5S.1 Representação Gráfica da Condução Unidimensional Transiente na Parede Plana, no Cilindro Longo e na Esfera

Tamanho: px
Começar a partir da página:

Download "5S.1 Representação Gráfica da Condução Unidimensional Transiente na Parede Plana, no Cilindro Longo e na Esfera"

Transcrição

1 5S.1 Representação Gráfica da Condução Unidimensional Transiente na Parede Plana, no Cilindro Longo e na Esfera Nas Seções 5.5 e 5.6, foram desenvolvidas aproximações pelo primeiro termo para a condução unidimensional transiente em uma parede plana (com condições convectivas simétricas) e em sistemas radiais (cilindro longo e esfera). Os resultados se aplicam para Fo 0,2 e podem ser convenientemente representados em formas gráficas que ilustram a dependência funcional da distribuição de temperatura transiente em relação aos números de Biot e de Fourier. Resultados para a parede plana (Figura 5.6a) são apresentados nas Figuras 5S.1 a 5S.3. A Figura 5S.1 pode ser usada para se obter a temperatura no plano central da parede, T(0, t) T o (t), a qualquer instante durante o processo transiente. Se T o for conhecido para valores especificados de Fo e Bi, pode-se utilizar a Figura 5S.2 para determinar a temperatura correspondente em qualquer posição fora do plano central. Conseqüentemente, a Figura 5S.2 tem que ser usada em conjunto com a Figura 5S.1. Por exemplo, se desejamos determinar a temperatura na superfície (x* 1) em algum instante t, devemos usar a Figura 5S.1 em primeiro lugar para determinar T o em t. A Figura 5S.2 deve então ser usada para determinarmos a temperatura na superfície a partir do conhecimento de T o. O procedimento deve ser invertido se o problema FIGURA 5S.1 Temperatura no plano central como função do tempo em uma parede plana de espessura 2L [1]. Usado com permissão.

2 CD-8 Capítulo 5S.1 FIGURA 5S.2 Distribuição de temperaturas em parede plana de espessura 2L [1]. Usado com permissão. for a determinação do tempo necessário para a superfície atingir uma temperatura especificada. Resultados gráficos para a energia transferida a partir de uma parede plana durante o intervalo de tempo t são apresentados na Figura 5S.3. Esses resultados forem gerados a partir da Equação A transferência de energia adimensional Q/Q o é representada exclusivamente em termos de Fo e Bi. Resultados para o cilindro infinito são apresentados nas Figuras 5S.4 a 5S.6 e os resultados para a esfera são mostrados nas Figuras 5S.7 a 5S.9, em que o número de Biot está definido em termos de r o. FIGURA 5S.3 Variação da energia interna como função do tempo em uma parede plana de espessura 2L [2]. Adaptado com permissão.

3 Representação Gráfica da Condução Unidimensional Transiente... CD-9 FIGURA 5S.4 Temperatura no eixo central como função do tempo em um cilindro infinito de raio r o [1]. Usado com permissão. FIGURA 5S.5 Distribuição de temperaturas em um cilindro infinito de raio r o [1]. Usado com permissão.

4 CD-10 Capítulo 5S.1 FIGURA 5S.6 Variação da energia interna como função do tempo em um cilindro infinito de raio r o [2]. Adaptado com permissão. Os gráficos anteriores também podem ser usados para determinar a resposta transiente de uma parede plana, de um cilindro infinito ou de uma esfera submetida a uma mudança súbita na temperatura superficial. Em tal condição, é necessário apenas substituir T pela temperatura superficial especificada T s e fixar Bi 1 igual a zero. Ao fazermos isto, admitimos que o coeficiente convectivo é implicitamente infinito, situação na qual T T s. FIGURA 5S.7 Temperatura no centro como função do tempo em uma esfera de raio r o [1]. Usado com permissão.

5 Representação Gráfica da Condução Unidimensional Transiente... CD-11 FIGURA 5S.8 Distribuição de temperaturas em uma esfera de raio r o [1]. Usado com permissão. FIGURA 5S.9 Variação da energia interna como função do tempo em uma esfera de raio r o [2]. Adaptado com permissão. Referências

6 CD-12 Capítulo 5S.2 5S.2 Solução Analítica dos Efeitos Multidimensionais Com freqüência são encontrados problemas transientes nos quais os efeitos bi- e mesmo tridimensionais são significativos. Soluções para uma classe desses problemas podem ser obtidas a partir dos resultados analíticos unidimensionais das Seções 5.5 a 5.7. Considere a imersão do cilindro curto da Figura 5S.10, que está inicialmente a uma temperatura uniforme T i, em um fluido a uma temperatura T T i. Como o comprimento e o diâmetro do cilindro são comparáveis, a transferência de energia por condução subseqüente será significativa nas direções coordenadas r e x. A temperatura no interior do cilindro será então função de r, x e t. Admitindo propriedades constantes e ausência de geração, a forma apropriada da equação do calor é, a partir da Equação 2.24, onde x foi usado em lugar de z para designar a coordenada axial. Uma solução em forma fechada para essa equação pode ser obtida pelo método da separação de variáveis. Ainda que essa solução não seja considerada em detalhes, é importante notar que o resultado final pode ser representado na forma a seguir: Isto é, a solução bidimensional pode ser escrita como um produto das soluções unidimensionais que correspondem àquelas para uma parede plana com espessura 2L e para um cilindro infinito com raio r o. Para Fo 0,2, essas soluções são fornecidas pelas aproximações pelo primeiro termo das Equações 5.40 e 5.49, assim como pelas Figuras 5S.1 e 5S.2 para a parede plana e Figuras 5S.4 e 5S.5 para o cilindro infinito. FIGURA 5S.10 Condução transiente bidimensional em um cilindro curto. (a) Geometria. (b) Forma da solução do produto.

7 Solução Analítica dos Efeitos Multidimensionais CD-13 Resultados para outras geometrias multidimensionais estão resumidos na Figura 5S.11. Em cada caso a solução multidimensional é fornecida na forma de um produto que envolve uma ou mais das soluções unidimensionais a seguir: FIGURA 5S.11 Soluções para sistemas multidimensionais expressas como produtos de resultados unidimensionais.

8 CD-14 Capítulo 5S.2 A coordenada x para o sólido semi-infinito é medida a partir da superfície, enquanto para a parede plana ela é medida a partir do plano intermediário. Ao usar a Figura 5S.11, devemos observar com cuidado as origens das coordenadas. A distribuição tridimensional transiente de temperaturas em um paralelepípedo retangular, Figura 5S.11h, é então, por exemplo, o produto de três soluções unidimensionais para paredes planas com espessuras 2L 1, 2L 2 e 2L 3. Isto é, As distâncias x 1, x 2 e x 3 são todas medidas em relação a um sistema de coordenadas retangulares cuja origem se encontra no centro do paralelepípedo. A quantidade de energia Q transferida para ou a partir de um sólido durante um processo de condução transiente multidimensional também pode ser determinada através da combinação de resultados unidimensionais, conforme mostrado por Langston [1]. EXEMPLO 5S.1 Em um processo industrial, cilindros de aço inoxidável (AISI 304), inicialmente a 600 K, são resfriados por submersão em um banho de óleo mantido a 300 K, com h 500 W/(m 2 K). Cada cilindro possui comprimento 2L 60 mm e diâmetro D 80 mm. Considere o instante 3 min após o início do processo de resfriamento e determine as temperaturas no centro do cilindro, no centro de uma das faces circulares e a meia altura da superfície lateral. Note que o Problema requer uma solução numérica deste mesmo problema. SOLUÇÃO Dados: Temperatura inicial e dimensões do cilindro, assim como temperatura e condições convectivas no banho de óleo. Achar: Temperaturas T(r, x, t) após 3 min no centro do cilindro, T(0, 0, 3 min) no centro de uma das faces circulares, T(0, L, 3 min), e a meia altura da superfície lateral, T(r o, 0, 3 min). Esquema:

9 Solução Analítica dos Efeitos Multidimensionais CD-15 Considerações: 1. Condução bidimensional em r e x. 2. Propriedades constantes. Propriedades: Tabela A.1, aço inoxidável, AISI 304 [T ( )/2 450 K]: 7900 kg/m 3, c 526 J/(kg K), k 17,4 W/(m K), k/( c) 4, m 2 /s. Análise: O cilindro sólido de aço corresponde ao caso (i) da Figura 5S.11 e a temperatura em qualquer ponto no cilindro pode ser representada pelo seguinte produto de soluções unidimensionais: onde P(x, t) e C(r, t) são definidas pelas Equações 5S.2 e 5S.3, respectivamente. Dessa forma, para o centro do cilindro, Assim, para a parede plana, com tem-se, pela Equação 5.41, que onde, com Bi 0,862; na Tabela 5.1, C 1 1,109 e 1 0,814 rad. Com Fo 0,84 Analogamente, para o cilindro infinito, com tem-se, pela Equação 5.49c, que onde, com Bi 1,15; na Tabela 5.1, C 1 1,227 e 1 1,307 rad. Com Fo 0,47, Assim, para o centro do cilindro,

10 CD-16 Capítulo 5S.2 A temperatura no centro da face circular pode ser obtida através da exigência de que onde, a partir da Equação 5.40b, Assim, com x* 1, temos A temperatura a meia altura da superfície lateral pode ser obtida a partir da exigência de que onde, a partir da Equação 5.49b, Com, r* 1 e o valor da função de Bessel obtido na Tabela B.4, Assim,

11 Solução Analítica dos Efeitos Multidimensionais CD-17 Comentários: 1. Verifique que a temperatura nas arestas do cilindro é T(r o, L, 3 min) 344 K. 2. Os gráficos de Heisler da Seção 5S.1 também podem ser usados para obtenção dos resultados desejados. Utilizando esses gráficos, obteríamos os seguintes resultados: o / i Parede plana 0,64; o / i Cilindro infinito 0,55; (L)/ o Parede plana 0,68; e (r o )/ o Cilindro infinito 0,61; que apresentam uma boa concordância com os resultados obtidos com as aproximações pelo primeiro termo. Referência Problemas Condução Unidimensional: A Parede Plana 5S.1 Considere a unidade de armazenamento de energia térmica do Problema 5.11, porém construída em alvenaria, com 1900 kg/m 3, c 800 J/(kg K) e k 0,70 W/(m K), em lugar do alumínio originalmente utilizado. Quanto tempo será necessário para que se obtenham 75% do máximo armazenamento de energia possível? Quais são as temperaturas máxima e mínima na alvenaria nesse instante? 5S.2 Uma camada de gelo com 5 mm de espessura se forma sobre o pára-brisas de um carro enquanto ele permanece estacionado ao longo de uma noite fria, na qual a temperatura ambiente é de 20 C. Ao ser ligado o carro, um novo sistema de descongelamento faz com que a superfície interna do pára-brisas seja subitamente exposta a uma corrente de ar a 30 C. Supondo-se que o gelo se comporte como uma camada de isolamento térmico sobre a superfície externa do pára-brisas, qual coeficiente de transferência de calor por convecção na superfície interna permitiria que a superfície externa do pára-brisas atinja 0 C em 60 s? As propriedades termofísicas do pára-brisas são: 2200 kg/m 3, c p 830 J/(kg K) e k 1,2 W/(m K). Condução Unidimensional: O Cilindro Longo 5S.3 Bastões cilíndricos de aço (AISI 1010), com 50 mm de diâmetro, são tratados termicamente ao passarem através de um forno de 5 m de comprimento, no interior do qual o ar é mantido à temperatura de 750 C. Os bastões entram a 50 C e atingem uma temperatura de 600 C no seu eixo central antes de deixarem o forno. Para um coeficiente convectivo de 125 W/(m 2 K), estime a velocidade à qual os bastões devem atravessar o forno. 5S.4 Estime o tempo necessário para cozinhar uma salsicha de cachorro-quente em água fervente. Considere que a salsicha esteja inicialmente a 6 C, que o coeficiente de transferência de calor por convecção seja de 100 W/(m 2 K) e que a temperatura final no seu eixo central seja de 80 C. Trate a salsicha como se fosse um longo cilindro de 20 mm de diâmetro, possuindo as seguintes propriedades: 880 kg/m 3, c 3350 J/(kg K) e k 0,52 W/(m K). 5S.5 Uma longa barra, com 70 mm de diâmetro e inicialmente a 90 C, é resfriada por imersão em um banho de água a 40 C, que proporciona um coeficiente convectivo de 20 W/(m 2 K). As propriedades termofísicas da barra são: 2600 kg/m 3, c 1030 J/(kg K) e k 3,50 W/(m K). (a) Quanto tempo deve a barra permanecer no banho para que, quando for retirada e deixada em repouso em condições de isolamento térmico total da vizinhança, ela atinja uma temperatura uniforme de 55 C? (b) Qual é a temperatura superficial da barra quando ela é retirada do banho? Condução Unidimensional: A Esfera 5S.6 Uma esfera com 80 mm de diâmetro (k 50 W/(m K) e 1, m 2 /s), que se encontra inicialmente a uma temperatura uniforme elevada, é subitamente resfriada por imersão em um banho de óleo mantido a 50 C. O coeficiente convectivo no processo de resfriamento é de 1000 W/(m 2 K). Em um dado instante de tempo, a temperatura superficial da esfera é medida, sendo igual a 150 C. Qual é a temperatura correspondente no centro da esfera?

12 CD-18 Capítulo 5S.2 5S.7 Uma pedra esférica de granizo, com 5 mm de diâmetro, é formada a 30 C em uma nuvem localizada a uma altitude elevada. Se a pedra começa a cair através do ar mais quente, a 5 C, quanto tempo ela irá levar até que sua superfície externa comece a derreter? Qual é a temperatura no centro da pedra de granizo nesse instante e quanta energia (J) foi transferida para a pedra até esse momento? Utilize um coeficiente de transferência de calor por convecção de 250 W/(m 2 K) e considere as propriedades do granizo idênticas às do gelo. 5S.8 Em um processo de fabricação de esferas de vidro (k 1,4 W/(m K), 2200 kg/m 3, c p 800 J/(kg K)) com 3 mm de diâmetro, as esferas são suspensas em uma corrente ascendente de ar que se encontra a T 15 C e mantém um coeficiente convectivo de h 400 W/(m 2 K). (a) Se as esferas estão inicialmente a uma temperatura de T i 477 C, quanto tempo elas devem ficar suspensas para atingir uma temperatura no centro de 80 C? Qual é a temperatura superficial correspondente? (b) Calcule e represente graficamente as temperaturas no centro e na superfície como funções do tempo para 0 t 20 s e h 100, 400 e 1000 W/(m 2 K). Condução Multidimensional 5S.9 Um longo lingote de aço (aço-carbono não-ligado), com seção transversal quadrada de 0,3 m por 0,3 m e inicialmente a uma temperatura uniforme de 30 C, é colocado no interior de um forno que se encontra à temperatura de 750 C. Se o coeficiente de transferência de calor por convecção para o processo de aquecimento é de 100 W/(m 2 K), quanto tempo o lingote deve permanecer no interior do forno até que a temperatura no seu centro atinja 600 C? 5S.10 Um tijolo refratário com dimensões de 0,06 m 0,09 m 0,20 m é removido de um forno a 1600 K e resfriado ao ar a 40 C, com h 50 W/(m 2 K). Qual é a temperatura no centro e nos vértices do tijolo passados 50 min do início do processo de resfriamento? 5S.11 Um pino cilíndrico de cobre com 100 mm de comprimento e 50 mm de diâmetro está inicialmente a uma temperatura uniforme de 20 C. As faces de suas extremidades são subitamente submetidas a um aquecimento intenso que as leva a uma temperatura de 500 C. Ao mesmo tempo, a superfície cilíndrica é submetida ao aquecimento por escoamento de um gás com uma temperatura de 500 C e um coeficiente de transferência de calor por convecção de 100 W/(m 2 K). (a) Determine a temperatura no ponto central do cilindro 8 s após o repentino início do aquecimento. (b) Considerando-se os parâmetros que determinam a distribuição de temperaturas em problemas de difusão de calor transiente, pode alguma hipótese simplificadora ser justificada na análise desse problema particular? Explique sucintamente. 5S.12 Lembrando que a sua mãe uma vez lhe disse que uma peça de carne deve ser cozida até que todas as suas partes tenham atingido uma temperatura de 80 C, quanto tempo será necessário para cozinhar uma peça de carne com 2,25 kg? Admita que a carne se encontra inicialmente a 6 C e que a temperatura no forno é de 175 C, com um coeficiente de transferência de calor por convecção de 15 W/(m 2 K). Trate a peça como um cilindro com diâmetro igual ao comprimento e propriedades iguais às da água líquida. 5S.13 Um longo bastão com 20 mm de diâmetro é fabricado em alumina (óxido de alumínio policristalino) e se encontra inicialmente a uma temperatura uniforme de 850 K. O bastão é subitamente exposto a um fluido a 350 K, com h 500 W/(m 2 K). Estime as temperaturas no eixo central do bastão, em uma das extremidades expostas e a uma distância axial de 6 mm dessa extremidade, 30 s após o início da exposição do bastão ao fluido. 5S.14 Considere o cilindro de aço inoxidável do Exemplo 5S.1, que se encontra inicialmente a 600 K e subitamente é imerso em um banho de óleo a 300 K com h 500 W/(m 2 K). Elabore um programa para obter as soluções a seguir. (a) Calcule as temperaturas, T(r, x, t), após 3 min da imersão, no centro do cilindro, T(0, 0, 3 min), no centro de uma face circular, T(0, L, 3 min) e a meia altura da lateral, T(r o, 0, 3 min). Compare os seus resultados com aqueles do exemplo. (b) Calcule e represente graficamente os históricos de temperatura no centro do cilindro, T(0, 0, t) e a meia altura da lateral, T(r o, 0, t), para 0 t 10 min. Comente sobre os gradientes presentes nesses locais e quais efeitos eles podem ter nas transformações de fases e nos estresses térmicos. Sugestão: Na sua varredura do intervalo de tempo, inicie em 1 s em vez de zero. (c) Para 0 t 10 min, calcule e represente graficamente os históricos de temperatura no centro do cilindro, T(0, 0, t), para coeficientes convectivos de 500 W/(m 2 K) e 1000 W/(m 2 K).

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL LOM3083 e LOM3213 Fenômenos de Transporte Prof. Luiz T. F. Eleno Lista de exercícios 2 1. Considere uma parede aquecida por convecção de um

Leia mais

CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA

CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA 1) Uma casa possui uma parede composta com camadas de madeira, isolamento à base de fibra de vidro e gesso, conforme indicado na figura. Em um dia frio

Leia mais

UNIVERSIDADE EDUARDO MONDLANE

UNIVERSIDADE EDUARDO MONDLANE UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia Transmissão de calor 3º Ano 1 Aula Prática 4 Regime transiente 2 Problema -10.1 Placas de latão de 20 mm de espessura são aquecidas durante 15 minutos

Leia mais

Lista de exercícios Caps. 4 e 5 TM-114 Transferência de Calor e Massa (Turma B) 2008/1

Lista de exercícios Caps. 4 e 5 TM-114 Transferência de Calor e Massa (Turma B) 2008/1 Lista de exercícios Caps. 4 e 5 TM-114 Transferência de Calor e Massa (Turma B) 2008/1 1. (Incropera et al., 6 ed., 4.2) Uma placa retangular bidimensional está sujeita às condições de contorno especificadas.

Leia mais

Capítulo 8: Transferência de calor por condução

Capítulo 8: Transferência de calor por condução Capítulo 8: ransferência de calor por condução Condução de calor em regime transiente Condução de calor em regime transiente Até o momento só foi analisada a transferência de calor por condução em regime

Leia mais

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia Transmissão de calor 3º ano Aula 3 Equação diferencial de condução de calor Condições iniciais e condições de fronteira; Geração de Calor num Sólido;

Leia mais

FENÔMENOS DE TRANSPORTES AULA 12 E 13 INTRODUÇÃO À CONVECÇÃO E CONDUÇÃO

FENÔMENOS DE TRANSPORTES AULA 12 E 13 INTRODUÇÃO À CONVECÇÃO E CONDUÇÃO FENÔMENOS DE TRANSPORTES AULA 12 E 13 INTRODUÇÃO À CONVECÇÃO E CONDUÇÃO PROF.: KAIO DUTRA Convecção Térmica O modo de transferência de calor por convecção é composto por dois mecanismos. Além da transferência

Leia mais

11S.1 Método da Média Log das Diferenças de Temperatura para Trocadores de Calor com Múltiplos Passes e com Escoamento Cruzado

11S.1 Método da Média Log das Diferenças de Temperatura para Trocadores de Calor com Múltiplos Passes e com Escoamento Cruzado Capítulo 11 Material Suplementar 11S.1 Método da Média Log das Diferenças de Temperatura para Trocadores de Calor com Múltiplos Passes e com Escoamento Cruzado Embora as condições de escoamento em trocadores

Leia mais

Condução de Calor Bidimensional

Condução de Calor Bidimensional Condução de Calor Bidimensional Soluções analíticas para condução térmica em casos 2D requer um esforço muito maior daquelas para casos 1D. Há no entanto inúmeras soluções baseadas em técnicas da Física-Matemática,

Leia mais

Lista de Exercícios para P2

Lista de Exercícios para P2 ENG 1012 Fenômenos de Transporte II Lista de Exercícios para P2 1. Estime o comprimento de onda que corresponde à máxima emissão de cada de cada um dos seguintes casos: luz natural (devido ao sol a 5800

Leia mais

ESZO Fenômenos de Transporte

ESZO Fenômenos de Transporte Universidade Federal do ABC ESZO 001-15 Fenômenos de Transporte Profa. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Bloco A, torre 1, sala 637 Mecanismos de Transferência de Calor Calor Calor pode

Leia mais

GERAÇÃO DE CALOR UNIFORME EM SÓLIDOS. Conversão de uma forma de energia em energia térmica, ou seja, estes meios sólidos têm geração de calor interna.

GERAÇÃO DE CALOR UNIFORME EM SÓLIDOS. Conversão de uma forma de energia em energia térmica, ou seja, estes meios sólidos têm geração de calor interna. GEAÇÃO DE CALO UNIFOME EM SÓLIDOS Conversão de uma forma de energia em energia térmica, ou seja, estes meios sólidos têm geração de calor interna. Se manifesta como um aumento da temperatura do meio. Exemplos:

Leia mais

Lei de Fourier. Considerações sobre a lei de Fourier. A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados.

Lei de Fourier. Considerações sobre a lei de Fourier. A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados. Condução de Calor Lei de Fourier A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados Considerações sobre a lei de Fourier q x = ka T x Fazendo Δx 0 q taxa de calor [J/s] ou

Leia mais

Exercícios e exemplos de sala de aula Parte 3

Exercícios e exemplos de sala de aula Parte 3 Introdução à transferência de calor PME2398 Termodinâmica e suas Aplicações 1 o semestre / 2013 Prof. Bruno Carmo Exercícios e exemplos de sala de aula Parte 3 1- Uma placa de alumínio, com 4mm de espessura,

Leia mais

Convecção (natural e forçada) Prof. Dr. Edval Rodrigues de Viveiros

Convecção (natural e forçada) Prof. Dr. Edval Rodrigues de Viveiros Convecção (natural e forçada) Prof. Dr. Edval Rodrigues de Viveiros Convecção natural Convecção forçada Convecção natural A transmissão de calor por convecção natural ocorre sempre quando um corpo é

Leia mais

Capítulo 8: Transferência de calor por condução

Capítulo 8: Transferência de calor por condução Capítulo 8: Transferência de calor por condução Aletas Condução de calor bidimensional Transferência de calor É desejável em muitas aplicações industriais aumentar a taxa de transferência de calor de uma

Leia mais

Unimonte, Engenharia Física Aplicada, Prof. Marco Simões Transferência de calor, exercícios selecionados do Sears & Zemansky, cap.

Unimonte, Engenharia Física Aplicada, Prof. Marco Simões Transferência de calor, exercícios selecionados do Sears & Zemansky, cap. Unimonte, Engenharia Física Aplicada, Prof. Marco Simões Transferência de calor, exercícios selecionados do Sears & Zemansky, cap. 17 17.65) Suponha que a barra da figura seja feita de cobre, tenha 45,0

Leia mais

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia ransmissão de calor 3º ano 4. ransmissão de Calor em Regime ransiente Introdução Sistemas Concentrados Condução de Calor em regime ransiente com Efeitos

Leia mais

FENÔMENOS DE TRANSPORTES

FENÔMENOS DE TRANSPORTES FENÔMENOS DE TRANSPORTES AULA 11 FUNDAMENTOS DE TRANSFERÊNCIA DE CALOR PROF.: KAIO DUTRA Transferência de Calor Transferência de calor (ou calor) é a energia em trânsito devido a uma diferença de temperatura.

Leia mais

No escoamento sobre uma superfície, os perfis de velocidade e de temperatura têm as formas traduzidas pelas equações:

No escoamento sobre uma superfície, os perfis de velocidade e de temperatura têm as formas traduzidas pelas equações: Enunciados de problemas de condução do livro: Fundamentals of Heat and Mass Transfer, F.P. Incropera e D.P. DeWitt, Ed. Wiley (numeros de acordo com a 5ª Edição). Introdução à Convecção 6.10 - No escoamento

Leia mais

Transmissão de calor

Transmissão de calor UNIVESIDADE EDUADO MONDLANE Faculdade de Engenharia Transmissão de calor 3º Ano 1 Aula 6 Aula Prática- Condução em regime permanente Problema -6.1 (I) Uma janela tem dois vidros de 5 mm de espessura e

Leia mais

CONDUÇÃO DE CALOR APLICADO AO ESTUDO DE CONCEITOS MATEMÁTICOS DO ENSINO MÉDIO. Douglas Gonçalves Moçato*** Luiz Roberto Walesko*** Sumário

CONDUÇÃO DE CALOR APLICADO AO ESTUDO DE CONCEITOS MATEMÁTICOS DO ENSINO MÉDIO. Douglas Gonçalves Moçato*** Luiz Roberto Walesko*** Sumário CONDUÇÃO DE CALOR APLICADO AO ESUDO DE CONCEIOS MAEMÁICOS DO ENSINO MÉDIO Douglas Gonçalves Moçato*** Luiz Roberto Walesko***. Introdução. Conceitos de transmissão de calor. Convecção. Radiação.3 Condução

Leia mais

Transferência de Calor Condução e Convecção de Calor

Transferência de Calor Condução e Convecção de Calor Transferência de Calor Condução e Material adaptado da Profª Tânia R. de Souza de 2014/1. 1 O calor transferido por convecção, na unidade de tempo, entre uma superfície e um fluido, pode ser calculado

Leia mais

Q t. Taxa de transferência de energia por calor. TMDZ3 Processos de Transmissão de calor. Prof. Osvaldo Canato Jr

Q t. Taxa de transferência de energia por calor. TMDZ3 Processos de Transmissão de calor. Prof. Osvaldo Canato Jr Taxa de transferência de energia por calor P Q t no SI : Q J; t s; P J / s W ( watt) Condução Para um bloco com corte transversal de área A, espessura x e temperaturas T 1 e T 2 em suas faces, têm-se:

Leia mais

CONDUÇÃO DE CALOR PÁTRICIA KUERTEN GUIZONI SUELI ALBERTON SALVALAGIO

CONDUÇÃO DE CALOR PÁTRICIA KUERTEN GUIZONI SUELI ALBERTON SALVALAGIO CONDUÇÃO DE CALOR PÁTRICIA KUERTEN GUIZONI SUELI ALBERTON SALVALAGIO CONTEÚDO TRANSFERÊNCIA DE CALOR CONDUÇÃO LEI DE FOURIER CONDUTIVIDADE TÉRMICA DIFUSIVIDADE TÉRMICA CONDUÇÃO DE CALOR UNIDIMENSIONAL

Leia mais

Transferência de calor

Transferência de calor Transferência de calor 1.1 Calor: Forma de energia que se transmite espontaneamente de um corpo para o outro quando entre eles existir uma diferença de temperatura. O calor é uma energia em trânsito provocada

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departamento de Estudos Básicos e Instrumentais 3 Termologia Física II Prof. Roberto Claudino Ferreira Prof. Roberto Claudino 1 ÍNDICE 1. Conceitos Fundamentais;

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Introdução e Modos de Transferência Prof. Universidade Federal do Pampa BA000200 Campus Bagé 08 de maio de 2017 Transferência de Calor: Introdução 1 / 29 Introdução à Transferência

Leia mais

Mecanismos de transferência de calor. Anjo Albuquerque

Mecanismos de transferência de calor. Anjo Albuquerque Mecanismos de transferência de calor 1 Mecanismos de transferência de calor Quando aquecemos uma cafeteira de alumínio com água ao lume toda a cafeteira e toda a água ficam quentes passado algum tempo.

Leia mais

Convecção Forçada Externa

Convecção Forçada Externa Convecção Forçada Externa Força de arrasto e sustentação Arrasto: força que o escoamento exerce na sua própria direção. Corpos submetidos a escoamento de fluidos são classificados: Região separada: Uma

Leia mais

Aula 3 de FT II. Prof. Geronimo

Aula 3 de FT II. Prof. Geronimo Aula 3 de FT II Prof. Geronimo Raio crítico de isolamento O conceito de raio crítico de isolamento, é introduzido para geometrias onde a área de troca de calor varia com uma dimensão especificada. Por

Leia mais

2 HIDROSTÁTICA PROBLEMA 2.1 RESOLUÇÃO

2 HIDROSTÁTICA PROBLEMA 2.1 RESOLUÇÃO 2 HIDROSTÁTICA PROBLEMA 2.1 O tubo representado na figura está cheio de óleo de densidade 0,85. Determine as pressões nos pontos A e B e exprima-as em altura equivalente de água. Fundamentos de Engenharia

Leia mais

Temperatura, calor e processos de transmissão de calor

Temperatura, calor e processos de transmissão de calor REVISÃO ENEM Temperatura, calor e processos de transmissão de calor TEMPERATURA Temperatura é a grandeza física escalar que nos permite avaliar o grau de agitação das moléculas. Quanto maior for o grau

Leia mais

DETERMINAÇÃO DA CONDUTIVIDADE TÉRMICA DE LEGUMES UTILIZANDO O MÉTODO GRÁFICO DE HEISLER

DETERMINAÇÃO DA CONDUTIVIDADE TÉRMICA DE LEGUMES UTILIZANDO O MÉTODO GRÁFICO DE HEISLER DETERMINAÇÃO DA CONDUTIVIDADE TÉRMICA DE LEGUMES UTILIZANDO O MÉTODO GRÁFICO DE HEISLER J. N. M. BATISTA 1, V. B. da SILVA 2, A. C. A. LIMA 3, L. I. S. LEITE 3, A. B. OLIVEIRA Jr 3 1 Universidade Federal

Leia mais

Lista de Exercícios para P1

Lista de Exercícios para P1 ENG 1012 Fenômenos de Transporte II - 2015.2 Lista de Exercícios para P1 Problema 1. Uma casa possui uma parede composta com camadas de madeira, isolamento à base de fibra de vidro e placa de gesso, como

Leia mais

TRANSFERÊNCIA DE CALOR POR CONVECÇÃO

TRANSFERÊNCIA DE CALOR POR CONVECÇÃO RANSFERÊNCIA DE CALOR POR CONVECÇÃO ransferência de energia entre uma superfície e um fluido em movimento sobre essa superfície Fluido em movimento, u, s > A convecção inclui a transferência de energia

Leia mais

Conservação de Energia

Conservação de Energia Conservação de Energia Formulações Alternativas Base temporal: CONSERVAÇÃO DE ENERGIA (Primeira Lei da Termodinâmica) Uma ferramenta importante na análise do fenómeno de transferência de calor, constituindo

Leia mais

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1 PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1 7.1. Introdução e hipóteses gerais Vimos na aula anterior as equações necessárias para a solução de um problema geral da Teoria

Leia mais

Os diferentes processos de transferência de calor são referidos como mecanismos de transferência de calor.

Os diferentes processos de transferência de calor são referidos como mecanismos de transferência de calor. REGIME PERMANENTE (estáveis) (Steady State) Quando a temperatura de um ponto não varia com o tempo o regime é considerado permanente. Se em um lado de uma placa a temperatura é sempre 80 C e no outro 200

Leia mais

EP34D Fenômenos de Transporte

EP34D Fenômenos de Transporte EP34D Fenômenos de Transporte Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br Introdução à Transferência de Calor 2 Introdução à Transferência de Calor O que é Transferência de Calor? Transferência de

Leia mais

Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e

Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e Mínimos Exercício 1 Determine os intervalos de crescimento e de decrescimento, calcule todos os limites necessários e esboce o gráfico de f, onde

Leia mais

Nota: Campus JK. TMFA Termodinâmica Aplicada

Nota: Campus JK. TMFA Termodinâmica Aplicada TMFA Termodinâmica Aplicada 1) Considere a central de potência simples mostrada na figura a seguir. O fluido de trabalho utilizado no ciclo é água e conhece-se os seguintes dados operacionais: Localização

Leia mais

d) condução e convecção b) radiação e condução e) condução e radiação c) convecção e radiação

d) condução e convecção b) radiação e condução e) condução e radiação c) convecção e radiação Lista 7 Propagação de calor 01. Sabe-se que a temperatura do café se mantém razoavelmente constante no interior de uma garrafa térmica perfeitamente vedada. a) Qual o principal fator responsável por esse

Leia mais

E = 70GPA σ e = 215MPa. A = 7500mm 2 I x = 61,3x10 6 mm 4 I y = 23,2x10 6 mm 4

E = 70GPA σ e = 215MPa. A = 7500mm 2 I x = 61,3x10 6 mm 4 I y = 23,2x10 6 mm 4 Lista 1 1. A coluna de alumínio mostrada na figura é engastada em sua base e fixada em seu topo por meios de cabos de forma a impedir seu movimento ao longo do eixo x. Determinar a maior carga de compressão

Leia mais

FIS-26 Prova 01 Março/2011

FIS-26 Prova 01 Março/2011 FIS-26 Prova 01 Março/2011 Nome: Turma: Duração máxima: 120 min. Cada questão (de 1 a 7) vale 15 pontos, mas a nota máxima da prova é 100. 1. Responda às seguintes questões: (a) Uma roda bidimensional

Leia mais

Lista de Exercícios Aula 04 Propagação do Calor

Lista de Exercícios Aula 04 Propagação do Calor Lista de Exercícios Aula 04 Propagação do Calor 1. (Halliday) Suponha que a barra da figura seja de cobre e que L = 25 cm e A = 1,0 cm 2. Após ter sido alcançado o regime estacionário, T2 = 125 0 C e T1

Leia mais

Aula 01. Me. Leandro B. Holanda, 1. Definições e conceitos fundamentais. Calor

Aula 01. Me. Leandro B. Holanda,   1. Definições e conceitos fundamentais. Calor Aula 01 1. Definições e conceitos fundamentais Calor Se um bloco de cobre quente for colocado num béquer de água fria o bloco de cobre se resfria e a água se aquece até que o cobre e a água atinjam a mesma

Leia mais

ENG1200 Mecânica Geral Semestre Lista de Exercícios 6 Corpos Submersos

ENG1200 Mecânica Geral Semestre Lista de Exercícios 6 Corpos Submersos ENG1200 Mecânica Geral Semestre 2013.2 Lista de Exercícios 6 Corpos Submersos 1 Prova P3 2013.1 - O corpo submerso da figura abaixo tem 1m de comprimento perpendicularmente ao plano do papel e é formado

Leia mais

Lista de Exercícios Solução em Sala

Lista de Exercícios Solução em Sala Lista de Exercícios Solução em Sala 1) Um conjunto pistão-cilindro área de seção transversal igual a 0,01 m². A massa do pistão é 101 kg e ele está apoiado nos batentes mostrado na figura. Se a pressão

Leia mais

Transferência de calor por convecção

Transferência de calor por convecção Transferência de calor Transferência de calor por convecção Escoamento sobre cilindros e esferas º. semestre, 016 Cilindros e esferas Um escoamento externo muito comum envolve o movimento de um fluido

Leia mais

1. Suponha que em uma escala linear de temperatura X a água ferva a 53,3 o X e congele a -170 o X. Qual a temperatura de 340K na escala X?

1. Suponha que em uma escala linear de temperatura X a água ferva a 53,3 o X e congele a -170 o X. Qual a temperatura de 340K na escala X? BC0303: Fenômenos Térmicos - 1 a Lista de Exercícios Termômetros, Temperatura e Escalas de Temperatura 1. Suponha que em uma escala linear de temperatura X a água ferva a 53,3 o X e congele a -170 o X.

Leia mais

Escoamento completamente desenvolvido

Escoamento completamente desenvolvido Escoamento completamente desenvolvido A figura mostra um escoamento laminar na região de entrada de um tubo circular. Uma camada limite desenvolve-se ao longo das paredes do duto. A superfície do tubo

Leia mais

Análise Diferencial dos Movimentos dos Fluidos

Análise Diferencial dos Movimentos dos Fluidos Análise Diferencial dos Movimentos dos Fluidos As equações na forma diferencial aplicam-se quando: 1. estamos interessados no comportamento detalhado de um campo de escoamento, ponto a ponto, e 2. desejamos

Leia mais

QUESTÕES OBJETIVAS. a) 1 b) h 1 h 2 c) h 1 + h 2 d) h 1 /h 2 e) h 2 /h 1

QUESTÕES OBJETIVAS. a) 1 b) h 1 h 2 c) h 1 + h 2 d) h 1 /h 2 e) h 2 /h 1 Triênio 007-009 QUESTÕES OBJETIVAS Use se necessário: 1L = 10-3 m 3. sen 45 = cos 45 = ; 1 sen 30 = cos 60 = ; sen 60 = cos 30 = 3 Questão 9: Em uma brincadeira numa piscina, uma pessoa observa o esforço

Leia mais

TRANSMISSÃO DE CALOR resumo

TRANSMISSÃO DE CALOR resumo TRANSMISSÃO DE CALOR resumo convecção forçada abordagem experimental ou empírica Lei do arrefecimento de Newton Taxa de Transferência de Calor por Convecção 𝑞"#$ ℎ𝐴 𝑇 𝑇 ℎ 1 𝐴 ℎ - Coeficiente Convectivo

Leia mais

Prof. Felipe Corrêa Maio de 2016

Prof. Felipe Corrêa Maio de 2016 Prof. Felipe Corrêa Maio de 2016 IMPORTÂNCIA Praticamente todos os sistemas envolvidos na engenharia estão direta ou indiretamente ligados com a transferência de calor. Portanto, para que estes sistemas

Leia mais

Resistências Térmicas em Paralelo 53 Exercícios 54 Exercícios recomendados 54 III. Transporte por convecção 55 Alguns fatos do cotidiano 55

Resistências Térmicas em Paralelo 53 Exercícios 54 Exercícios recomendados 54 III. Transporte por convecção 55 Alguns fatos do cotidiano 55 SUMÁRIO I. Introdução Portfolio de Fenômenos de Transporte II 1 Algumas palavras introdutórias 2 Senso comum ciência 4 Uma pequena história sobre o nascimento da ciência 4 Das Verdades científicas 6 Tese

Leia mais

Transmissão de Calor I - Prof. Eduardo Loureiro

Transmissão de Calor I - Prof. Eduardo Loureiro Radiação - Conceitos Fundamentais Consideremos um objeto que se encontra inicialmente a uma temperatura T S mais elevada que a temperatura T VIZ de sua vizinhança. A presença do vácuo impede a perda de

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 2 o ano Disciplina: Física Processos de Propagação de Calor

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 2 o ano Disciplina: Física Processos de Propagação de Calor Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 2 o ano Disciplina: Física Processos de Propagação de Calor 1- Transforme: a) 2,5 km= m b) 0,5 m = cm

Leia mais

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. Lista de exercício 3 - Fluxo elétrico e Lei de Gauss Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. A superfície quadrada da Figura tem 3,2 mm de lado e está imersa

Leia mais

TRANSFERÊNCIA DE CALOR POR CONVECÇÃO NATURAL E FORÇADA À VOLTA DE CILINDROS METÁLICOS TP4

TRANSFERÊNCIA DE CALOR POR CONVECÇÃO NATURAL E FORÇADA À VOLTA DE CILINDROS METÁLICOS TP4 TRANSFERÊNCIA DE CALOR POR CONVECÇÃO NATURAL E FORÇADA À VOLTA DE CILINDROS METÁLICOS TP4 LABORATÓRIOS DE ENGENHARIA QUÍMICA I 2009/2010 1. Objectivo Determinação do coeficiente de convecção natural e

Leia mais

Transmissão de Calor I - Prof. Eduardo Loureiro

Transmissão de Calor I - Prof. Eduardo Loureiro Camada limite de velocidade As partículas de fluido em contato com a superfície têm velocidade nula. Essas partículas atuam no retardamento do movimento das partículas da camada de fluido adjacente superior

Leia mais

ESCOAMENTOS UNIFORMES EM CANAIS

ESCOAMENTOS UNIFORMES EM CANAIS ESCOAMENTOS UNIFORMES EM CANAIS Nome: nº turma INTRODUÇÃO Um escoamento em canal aberto é caracterizado pela existência de uma superfície livre. Esta superfície é na realidade uma interface entre dois

Leia mais

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como Lei de Gauss REVISÃO DE PRODUTO ESCALAR Antes de iniciarmos o estudo do nosso próximo assunto (lei de Gauss), consideramos importante uma revisão sobre o produto escalar entre dois vetores. O produto escalar

Leia mais

VESTIBULAR UFPE UFRPE / ª ETAPA

VESTIBULAR UFPE UFRPE / ª ETAPA VESTIBULAR UFPE UFRPE / 1998 2ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: FÍSICA 1 VALORES DE ALGUMAS GRANDEZAS FÍSICAS Aceleração da gravidade : 10 m/s 2 Número de Avogadro : 6,0 x 10 23 /mol Constante

Leia mais

Exame Mecânica e Ondas Curso: MIEET data: 02/05/12. Nome:... Número:... Grupo I (10 valores)

Exame Mecânica e Ondas Curso: MIEET data: 02/05/12. Nome:... Número:... Grupo I (10 valores) Exame Mecânica e Ondas Curso: MIEET data: 02/05/12 Nome:... Número:... Pode utilizar uma calculadora e uma folha A4 (duas páginas) com fórmulas. Utilize g = 9,80 m/s 2. Grupo I (10 valores) Assinalar a

Leia mais

A) condensação do vapor de água dissolvido no ar ao encontrar uma superfície à temperatura mais baixa.

A) condensação do vapor de água dissolvido no ar ao encontrar uma superfície à temperatura mais baixa. lista_1-conceitos_iniciais_em_termologia Questão 1 Os cálculos dos pesquisadores sugerem que a temperatura média dessa estrela é de T i = 2.700 C. Considere uma estrela como um corpo homogêneo de massa

Leia mais

PNV-2321 TERMODINÂMICA E TRANSFERÊNCIA DE CALOR

PNV-2321 TERMODINÂMICA E TRANSFERÊNCIA DE CALOR PNV-31 TERMODINÂMICA E TRANSFERÊNCIA DE CALOR TRANSMISSÃO DE CALOR 1) INTRODUÇÃO Sempre que há um gradiente de temperatura no interior de um sistema ou quando há contato de dois sistemas com temperaturas

Leia mais

2) (UFRJ) A figura a seguir mostra um objeto pontual P que se encontra a uma distância de 6,0 m de um espelho plano.

2) (UFRJ) A figura a seguir mostra um objeto pontual P que se encontra a uma distância de 6,0 m de um espelho plano. EXERCÍCIOS DE REVISÃO DO PRIMEIRO SEMESTRE (SETOR 1215) CARRILHO 1) A figura a seguir representa os perfis de dois espelhos planos E e E'. O raio de luz I incide obliquamente no espelho E, formando um

Leia mais

Lista de exercícios Caps. 1, 2 e 3 TM-114 Transferência de Calor e Massa (Turma B) 2008/1

Lista de exercícios Caps. 1, 2 e 3 TM-114 Transferência de Calor e Massa (Turma B) 2008/1 Lista de exercícios Caps. 1, 2 e 3 TM-114 Transferência de Calor e Massa (Turma B) 2008/1 1. (Incropera, 6ed, 1.7) Um circuito integrado (chip) quadrado de silício (k = 150 W/m K) possui w = 5 mm de lado

Leia mais

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição

Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Enem 15 semanas 1. Um quadrado de lados medindo 1 cm sofre uma rotação completa em torno de um eixo paralelo a um de seus lados. A distância

Leia mais

Problema 1 Problema 2

Problema 1 Problema 2 1 Problema 1 7ª Edição Exercício: 2.42 / 8ª Edição Exercício: 1.44 A área da seção transversal da válvula do cilindro mostrado na figura abaixo é igual a 11cm 2. Determine a força necessária para abrir

Leia mais

EXERCÍCIOS FÍSICA 10. e problemas Exames Testes intermédios Professor Luís Gonçalves

EXERCÍCIOS FÍSICA 10. e problemas Exames Testes intermédios Professor Luís Gonçalves FÍSICA 10 EXERCÍCIOS e problemas Exames 2006 2007 2008 2009 2010 2011 Testes intermédios 2008 2009 2010 2011 Escola Técnica Liceal Salesiana do Estoril Professor Luís Gonçalves 2 3 Unidade 1 Do Sol ao

Leia mais

Transferência de Calor: Origens Físicas F Equações de Taxas de Transferência

Transferência de Calor: Origens Físicas F Equações de Taxas de Transferência Transferência de Calor: Origens Físicas F e Euações de Taxas de Transferência Transferência de Calor e Energia Térmica O ue é a transferência de calor? A transferência de calor éo trânsito de energia térmica

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

TRANSMISSÃO DE CALOR E MASSA 1 PROBLEMAS

TRANSMISSÃO DE CALOR E MASSA 1 PROBLEMAS TRANSMISSÃO DE CALOR E MASSA 1 PROBLEMAS 1. Uma placa plana tem uma superfície isolada e a outra exposta ao sol. A superfície exposta ao sol absorve radiação à taxa de 800 W/m 2 e perde calor por convecção

Leia mais

Profa.. Dra. Ana Maria Pereira Neto

Profa.. Dra. Ana Maria Pereira Neto 5/09/0 Universidade Federal do ABC BC309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Bloco A, torre, sala 637 Calor, Trabalho e Primeira Lei da Termodinâmica 5/09/0

Leia mais

25/Mar/2015 Aula /Mar/2015 Aula 9

25/Mar/2015 Aula /Mar/2015 Aula 9 20/Mar/2015 Aula 9 Processos Politrópicos Relações politrópicas num gás ideal Trabalho: aplicação aos gases perfeitos Calor: aplicação aos gases perfeitos Calor específico politrópico Variação de entropia

Leia mais

Efetividade do Trocador de Calor:

Efetividade do Trocador de Calor: Efetividade do Trocador de alor: Assim, a efetividade,, de um T é definida como: q q max Taxa de transferência de calor real Máxima taxa de Tpossível A taxa real de transferência de calor pode ser determinada

Leia mais

USO DO SOFTWARE MAPLE NO ENSINO DE TRANSFERÊNCIA DE CALOR

USO DO SOFTWARE MAPLE NO ENSINO DE TRANSFERÊNCIA DE CALOR USO DO SOFTWARE MAPLE NO ENSINO DE TRANSFERÊNCIA DE CALOR André R. Muniz 1, Lígia D. F. Marczak Universidade Federal do Rio Grande do Sul Departamento de Engenharia Química Rua Luiz Englert, s/n, Campus

Leia mais

Entre sistemas a temperaturas diferentes a energia transfere-se do sistema com temperatura mais elevada para o sistema a temperatura mais baixa.

Entre sistemas a temperaturas diferentes a energia transfere-se do sistema com temperatura mais elevada para o sistema a temperatura mais baixa. Sumário Do Sol ao Aquecimento Unidade temática 1. Mecanismos de transferência de calor: a radiação, a condução e a convecção. O coletor solar e o seu funcionamento. Materiais condutores e isoladores do

Leia mais

PIR - Projetos de Instalações de Refrigeração

PIR - Projetos de Instalações de Refrigeração PIR - Projetos de Instalações de Refrigeração Prof. Mauricio Nath Lopes (mauricio.nath@ifsc.edu.br) Objetivo geral: Capacitar os alunos na execução de projetos de câmaras frigoríficas de pequeno porte.

Leia mais

EM-524 : aula 13. Capítulo 06 Escoamento Externo Efeitos Viscosos e Térmicos

EM-524 : aula 13. Capítulo 06 Escoamento Externo Efeitos Viscosos e Térmicos EM-54 : aula Capítulo 06 Escoamento Eterno Efeitos Viscosos e érmicos 6.6 Coeficiente de ransferência de Calor por Convecção; 6.7 ransferência de Calor por Convecção Forçada; 6.8 ransferência de Calor

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

A variação de qualquer dimensão linear de um corpo com a temperatura se chama dilatação térmica.

A variação de qualquer dimensão linear de um corpo com a temperatura se chama dilatação térmica. Dilatação Térmica de Sólidos Quando a temperatura de um corpo varia, ocorrem variações de comprimento em cada uma de suas dimensões, variações estas que dependem da forma do corpo e da substância de que

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENERGIA E FENÔMENOS DE TRANSPORTE CONSTRUÇÃO E ENSAIO DE UM ELEMENTO ACUMULADOR AQUECIDO POR UM ESCOAMENTO

Leia mais

TRANSMISSÃO DE CALOR

TRANSMISSÃO DE CALOR AULA 14 1- INTRODUÇÃO TRANSMISSÃO DE CALOR Neste capítulo estudaremos os três processos de transmissão de calor e a dilatação térmica nos sólidos e nos líquidos.. 2- CONDUÇÃO Condução é o processo de transmissão

Leia mais

FÍSICA (ELETROMAGNETISMO) CORRENTE ELÉTRICA E RESISTÊNCIA

FÍSICA (ELETROMAGNETISMO) CORRENTE ELÉTRICA E RESISTÊNCIA FÍSICA (ELETROMAGNETISMO) CORRENTE ELÉTRICA E RESISTÊNCIA FÍSICA (Eletromagnetismo) Nos capítulos anteriores estudamos as propriedades de cargas em repouso, assunto da eletrostática. A partir deste capítulo

Leia mais

LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:

LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 1 Essa prova destina-se exclusivamente a alunos do 1 o e o anos e contém vinte (0) questões. Os alunos do 1 o ano devem escolher livremente oito (8) questões para

Leia mais

1. Na Figura, o fluxo de campo magnético na espira aumenta de acordo com a equação

1. Na Figura, o fluxo de campo magnético na espira aumenta de acordo com a equação Lista de exercícios 9 - Indução e Indutância 1. Na Figura, o fluxo de campo magnético na espira aumenta de acordo com a equação φ B = 6,0t2 + 7,0t, onde φb está em miliwebers e t em segundos. (a) Qual

Leia mais

ESCOLA SECUNDÁRIA 2/3 LIMA DE FREITAS 10.º ANO FÍSICA E QUÍMICA A 2010/2011 NOME: Nº: TURMA:

ESCOLA SECUNDÁRIA 2/3 LIMA DE FREITAS 10.º ANO FÍSICA E QUÍMICA A 2010/2011 NOME: Nº: TURMA: ESCOLA SECUNDÁRIA 2/3 LIMA DE FREITAS 0.º ANO FÍSICA E QUÍMICA A 200/20 NOME: Nº: TURMA: AVALIAÇÃO: Prof.. A energia eléctrica pode ser produzida em centrais termoeléctricas. Nessa produção há perdas de

Leia mais

PROVA PARA ALUNOS DO 1 E 2 ANO

PROVA PARA ALUNOS DO 1 E 2 ANO LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: a 3 FASE o o PROVA PARA ALUNOS DO 1 E 2 ANO 1 Essa prova destina-se exclusivamente aos alunos do 1 o e 2 o ano e contém vinte (20) questões. 2 Os alunos do 1 o ano

Leia mais

FÍSICA II. Justifique todas as suas respostas convenientemente Apresente uma Prova limpa e ordenada

FÍSICA II. Justifique todas as suas respostas convenientemente Apresente uma Prova limpa e ordenada FÍSICA II Duração: 2 H 30 (exactas) 1ª Chamada 22 de Janeiro de 2002 Justifique todas as suas respostas convenientemente Apresente uma Prova limpa e ordenada g = 9,8 m/s 2 1 atm = 1 x 10 5 Pa ρ água =

Leia mais

1. Um feixe permamente de partículas alfa (q = +2e) deslocando-se com energia cinética constante de 20MeV transporta uma corrente de 0, 25µA.

1. Um feixe permamente de partículas alfa (q = +2e) deslocando-se com energia cinética constante de 20MeV transporta uma corrente de 0, 25µA. 1. Um feixe permamente de partículas alfa (q = +2e) deslocando-se com energia cinética constante de 20MeV transporta uma corrente de 0, 25µA. (a) Se o feixe estiver dirigido perpendicularmente a uma superfície

Leia mais

Cubo Um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c) recebe o nome de cubo. Dessa forma, as seis faces são quadrados.

Cubo Um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c) recebe o nome de cubo. Dessa forma, as seis faces são quadrados. ALUNO(A) AULA 002 MATEMÁTICA DATA 18 / 10 /2013 PROFESSOR: Paulo Roberto Weissheimer AULA 002 - DE MATEMÁTICA Geometria Espacial Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V

Leia mais

Transmissão de Calor

Transmissão de Calor Transmissão de Calor Revisão de Conceitos da Termodinâmica 11/08/2006 Referência: capítulos 7, 8 e 10 do livro de H. Moysés Nussenzveig, Curso de Física Básica 2 Fluidos. Oscilações e Ondas. Calor. 4 ed.

Leia mais

Modelagem Matemática de Sistemas Térmicos

Modelagem Matemática de Sistemas Térmicos Modelagem Matemática de Sistemas Térmicos INTODUÇÃO Sistemas térmicos são sistemas nos quais estão envolvidos o armazenamento e o fluxo de calor por condução, convecção ou radiação A rigor, sempre estão

Leia mais

Volume III. Curso Técnico Módulo 2 INSTITUTO FEDERAL DE SANTA CATARINA ÁREA TÉCNICA DE REFRIGERAÇÃO E CONDICIONAMENTO DE AR

Volume III. Curso Técnico Módulo 2 INSTITUTO FEDERAL DE SANTA CATARINA ÁREA TÉCNICA DE REFRIGERAÇÃO E CONDICIONAMENTO DE AR INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ ÁREA TÉCNICA DE REFRIGERAÇÃO E CONDICIONAMENTO DE AR METODOLOGIA PARA O CÁLCULO DA ESPESSURA DE ISOLANTE NECESSÁRIA A UMA APLICAÇÃO Volume III Curso

Leia mais

25 Problemas de Óptica

25 Problemas de Óptica 25 Problemas de Óptica Escola Olímpica - Gabriel Lefundes 25 de julho de 2015 Problema 1. O ângulo de deflexão mínimo um certo prisma de vidro é igual ao seu ângulo de refração. Encontre-os. Dado: n vidro

Leia mais

1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1. Figura 1: Exercício 1

1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que n é a reta normal a f(x) = e x no ponto x o = 1. Figura 1: Exercício 1 Lista 5: Derivada como taxa de variação e Diferencial - Cálculo Diferencial e Integral I Professora: Elisandra Bär de Figueiredo 1. Calcule a área do triângulo retângulo ABC na Figura 1, sabendo-se que

Leia mais