Escola Politécnica de Pernambuco POLI/UPE Rua Benfica, 455, Madalena CEP: 50720-001 Recife

Leia mais

Aprendizagem de Máquina. Ivan Medeiros Monteiro

Aprendizagem de Máquina. Ivan Medeiros Monteiro Aprendizagem de Máquina Ivan Medeiros Monteiro Definindo aprendizagem Dizemos que um sistema aprende se o mesmo é capaz de melhorar o seu desempenho a partir de suas experiências anteriores. O aprendizado

Leia mais

Complemento IV Introdução aos Algoritmos Genéticos

Complemento IV Introdução aos Algoritmos Genéticos Complemento IV Introdução aos Algoritmos Genéticos Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações e

Leia mais

Técnicas de Clustering: Algoritmos K-means e Aglomerative

Técnicas de Clustering: Algoritmos K-means e Aglomerative Técnicas de Clustering: Algoritmos K-means e Aglomerative Danilo Oliveira, Matheus Torquato Centro de Informática Universidade Federal de Pernambuco 9 de outubro de 2012 Danilo Oliveira, Matheus Torquato

Leia mais

DO ANALÓGICO AO DIGITAL: CONCEITOS E

DO ANALÓGICO AO DIGITAL: CONCEITOS E DO ANALÓGICO AO DIGITAL: CONCEITOS E TÉCNICAS BÁSICASB Fernando Pereira Instituto Superior TécnicoT Digitalização Processo onde se expressa informação analógica de forma digital. A informação analógica

Leia mais

Novos Recursos e Utilização de Adaptação de Locutor no Desenvolvimento de um Sistema de Reconhecimento de Voz para o Português Brasileiro

Novos Recursos e Utilização de Adaptação de Locutor no Desenvolvimento de um Sistema de Reconhecimento de Voz para o Português Brasileiro Novos Recursos e Utilização de Adaptação de Locutor no Desenvolvimento de um Sistema de Reconhecimento de Voz para o Português Brasileiro Patrick Silva Nelson Neto Aldebaro Klautau Simpósio Brasileiro

Leia mais

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br MINERAÇÃO DE DADOS APLICADA Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br Processo Weka uma Ferramenta Livre para Data Mining O que é Weka? Weka é um Software livre do tipo open source para

Leia mais

SUMÁRIO. Introdução... 3

SUMÁRIO. Introdução... 3 SUMÁRIO Introdução..................................... 3 1 Consultas por Similaridade e Espaços métricos............. 5 1.1 Consultas por abrangência e consultas aos k-vizinhos mais próximos... 5 1.2

Leia mais

Algoritmos de Agrupamento - Aprendizado Não Supervisionado. Fabrício Jailson Barth

Algoritmos de Agrupamento - Aprendizado Não Supervisionado. Fabrício Jailson Barth Algoritmos de Agrupamento - Aprendizado Não Supervisionado Fabrício Jailson Barth Abril de 2013 Sumário Introdução e Definições Aplicações Algoritmos de Agrupamento Agrupamento Plano Agrupamento Hierárquico

Leia mais

Reconhecimento de Objectos

Reconhecimento de Objectos Dado um conjunto de características, relativas a uma região (objecto), pretende-se atribuir uma classe essa região, seleccionada de um conjunto de classes cujas características são conhecidas O conjunto

Leia mais

Classificação de Imagens

Classificação de Imagens Universidade do Estado de Santa Catarina Departamento de Engenharia Civil Classificação de Imagens Profa. Adriana Goulart dos Santos Extração de Informação da Imagem A partir de uma visualização das imagens,

Leia mais

Projeto de Redes Neurais e MATLAB

Projeto de Redes Neurais e MATLAB Projeto de Redes Neurais e MATLAB Centro de Informática Universidade Federal de Pernambuco Sistemas Inteligentes IF684 Arley Ristar arrr2@cin.ufpe.br Thiago Miotto tma@cin.ufpe.br Baseado na apresentação

Leia mais

AGRUPAMENTO DE DADOS SEMI-SUPERVISIONADO NO CONTEXTO DE APRENDIZADO DE MÁQUINA

AGRUPAMENTO DE DADOS SEMI-SUPERVISIONADO NO CONTEXTO DE APRENDIZADO DE MÁQUINA AGRUPAMENTO DE DADOS SEMI-SUPERVISIONADO NO CONTEXTO DE APRENDIZADO DE MÁQUINA Jornada Científica UFSCar - 2009 Priscilla de Abreu Lopes priscilla_lopes@dc.ufscar.br AGRUPAMENTO DE DADOS - INTRODUÇÃO 1.

Leia mais

COMPRESSÃO DE DADOS MULTIMÍDIA

COMPRESSÃO DE DADOS MULTIMÍDIA COMPRESSÃO DE DADOS MULTIMÍDIA Por que Compressão? Apesar da expansão das capacidade de comunicação e computação, a demanda das novas aplicações multimídia cresce rapidamente Custo de transmissão e armazenagem

Leia mais

Universidade Federal de Alagoas Instituto de Matemática. Imagem. Prof. Thales Vieira

Universidade Federal de Alagoas Instituto de Matemática. Imagem. Prof. Thales Vieira Universidade Federal de Alagoas Instituto de Matemática Imagem Prof. Thales Vieira 2014 O que é uma imagem digital? Imagem no universo físico Imagem no universo matemático Representação de uma imagem Codificação

Leia mais

Quantização de Sinais de Fala Utilizando Redes Neurais Não-Supervisionadas

Quantização de Sinais de Fala Utilizando Redes Neurais Não-Supervisionadas Quantização de Sinais de Fala Utilizando Redes Neurais Não-Supervisionadas F. O. Simões 1, M. Uliani Neto 1, J. B. Machado 2, E. J. Nagle 1, L. de C. T. Gomes 1, F. O. Runstein 1 1 Fundação CPqD; 2 UNICAMP

Leia mais

Roteamento em Redes de Computadores

Roteamento em Redes de Computadores Roteamento em Redes de Computadores José Marcos Câmara Brito INATEL - Instituto Nacional de Telecomunicações INATEL - Instituto Nacional de Telecomunicações 01/08/00 1 Introdução Objetivo Tipos de rede

Leia mais

5.7 Amostragem e alguns teoremas sobre limites

5.7 Amostragem e alguns teoremas sobre limites M. Eisencraft 5.7 Amostragem e alguns teoremas sobre limites 7 5.7 Amostragem e alguns teoremas sobre limites Para quantificar os problemas associados às medidas práticas de uma VA, considere o problema

Leia mais

Inserção de Marca D Água em Imagens Digitais com particionamento do dicionário utilizando o algoritmo Harmony Search

Inserção de Marca D Água em Imagens Digitais com particionamento do dicionário utilizando o algoritmo Harmony Search Inserção de Marca D Água em Imagens Digitais com particionamento do dicionário utilizando o algoritmo Harmony Search L. K. S. Gomes, J. G. Araújo, F. Madeiro, E. A. O. Lima Universidade de Pernambuco Recife,

Leia mais

Introdução às Redes Neurais Artificiais

Introdução às Redes Neurais Artificiais Introdução às Redes Neurais Artificiais Treinamento via Algoritmos Genéticos Prof. João Marcos Meirelles da Silva http://www.professores.uff.br/jmarcos Departamento de Engenharia de Telecomunicações Escola

Leia mais

Uma Versão Intervalar do Método de Segmentação de Imagens Utilizando o K-means

Uma Versão Intervalar do Método de Segmentação de Imagens Utilizando o K-means TEMA Tend. Mat. Apl. Comput., 6, No. 2 (2005), 315-324. c Uma Publicação da Sociedade Brasileira de Matemática Aplicada e Computacional. Uma Versão Intervalar do Método de Segmentação de Imagens Utilizando

Leia mais

Tópicos sobre Teoria da informação e codificação de fonte

Tópicos sobre Teoria da informação e codificação de fonte Tópicos sobre Teoria da informação e codificação de fonte Processamento Digital de Sinal II Artur Ferreira e Paulo Marques ( Dezembro 2003 ) Tópicos a abordar 1. Teoria da informação Informação própria

Leia mais

Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade

Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade Extensão do WEKA para Métodos de Agrupamento com Restrição de Contigüidade Carlos Eduardo R. de Mello, Geraldo Zimbrão da Silva, Jano M. de Souza Programa de Engenharia de Sistemas e Computação Universidade

Leia mais

Classificação da imagem (ou reconhecimento de padrões): objectivos Métodos de reconhecimento de padrões

Classificação da imagem (ou reconhecimento de padrões): objectivos Métodos de reconhecimento de padrões Classificação de imagens Autor: Gil Gonçalves Disciplinas: Detecção Remota/Detecção Remota Aplicada Cursos: MEG/MTIG Ano Lectivo: 11/12 Sumário Classificação da imagem (ou reconhecimento de padrões): objectivos

Leia mais

RAV para Sistemas de Diálogo

RAV para Sistemas de Diálogo RAV para Sistemas de Diálogo Introdução Problemas com o reconhecimento da voz: Exemplo usando sistema SUMMIT para informações meteorológicas. Reduzindo cálculos Modelo de agregação Classificadores baseados

Leia mais

Codificador de Voz Pessoal

Codificador de Voz Pessoal Codificador de Voz Pessoal Raissa Bezerra Rocha*, Gláucio Bezerra Rocha e **Marcelo Sampaio de Alencar *Aluna de Mestrado do Programa de Pós-Graduação em Engenharia Elétrica (UFCG/COPELE) **Professor do

Leia mais

RECONHECIMENTO DE AVES DE NOMES ONOMATOPÉICOS

RECONHECIMENTO DE AVES DE NOMES ONOMATOPÉICOS RECONHECIMENTO DE AVES DE NOMES ONOMATOPÉICOS Célio Seixo de BRITO Junior, Paulo César Miranda MACHADO Escola de Engenharia Elétrica e de Computação, UFG, 74001-970, Goiânia, GO Celiojunior01@gmail.com,

Leia mais

Características do sinal de voz

Características do sinal de voz Características do sinal de voz Análise na freuência: a voz apresenta um conteúdo espectral ue vai de 0 Hz a 0 khz; os sons vozeados ou nasais (e.g. vogais e algumas consoantes j, l, m) apresentam um espectro

Leia mais

Computação Paralela. Desenvolvimento de Aplicações Paralelas João Luís Ferreira Sobral Departamento do Informática Universidade do Minho.

Computação Paralela. Desenvolvimento de Aplicações Paralelas João Luís Ferreira Sobral Departamento do Informática Universidade do Minho. Computação Paralela Desenvolvimento de Aplicações Paralelas João Luís Ferreira Sobral Departamento do Informática Universidade do Minho Outubro 2005 Desenvolvimento de Aplicações Paralelas Uma Metodologia

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Horários Aulas Sala [quinta-feira, 7:30 12:00] Atendimento Segunda

Leia mais

Reconhecimento de Padrões

Reconhecimento de Padrões Engenharia Informática (ramos de Gestão e Industrial) Departamento de Sistemas e Informação Reconhecimento de Padrões Projecto Final 2004/2005 Realizado por: Prof. João Ascenso. Departamento de Sistemas

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Introdução Aprendizagem de Máquina Alessandro L. Koerich Introdução Desde que os computadores foram inventados temos nos perguntado: Eles são capazes de aprender? Se pudéssemos programá-los para aprender

Leia mais

COMPLEXIDADE COMPUTACIONAL DE UM ALGORITMO COMPETITIVO APLICADO AO PROJETO DE QUANTIZADORES VETORIAIS

COMPLEXIDADE COMPUTACIONAL DE UM ALGORITMO COMPETITIVO APLICADO AO PROJETO DE QUANTIZADORES VETORIAIS COMPLEXIDADE COMPUTACIONAL DE UM ALGORITMO COMPETITIVO APLICADO AO PROJETO DE QUANTIZADORES VETORIAIS Francisco Madeiro Departamento de Estatística e Informática Universidade Católica de Pernambuco Recife,

Leia mais

3. REDES DE CAMADA ÚNICA

3. REDES DE CAMADA ÚNICA 3. REDES DE CAMADA ÚNICA Perceptron Forma mais simples de RN Utilizado para classificação de padrões (linearmente separáveis) Consiste em um único neurônio, com pesos sinápticos ajustáveis e bias 3.1 Funções

Leia mais

Instituto Superior de Engenharia do Porto. Agrupamento Clustering

Instituto Superior de Engenharia do Porto. Agrupamento Clustering Instituto Superior de Engenharia do Porto Engenharia Informática Projecto Agrupamento Clustering Manuel Altino Torres Aniceto Castro Orientadora Profª Fátima Rodrigues Julho 2003 Agradecimentos A realização

Leia mais

Reconhecimento de ações humanas utilizando histogramas de gradiente e vetores de tensores localmente agregados

Reconhecimento de ações humanas utilizando histogramas de gradiente e vetores de tensores localmente agregados Reconhecimento de ações humanas utilizando histogramas de gradiente e vetores de tensores localmente agregados Luiz Maurílio da Silva Maciel 1, Marcelo Bernardes Vieira 1 1 Departamento de Ciência da Computação

Leia mais

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Prof. Celso Kaestner Poker Hand Data Set Aluno: Joyce Schaidt Versão:

Leia mais

Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis

Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis Adriano Lima de Sá Faculdade de Computação Universidade Federal de Uberlândia 20 de junho de 2014 Adriano L. Sá (UFU)

Leia mais

UTILIZANDO O SOFTWARE WEKA

UTILIZANDO O SOFTWARE WEKA UTILIZANDO O SOFTWARE WEKA O que é 2 Weka: software livre para mineração de dados Desenvolvido por um grupo de pesquisadores Universidade de Waikato, Nova Zelândia Também é um pássaro típico da Nova Zelândia

Leia mais

ADMINISTRAÇÃO DOS RECURSOS DE DADOS

ADMINISTRAÇÃO DOS RECURSOS DE DADOS Capítulo 7 ADMINISTRAÇÃO DOS RECURSOS DE DADOS 7.1 2003 by Prentice Hall OBJETIVOS Por que as empresas sentem dificuldades para descobrir que tipo de informação precisam ter em seus sistemas de informação?

Leia mais

Clustering - agrupamento. Baseado no capítulo 8 de. Introduction to Data Mining

Clustering - agrupamento. Baseado no capítulo 8 de. Introduction to Data Mining Clustering - agrupamento Baseado no capítulo 8 de Introduction to Data Mining de Tan, Steinbach, Kumar Clustering - agrupamento 1 O que é Clustering? Encontar grupos de objectos tal que os objectos dentro

Leia mais

Compressão de Imagens

Compressão de Imagens Compressão de Imagens Compressão de Imagens Geradas por Computador (Gráficos) Armazenamento (e transmissão) como um conjunto de instruções (formato de programa) que geram a imagem Utilização de algum esquema

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 04 Algoritmos Genéticos Introdução Algoritmos genéticos são bons para abordar espaços de buscas muito grandes e navegálos

Leia mais

3 Metodologia para Segmentação do Mercado Bancário

3 Metodologia para Segmentação do Mercado Bancário 3 Metodologia para Segmentação do Mercado Bancário Este capítulo descreve a metodologia proposta nesta dissertação para a segmentação do mercado bancário a partir da abordagem post-hoc, servindo-se de

Leia mais

TRATAMENTO MULTIVARIADO DE DADOS POR ANÁLISE DE CORRESPONDÊNCIA E ANÁLISE DE AGRUPAMENTOS

TRATAMENTO MULTIVARIADO DE DADOS POR ANÁLISE DE CORRESPONDÊNCIA E ANÁLISE DE AGRUPAMENTOS TRATAMENTO MULTIVARIADO DE DADOS POR ANÁLISE DE CORRESPONDÊNCIA E ANÁLISE DE AGRUPAMENTOS Luciene Bianca Alves ITA Instituto Tecnológico de Aeronáutica Praça Marechal Eduardo Gomes, 50 Vila das Acácias

Leia mais

Sistemas Distribuídos

Sistemas Distribuídos Cassandra - Particionamento de Dados Sistemas Distribuídos Douglas Macedo Hugo Lourenço Sumário Introdução Conceito Anel Multíplos Data center Fatores envolvidos Arquitetura do Sistema Módulo de Particionamento

Leia mais

Inteligência Computacional Aplicada a Engenharia de Software

Inteligência Computacional Aplicada a Engenharia de Software Inteligência Computacional Aplicada a Engenharia de Software Estudo de caso III Prof. Ricardo de Sousa Britto rbritto@ufpi.edu.br Introdução Em alguns ambientes industriais, pode ser necessário priorizar

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

Instituto Superior Técnico. 19 de Janeiro de 2001. Parte I

Instituto Superior Técnico. 19 de Janeiro de 2001. Parte I Exame de Compressão e Codificação de Dados Secção de Telecomunicacções DEEC, Instituto Superior Técnico 19 de Janeiro de 1 Parte I Esta parte do exame é constituida por 20 perguntas de resposta múltipla.

Leia mais

Pré processamento de dados II. Mineração de Dados 2012

Pré processamento de dados II. Mineração de Dados 2012 Pré processamento de dados II Mineração de Dados 2012 Luís Rato Universidade de Évora, 2012 Mineração de dados / Data Mining 1 Redução de dimensionalidade Objetivo: Evitar excesso de dimensionalidade Reduzir

Leia mais

Processamento de Sinais Áudio-Visuais

Processamento de Sinais Áudio-Visuais Processamento de Sinais Áudio-Visuais Parte II Voz e Áudio Prof. Celso Kurashima Introdução à Engenharia da Informação Fevereiro/2011 1 Snapshot sinais no osciloscópio 2 1 processamento de voz e áudio

Leia mais

Comparação entre as Técnicas de Agrupamento K-Means e Fuzzy C-Means para Segmentação de Imagens Coloridas

Comparação entre as Técnicas de Agrupamento K-Means e Fuzzy C-Means para Segmentação de Imagens Coloridas Comparação entre as Técnicas de Agrupamento K-Means e Fuzzy C-Means para Segmentação de Imagens Coloridas Vinicius Ruela Pereira Borges 1 1 Faculdade de Computação - Universidade Federal de Uberlândia

Leia mais

SMCB: METODOLOGIA PARA A QUANTIZAÇÃO DE CORES EM IMAGENS FACIAIS

SMCB: METODOLOGIA PARA A QUANTIZAÇÃO DE CORES EM IMAGENS FACIAIS CMNE/CILAMCE 007 Porto, 13 a 15 de Junho, 007 APMTAC, Portugal 007 SMCB: METODOLOGIA PARA A QUANTIZAÇÃO DE CORES EM IMAGENS FACIAIS Marcelo Zaniboni 1 *, Osvaldo Severino Junior e João Manuel R. S. Tavares

Leia mais

A Otimização Nuvem de Partículas (particle swarm)

A Otimização Nuvem de Partículas (particle swarm) A Otimização Nuvem de Partículas (particle swarm) Estéfane G. M. de Lacerda Departamento de Engenharia da Computação e Automação UFRN 20/06/2007 Índice Introdução Algoritmo Nuvem de Partículas Interpretação

Leia mais

Revisão Inteligência Artificial ENADE. Prof a Fabiana Lorenzi Outubro/2011

Revisão Inteligência Artificial ENADE. Prof a Fabiana Lorenzi Outubro/2011 Revisão Inteligência Artificial ENADE Prof a Fabiana Lorenzi Outubro/2011 Representação conhecimento É uma forma sistemática de estruturar e codificar o que se sabe sobre uma determinada aplicação (Rezende,

Leia mais

UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS

UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS Obter uma imagem temática a partir de métodos de classificação de imagens multi- espectrais 1. CLASSIFICAÇÃO POR PIXEL é o processo de extração

Leia mais

Recuperação de Informação em Bases de Texto. Aula 10

Recuperação de Informação em Bases de Texto. Aula 10 Aula 10 1 Agrupamento/ clustering de documentos: Agrupar os documentos em classes/grupos, de acordo com a sua semelhança Aprendizagem não supervisionada Sem conjunto de treino/exemplos 2 3 Agrupamento/

Leia mais

Codificação de Canal

Codificação de Canal Laboratório de Processamento de Sinais Laboratório de Sistemas Embarcados Universidade Federal do Pará 26 de janeiro de 2012 Sumário 1 Introdução a 2 Códigos de Blocos Lineares 3 Códigos Cíclicos Introdução

Leia mais

A Otimização Colônia de Formigas

A Otimização Colônia de Formigas A Otimização Colônia de Formigas Estéfane G. M. de Lacerda Departamento de Engenharia da Computação e Automação UFRN 22/04/2008 Índice A Inspiração Biológica O Ant System Aplicado ao PCV O Ant System Aplicado

Leia mais

Inteligência de Enxame: PSO

Inteligência de Enxame: PSO ! A otimização por enxame de partículas: «É baseada em uma estratégia inspirada no voo dos pássaros e movimento de cardumes de peixes; «Permite a otimização global de um função objetivo A função objetivo

Leia mais

Instituto de Ciências Matemáticas e de Computação ICMC-USP

Instituto de Ciências Matemáticas e de Computação ICMC-USP Instituto de Ciências Matemáticas e de Computação ICMC-USP Monitoramento de população de aves por meio de segmentação de imagens aéreas: uma abordagem por algoritmos de detecção de comunidades, superpixels

Leia mais

Algoritmos Genéticos (GA s)

Algoritmos Genéticos (GA s) Algoritmos Genéticos (GA s) 1 Algoritmos Genéticos (GA s) Dado um processo ou método de codificar soluções de um problema na forma de cromossomas e dada uma função de desempenho que nos dá um valor de

Leia mais

Factor Analysis (FACAN) Abrir o arquivo ven_car.sav. Clique Extraction. Utilizar as 10 variáveis a partir de Vehicle Type.

Factor Analysis (FACAN) Abrir o arquivo ven_car.sav. Clique Extraction. Utilizar as 10 variáveis a partir de Vehicle Type. Prof. Lorí Viali, Dr. viali@pucrs.br; viali@mat.ufrgs.br; http://www.pucrs.br/famat/viali; http://www.mat.ufrgs.br/~viali/ Factor Analysis (FACAN) Abrir o arquivo ven_car.sav Utilizar as 10 variáveis a

Leia mais

Jogo de balanceamento de carga

Jogo de balanceamento de carga Jogo de balanceamento de carga Dados: n tarefas m máquinas w i : peso da tarefa i s j : velocidade da máquina j Teoria dos Jogos p. 1 Jogo de balanceamento de carga Dados: n tarefas m máquinas w i : peso

Leia mais

1 Tipos de dados em Análise de Clusters

1 Tipos de dados em Análise de Clusters Curso de Data Mining Sandra de Amo Aula 13 - Análise de Clusters - Introdução Análise de Clusters é o processo de agrupar um conjunto de objetos físicos ou abstratos em classes de objetos similares Um

Leia mais

Análise de agrupamento para taxa de incidência de dengue entre os anos de 1990 e 2010 nos estados brasileiros

Análise de agrupamento para taxa de incidência de dengue entre os anos de 1990 e 2010 nos estados brasileiros Análise de agrupamento para taxa de incidência de dengue entre os anos de 1990 e 2010 nos estados brasileiros Jader da Silva Jale 1 2 Joseilme Fernandes Gouveia 3 Prof. Dr. Borko Stosic 4 1 Introdução

Leia mais

Hashing. Estruturas de Dados. Motivação

Hashing. Estruturas de Dados. Motivação Estruturas de Dados Hashing Prof. Ricardo J. G. B. Campello Parte deste material é baseado em adaptações e extensões de slides disponíveis em http://ww3.datastructures.net (Goodrich & Tamassia). Motivação

Leia mais

Conteúdo. SCC5909 Fundamentos de Multimídia. Ementa do Curso. 1. Apresentação da Disciplina. Ementa do Curso. Ementa do Curso

Conteúdo. SCC5909 Fundamentos de Multimídia. Ementa do Curso. 1. Apresentação da Disciplina. Ementa do Curso. Ementa do Curso SCC5909 Fundamentos de Multimídia Aula 1 Conteúdo Apresentação da disciplina Conceitos e definições em multimídia Princípios de compressão Prof.: Dr. Rudinei Goularte (rudinei@icmc.usp.br) Instituto de

Leia mais

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com

Processamento de Imagem. Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Processamento de Imagem Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Visão Computacional Não existe um consenso entre os autores sobre o correto escopo do processamento de imagens, a

Leia mais

Projeto e Análise de Algoritmos Projeto de Algoritmos Heurísticas e Algoritmos Aproximados

Projeto e Análise de Algoritmos Projeto de Algoritmos Heurísticas e Algoritmos Aproximados Projeto e Análise de Algoritmos Projeto de Algoritmos Heurísticas e Algoritmos Aproximados Prof. Humberto Brandão humberto@bcc.unifal-mg.edu.br Universidade Federal de Alfenas Departamento de Ciências

Leia mais

Avaliação de Desempenho em Sistemas de Computação e Comunicação

Avaliação de Desempenho em Sistemas de Computação e Comunicação Avaliação de Desempenho em Sistemas de Computação e Comunicação Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM UFES Objetivos

Leia mais

Organizaçãoe Recuperaçãode Informação GSI521. Prof. Dr. Rodrigo Sanches Miani FACOM/UFU

Organizaçãoe Recuperaçãode Informação GSI521. Prof. Dr. Rodrigo Sanches Miani FACOM/UFU Organizaçãoe Recuperaçãode Informação GSI521 Prof. Dr. Rodrigo Sanches Miani FACOM/UFU Aula anterior Organização e Recuperação de Informação(GSI521) Modelo vetorial- Definição Para o modelo vetorial, o

Leia mais

Introdução à Transmissão Digital. Funções básicas de processamento de sinal num sistema de comunicações digitais.

Introdução à Transmissão Digital. Funções básicas de processamento de sinal num sistema de comunicações digitais. Introdução à Transmissão Digital Funções básicas de processamento de sinal num sistema de comunicações digitais. lntrodução à transmissão digital Diferença entre Comunicações Digitais e Analógicas Comunicações

Leia mais

Cadeias de Markov. Geovany A. Borges gaborges@ene.unb.br

Cadeias de Markov. Geovany A. Borges gaborges@ene.unb.br 36341 - Introdução aos Processos Estocásticos Curso de Pós-Graduação em Engenharia Elétrica Departamento de Engenharia Elétrica Universidade de Brasília Cadeias de Markov Geovany A. Borges gaborges@ene.unb.br

Leia mais

Apostila de Gerenciamento e Administração de Redes

Apostila de Gerenciamento e Administração de Redes Apostila de Gerenciamento e Administração de Redes 1. Necessidades de Gerenciamento Por menor e mais simples que seja uma rede de computadores, precisa ser gerenciada, a fim de garantir, aos seus usuários,

Leia mais

Codificação/Compressão de Vídeo. Tópico: Vídeo (Codificação + Compressão)

Codificação/Compressão de Vídeo. Tópico: Vídeo (Codificação + Compressão) Tópico: Vídeo (Codificação + Compressão) Um vídeo pode ser considerado como uma seqüência de imagens estáticas (quadros). Cada um desses quadros pode ser codificado usando as mesmas técnicas empregadas

Leia mais

ANÁLISE E IMPLEMENTAÇÃO DE ALGORITMOS DE COMPRESSÃO DE DADOS. Maria Carolina de Souza Santos 1 Orientador: Prof.º Ms.

ANÁLISE E IMPLEMENTAÇÃO DE ALGORITMOS DE COMPRESSÃO DE DADOS. Maria Carolina de Souza Santos 1 Orientador: Prof.º Ms. ANÁLISE E IMPLEMENTAÇÃO DE ALGORITMOS DE COMPRESSÃO DE DADOS Maria Carolina de Souza Santos 1 Orientador: Prof.º Ms. Mauricio Duarte 2 Centro Universitário Euripides de Marilia UNIVEM FATEC Faculdade de

Leia mais

Aula 04. Código BCD, Códigos Alfa-numéricos e Sistemas de Detecção de Erros

Aula 04. Código BCD, Códigos Alfa-numéricos e Sistemas de Detecção de Erros Aula 04 Código BCD, Códigos Alfa-numéricos e Sistemas de Detecção de Erros Prof. Otávio Gomes otavio.gomes@ifmg.edu.br sites.google.com/a/ifmg.edu.br/otavio-gomes/ 1 Bytes A maioria dos microcomputadores

Leia mais

UM ALGORITMO MEMÉTICO PARA A OTIMIZAÇÃO DE QUANTIZADORES VETORIAIS

UM ALGORITMO MEMÉTICO PARA A OTIMIZAÇÃO DE QUANTIZADORES VETORIAIS UM ALGORITMO MEMÉTICO PARA A OTIMIZAÇÃO DE QUANTIZADORES VETORIAIS Carlos R. B. Azevedo, Renan A. Azevedo, Esdras L. Bispo Júnior Departamento de Estatística e Informática Universidade Católica de Pernambuco

Leia mais

IA Colônia de Formigas. Prof. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br

IA Colônia de Formigas. Prof. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br IA Colônia de Formigas Prof. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br Sumário Introdução O Experimento da Ponte Binária. Ant System Aplicado ao PCV. Elitist Ant System. Introdução Otimização colônia

Leia mais

3 MATERIAL E MÉTODOS

3 MATERIAL E MÉTODOS 3 MATERIAL E MÉTODOS 3.1 Fundamentação Teórica Quando se quer obter informações de um grupo de variáveis ou de um conjunto total dos dados de uma região, usualmente recorre-se à análise multivariada. A

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE

UNIVERSIDADE PRESBITERIANA MACKENZIE UNIVERSIDADE PRESBITERIANA MACKENZIE MARCELO VIANA DONI ANÁLISE DE CLUSTER: MÉTODOS HIERÁRQUICOS E DE PARTICIONAMENTO São Paulo 4 MARCELO VIANA DONI ANÁLISE DE CLUSTER: MÉTODOS HIERÁRQUICOS E DE PARTICIONAMENTO

Leia mais

PSO Algorithm Applied to Codebook Design for Channel-Optimized Vector Quantization

PSO Algorithm Applied to Codebook Design for Channel-Optimized Vector Quantization PSO Algorithm Applied to Codebook Design for Channel-Optimized Vector Quantization H. A. S. Leitão, W. T. A. Lopes, Member, IEEE and F. Madeiro Abstract Vector quantization (VQ) has been used in signal

Leia mais

MO447 Análise Forense de Documentos Digitais Fichamento do Seminário. Identification and recovery of JPEG files with missing fragments

MO447 Análise Forense de Documentos Digitais Fichamento do Seminário. Identification and recovery of JPEG files with missing fragments MO447 Análise Forense de Documentos Digitais Fichamento do Seminário Identification and recovery of JPEG files with missing fragments por Husrev T. Sencar e Nasir Memon 23 de Outubro de 2011 Autores: Allan

Leia mais

H.264: UMA BREVE DISCUSSÃO ACERCA DA CODIFICAÇÃO DE VÍDEO

H.264: UMA BREVE DISCUSSÃO ACERCA DA CODIFICAÇÃO DE VÍDEO H.264: UMA BREVE DISCUSSÃO ACERCA DA CODIFICAÇÃO DE VÍDEO Eduardo Viana Rezende eduardo.viana@superig.com.br Centro Universitário de Belo Horizonte Av. Prof. Mário Werneck, 1685 - Estoril CEP: 30455-610

Leia mais

O uso da Mineração de Textos para Extração e Organização Não Supervisionada de Conhecimento

O uso da Mineração de Textos para Extração e Organização Não Supervisionada de Conhecimento Revista de Sistemas de Informacao da FSMA n. 7 (2011) pp. 7-21 http://www.fsma.edu.br/si/sistemas.html O uso da Mineração de Textos para Extração e Organização Não Supervisionada de Conhecimento Solange

Leia mais