Introdução. Empuxo de terra é a ação produzida pelo maciço terroso sobre as obras com ele em contato.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Introdução. Empuxo de terra é a ação produzida pelo maciço terroso sobre as obras com ele em contato."

Transcrição

1 Empuxos de Terra

2 Introdução Empuxo de terra é a ação produzida pelo maciço terroso sobre as obras com ele em contato. A determinação do valor do empuxo de terra é fundamental na análise e projeto de obras como muros de arrimo, construções de subsolos, encontros de pontes, etc..

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 Estados de Equilíbrio Plástico σ v = z. γsolo σ h = ko. γ. z ko= coeficiente de empuxo no repouso. CAPUTO ko argila pré - adensada 0,7 a 0,75 areia natural 0,5 areia solta 0,4 areia compacta 0,6 a 0,75 argilas pastosas 1,0 água 1,0 * pode-se admitir ko = 1 - sen ϕ' M. VARGAS Ko areias 0,4 a 0,8 argilas 0 a 1,0 solos compactados 0,5 a 1,0 p/ um muro indeslocável σ h ' = σ h = ko. γ. z

18

19

20 Estado ativo é aquele que corresponde a uma distensão do solo ( considera - se um deslocamento do muro para a esquerda ). Na situação iminente de ruptura σ h é mínimo σ h' = Ka. γ. Z sendo : Ka = coeficiente de empuxo para a situação de empuxo ativo Ka < Ko pressão horizontal ativa < pressão horizontal de repouso Estado passivo é aquele que corresponde a uma compressão no solo ( considera - se um deslocamento do muro para a direita ). Na situação iminente de ruptura σ h é máximo σ h '= Kp. γ. Z sendo : Kp = coeficiente de empuxo para a situação de empuxo passivo Kp > Ko pressão horizontal passiva > pressão horizontal de repouso sendo Kp > Ko, portanto Ka < Ko < Kp onde : ka = coeficiente de empuxo na situação ativo ko = coeficiente de empuxo no repouso kp = coeficiente de empuxo na situação passiva

21 Teoria de Ranquini Hipóteses : 1. Os estados plásticos se desenvolvem por completo em toda a massa de solo, caracterizando perfeitamente as superfícies de ruptura ( superfície plana ). 2. O "tardoz" ( contato muro - solo ), paramento interno do muro deve ser liso, ou seja, o atrito entre solo -muro seja nulo. Isto implica em que o empuxo tenha a direção horizontal, quando a superfície do terreno for horizontal e o tardoz vertical, para o caso de superfície do terreno inclinada, com uma rugosidade apenas o suficiente para que a direção do empuxo, seja paralela a superfície do terreno.

22

23

24

25

26

27

28

29

30

31

32

33 Teoria de Coulomb Cunha limitada por : - superfície do terreno - parede interna do muro ( tardoz ) - por uma superfície de ruptura Hipóteses : - A superfície de escorregamento é plana - O plano de ruptura passa pela base do muro (ponto A )

34 Diferenças entre as teorias de : RANQUINE COULOMB - não considera atrito solo muro - considera atrito solo muro - aplicação do Ea e Ep esta a 1/3 h - nada afirma sobre o ponto de aplicação (Z), na prática 1/3h Z 1/2h

35 Inflência do atrito solo muro Significa que no plano do tardoz, há o desenvolvimento de tensões cisalhantes. δ - atrito solo muro Terzaghi ϕ/2 δ 2/3 ϕ onde: ϕ - ang. atrito interno Segundo MULLER δ 3/4 ϕ

36 Cálculo do Empuxo para Solo não Coesivo ( c = 0 ) Valor de Empuxo Ativo e Passivo Ea = 1/2 γ h2 ka k a = sen sen α.sen( α δ ) ( α + ϕ) sen( ϕ + δ ).sen( ϕ i) sen( α δ ).sen( α + i) 2 E p = 1. γ h k p k p = sen α.sen( α δ ) 1 2 sen 2 ( α + ϕ) sen( ϕ + δ ).sen( ϕ i) sen( α δ ).sen( δ i) 2 onde : i = inclinação do terreno ϕ = ângulo de atrito interno δ = ângulo de atrito solo muro α = ângulo inclinação do tardoz

37 Ponto de aplicação do empuxo A

38 Metódo Gráfico de Poncelet Para o cálculo do Ea, fornece o valor do empuxo e a superfície crítica de escorregamento. Utilizado para terrenos de superfície plana. Passos: 1- traçar BT fazendo um ângulo ϕ c/ a horizontal 2- traçar a reta de orientação BO (ϕ + δ c/ AB ) 3- traçar a reta AS paralela a BO 4- sobre BT, como diâmetro traçar uma semi circunferência 5- traçar por S uma perpendicular SL a BT 6- rebater L em D com centro em B e raio BL 7- traçar DC paralela a AS 8- rebater o ponto C em G com centro em D BC - linha de escorregamento 1 E = γ ( área. CDG ) = γ a 2. CD CN

39 Metódo Gráfico de Culmann É um processo geral para o cálculo do valor do empuxo máximo (ativo), que corresponde a superfície crítica de escorregamento. Válido para qualquer superfície de terreno, sobrecarga e qualquer formato do Tardoz Passos: 1- traça-se AS inclinada de ϕ (LTN) 2- traça-se a linha de orientação AO (δ + ϕ) 3- traça-se 3 linhas prováveis de ruptura AC, calculando-se o peso de cada cunha de solo. P = γ. área da cunha 4- marcam-se as distâncias Aa1, Aa2, e Aa3 proporcionais aos pesos das várias possíveis cunhas de deslizamento Ac1, Ac2 e Ac3 (escolhe-se uma determinada escala) 5- pelos pontos ai traçam-se paralelas a AO, determinando-se os pontos bi 6- liga-se por uma curva suave, os pontos ai obtendo-se a linha de Culmann 7- traça-se uma paralela a AS tangenciando a linha de Culmann obtendo-se o maior valor ab, que corresponderá ao Ea máx 8- AC será a superfície de ruptura

40

41

OBRAS DE TERRA MUROS DE ARRIMO OU DE CONTENÇÃO

OBRAS DE TERRA MUROS DE ARRIMO OU DE CONTENÇÃO OBRAS DE TERRA Dimensionamento MUROS DE ARRIMO OU DE CONTENÇÃO CURSO: Engenharia Civil SÉRIE: 10º Semestre DISCIPLINA: Obras de Terra CARGA HORÁRIA SEMANAL: 02 aulas-hora CARGA HORÁRIA SEMESTRAL: 40 aulas-hora

Leia mais

Fundações I. UNIVERSIDADE: Curso: Escoramento de Escavação / Abaixamento de Lençol Freático. Aluno: RA: Professor Douglas Constancio

Fundações I. UNIVERSIDADE: Curso: Escoramento de Escavação / Abaixamento de Lençol Freático. Aluno: RA: Professor Douglas Constancio UNIVERSIDADE: Curso: Fundações: Escoramento de Escavação / Abaixamento de Lençol Freático Aluno: RA: Professor: Disciplina: Professor Douglas Constancio Fundações I Data: Americana, agosto de 2004. 0 FUNDAÇÕES:

Leia mais

ESTRUTURAS DE CONTENÇÃO AULA 2. CIV 247 OBRAS DE TERRA Prof. Romero César Gomes

ESTRUTURAS DE CONTENÇÃO AULA 2. CIV 247 OBRAS DE TERRA Prof. Romero César Gomes ESTRUTURAS DE CONTENÇÃO AULA 2 CIV 247 OBRAS DE TERRA Prof. Romero César Gomes 2.1 Critérios de Projeto de Muros de Arrimo. 2.2 Análises da Estabilidade de Muros de Arrimo. 2.3 Exemplo de Cálculo. Aula

Leia mais

5 Análises de probabilidade de deslizamento de muro de arrimo

5 Análises de probabilidade de deslizamento de muro de arrimo 5 Análises de probabilidade de deslizamento de muro de arrimo 5.1. Introdução Apresentam-se, a seguir, aplicações de métodos probabilísticos em estimativas de probabilidades de deslizamento de um muro

Leia mais

CAMPUS BRASÍLIA DEPARTAMENTO DE ENGENHARIA CIVIL. Tópico: EMPUXO PASSIVO E ATIVO

CAMPUS BRASÍLIA DEPARTAMENTO DE ENGENHARIA CIVIL. Tópico: EMPUXO PASSIVO E ATIVO CAMPUS BRASÍLIA DEPARTAMENTO DE ENGENHARIA CIVIL MEC. SOLOS E ROCHAS Tópico: EMPUXO PASSIVO E ATIVO 1 3 4 5 Asa Sul 70 Brasília/DF Canova Engenharia 6 7 EMPUXO DE TERRA O empuxo de terra é a força resultante

Leia mais

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra.

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. FÍSIC 1 nalise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. Esse circuito é composto por condutores ideais (sem

Leia mais

UNIVERSIDADE NOVE DE JULHO CURSO: ENGENHARIA CIVIL FUNDAÇÕES E OBRAS DE TERRA II - TEXTO DE AULA

UNIVERSIDADE NOVE DE JULHO CURSO: ENGENHARIA CIVIL FUNDAÇÕES E OBRAS DE TERRA II - TEXTO DE AULA UNIVERSIDADE NOVE DE JULHO CURSO: ENGENHARIA CIVIL FUNDAÇÕES E OBRAS DE TERRA II - TEXTO DE AULA 5. Estabilidade de Taludes Os métodos para a análise da estabilidade de taludes, atualmente em uso, baseiam-se

Leia mais

O curso está estruturado em unidades a seguir apresentadas:

O curso está estruturado em unidades a seguir apresentadas: Versão 2013/1 Apresentação Tradicionalmente a disciplina Mecânica dos Solos II transmite uma carga de conhecimentos muito grande ao aluno, o que tem exigido deste, um grande acúmulo de material bibliográfico

Leia mais

Mecânica dos Solos e Fundações PEF a Aula. Estruturas de Contenção Empuxo de Terra Teorias Clássicas Efeito da Água

Mecânica dos Solos e Fundações PEF a Aula. Estruturas de Contenção Empuxo de Terra Teorias Clássicas Efeito da Água Mecânica dos Solos e Fundações PEF 522 11 a Aula Estruturas de Contenção Empuxo de Terra Teorias Clássicas Efeito da Água Prof. Fernando A. M. Marinho Tipos de Muros de Contenção: Muros de Gravidade Muros

Leia mais

Estabilidade de Muros de Gravidade

Estabilidade de Muros de Gravidade Estabilidade de Muros de Gravidade Aluno: Douglas Rocha Matera Orientador: Prof. Celso Romanel Introdução Contenção de solos é uma importante área da engenharia geotécnica, responsável por garantir a segurança

Leia mais

MESOESTRUTURA ESFORÇOS OS ATUANTES NOS PILARES

MESOESTRUTURA ESFORÇOS OS ATUANTES NOS PILARES MESOESTRUTURA ESFORÇOS OS ATUANTES NOS PILARES DETERMINAÇÃO DE ESFORÇOS OS HORIZONTAIS ESFORÇOS ATUANTES NOS PILARES Os pilares estão submetidos a esforços verticais e horizontais. Os esforços verticais

Leia mais

3.0 Resistência ao Cisalhamento dos Solos

3.0 Resistência ao Cisalhamento dos Solos 3.0 Resistência ao Cisalhamento dos Solos 3.1 INTRODUÇÃO Vários materiais sólidos empregados em construção normalmente resistem bem as tensões de compressão, porém têm uma capacidade bastante limitada

Leia mais

5. DESENHO GEOMÉTRICO

5. DESENHO GEOMÉTRICO 5. DESENHO GEOMÉTRICO 5.1. Retas Paralelas e Perpendiculares No traçado de retas paralelas ou perpendiculares é indispensável o manejo adequado dos esquadros. Na construção das retas perpendiculares e

Leia mais

Unidade 03 GEOTECNIA DE CONTENÇÕES

Unidade 03 GEOTECNIA DE CONTENÇÕES Unidade 03 GEOTECNIA DE CONTENÇÕES 3. 1 Obras de revestimento proteção x obras de contenção Os tipos de obra voltados para a estabilização de encostas evoluem constantemente, em função de novas técnicas

Leia mais

Questões do capítulo oito que nenhum aluno pode ficar sem fazer

Questões do capítulo oito que nenhum aluno pode ficar sem fazer Questões do capítulo oito que nenhum aluno pode ficar sem fazer 1) A bola de 2,0 kg é arremessada de A com velocidade inicial de 10 m/s, subindo pelo plano inclinado. Determine a distância do ponto D até

Leia mais

Mecânica de Solos Prof. Fabio Tonin

Mecânica de Solos Prof. Fabio Tonin Compactação dos Solos Mecânica de Solos Prof. Fabio Tonin Compactação É o processo mecânico de aplicação de forças externas, destinadas a reduzir o volume dos vazios do solo, até atingir a massa específica

Leia mais

UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL

UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE TECNOLOGIA Curso de Engenharia Civil Valquíria Medianeira Costa Monteiro OBTENÇÃO DE COEFICIENTES DE ATRITO SOLO/ESTRUTURA

Leia mais

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples.

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples. Eercícios Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o período, em unidades

Leia mais

TÓPICOS ESPECIAIS DE CONCRETO ARMADO Muros de arrimo

TÓPICOS ESPECIAIS DE CONCRETO ARMADO Muros de arrimo TÓPICOS ESPECIAIS DE CONCRETO ARMADO Muros de arrimo Rodrigo Gustavo Delalibera Engenheiro Civil - Doutor em Engenharia de Estruturas dellacivil@yahoo.com.br Dimensionamento de estruturas especiais de

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questão 1 Na natureza, muitos animais conseguem guiar-se e até mesmo caçar com eficiência, devido à grande sensibilidade que apresentam para a detecção de ondas, tanto eletromagnéticas quanto mecânicas.

Leia mais

ÍNDICE 1.- NORMA E MATERIAIS... 2 2.- AÇÕES... 2 3.- DADOS GERAIS... 2 4.- DESCRIÇÃO DO TERRENO... 2 5.- GEOMETRIA... 2 6.- ESQUEMA DAS FASES...

ÍNDICE 1.- NORMA E MATERIAIS... 2 2.- AÇÕES... 2 3.- DADOS GERAIS... 2 4.- DESCRIÇÃO DO TERRENO... 2 5.- GEOMETRIA... 2 6.- ESQUEMA DAS FASES... ÍNDICE 1.- NORMA E MATERIAIS... 2 2.- AÇÕES... 2 3.- DADOS GERAIS... 2 4.- DESCRIÇÃO DO TERRENO... 2 5.- GEOMETRIA... 2 6.- ESQUEMA DAS FASES... 3 7.- RESULTADOS DAS FASES... 3 8.- COMBINAÇÕES... 3 9.-

Leia mais

Estruturas de Contenção Parte 1. Marcio Varela

Estruturas de Contenção Parte 1. Marcio Varela Estruturas de Contenção Parte 1 Marcio Varela Estruturas de Contenção Obras com estruturas de contenção Para a escolha da obra de contenção mais adequada de ser executada em uma determinada situação é

Leia mais

Capítulo IV TAQUEOMETRIA

Capítulo IV TAQUEOMETRIA 62 Capítulo IV TAQUEOMETRIA 1. Princípios Gerais A taqueometria, do grego takhys (rápido), metren (medição), compreende uma série de operações que constituem um processo rápido e econômico para a obtenção

Leia mais

Cap. 4 - Princípios da Dinâmica

Cap. 4 - Princípios da Dinâmica Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 4 - Princípios da Dinâmica e suas Aplicações Prof. Elvis Soares 1 Leis de Newton Primeira Lei de Newton: Um corpo permanece

Leia mais

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante.

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante. ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 9º ANO REVISÃO 1) (Cesesp-PE) Do alto de uma torre de 50 metros de altura, localizada numa ilha, avista-se a

Leia mais

CONSERVAÇÃO DA ENERGIA MECÂNICA

CONSERVAÇÃO DA ENERGIA MECÂNICA Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T3 Física Experimental I - 2007/08 CONSERVAÇÃO DA ENERGIA MECÂNICA 1. Objectivo Verificar a conservação da energia mecânica de

Leia mais

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015

Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015 Código: FISAP Disciplina: Física Aplicada Preceptores: Marisa Sayuri e Rodrigo Godoi Semana: 05/11/2015 14/11/2015 1) Certo dia, uma escaladora de montanhas de 75 kg sobe do nível de 1500 m de um rochedo

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2011 1 a QUESTÃO Valor: 1,00 Um varal de roupas foi construído utilizando uma haste rígida DB de massa desprezível, com

Leia mais

TENSÕES EM SOLOS EXERCÍCIOS RESOLVIDOS

TENSÕES EM SOLOS EXERCÍCIOS RESOLVIDOS TENSÕES EM SOLOS EXERCÍCIOS RESOLVIDOS 1) O peso específico de um solo seco pré-adensado (ko = l,5). é γd = 19,6 kn/m3. Se a superfície do terreno for horizontal, pode-se então afirmar que a tensão horizontal

Leia mais

Estrategia de resolução de problemas

Estrategia de resolução de problemas Estrategia de resolução de problemas Sistemas Isolados (p. 222) Muitos problemas na física podem ser resolvidos usando-se o princípio de conservação de energia para um sistema isolado. Deve ser utilizado

Leia mais

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA Leis de Newton INTRODUÇÃO Isaac Newton foi um revolucionário na ciência. Teve grandes contribuições na Física, Astronomia, Matemática, Cálculo etc. Mas com certeza, uma das suas maiores contribuições são

Leia mais

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica. Lista para a Terceira U.L. Trabalho e Energia 1) Um corpo de massa 4 kg encontra-se a uma altura de 16 m do solo. Admitindo o solo como nível de referência e supondo g = 10 m/s 2, calcular sua energia

Leia mais

LISTA UERJ 2014 LEIS DE NEWTON

LISTA UERJ 2014 LEIS DE NEWTON 1. (Pucrj 2013) Sobre uma superfície sem atrito, há um bloco de massa m 1 = 4,0 kg sobre o qual está apoiado um bloco menor de massa m 2 = 1,0 kg. Uma corda puxa o bloco menor com uma força horizontal

Leia mais

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida.

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida. Exercícios: Energia 01. (UEPI) Assinale a alternativa que preenche corretamente as lacunas das frases abaixo. O trabalho realizado por uma força conservativa, ao deslocar um corpo entre dois pontos é da

Leia mais

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 5ª LISTA

Leia mais

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. PROVA DO VESTIBULAR DA FUVEST 00 ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. QUESTÃO.01.Carlos, Luis e Sílvio tinham, juntos, 100 mil reais para investir por um ano. Carlos

Leia mais

UNOCHAPECÓ Lista 03 de exercícios Mecânica (lançamento de projéteis) Prof: Visoli

UNOCHAPECÓ Lista 03 de exercícios Mecânica (lançamento de projéteis) Prof: Visoli UNOCHAPECÓ Lista 03 de exercícios Mecânica (lançamento de projéteis) Prof: Visoli 1. A figura abaixo mostra o mapa de uma cidade em que as ruas retilíneas se cruzam perpendicularmente e cada quarteirão

Leia mais

de forças não concorrentes.

de forças não concorrentes. Universidade Federal de Alagoas Centro de Tecnologia Curso de Engenharia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Professor: Eduardo Nobre Lages Equilíbrio de Corpos Rígidos Maceió/AL Objetivo

Leia mais

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada,

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, QUADRILÁTEROS Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, A B C Lados: AB BC CD AD Vértices: A B C D Diagonais: AC BD D Algumas

Leia mais

FÍSICA. Questões de 01 a 04

FÍSICA. Questões de 01 a 04 GRUPO 1 TIPO A FÍS. 1 FÍSICA Questões de 01 a 04 01. Considere uma partícula presa a uma mola ideal de constante elástica k = 420 N / m e mergulhada em um reservatório térmico, isolado termicamente, com

Leia mais

DIMENSIONAMENTO DE INSTALAÇÕES PREDIAIS PARA ÁGUAS PLUVIAIS NBR 10844

DIMENSIONAMENTO DE INSTALAÇÕES PREDIAIS PARA ÁGUAS PLUVIAIS NBR 10844 ÁREA DE CONTRIBUIÇÃO DADOS PLUVIOMÉTRICOS Localidade: Praça XV Ângulo de inclinação da chuva: θ = 60,0 Tipo: Coberturas s/ extravazamento Período de Retorno: T = 25 anos Intensidade pluviométrica*: i =

Leia mais

UNIVERSIDADE FEDERAL DE JUIZ DE FORA FACULDADE DE ENGENHARIA CURSO DE GRADUAÇÃO EM ENGENHARIA CIVIL

UNIVERSIDADE FEDERAL DE JUIZ DE FORA FACULDADE DE ENGENHARIA CURSO DE GRADUAÇÃO EM ENGENHARIA CIVIL UNIVERSIDADE FEDERAL DE JUIZ DE FORA FACULDADE DE ENGENHARIA CURSO DE GRADUAÇÃO EM ENGENHARIA CIVIL INFLUÊNCIA DA COMPACTAÇÃO NAS CONDIÇÕES DE ESTABILIDADE DE MUROS DE PESO EM GABIÃO JOSÉ GERALDO DE SOUZA

Leia mais

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física PROF.: MIRANDA 2ª Lista de Exercícios DINÂMICA Física Aplicada Física 01. Uma mola possui constante elástica de 500 N/m. Ao aplicarmos sobre esta uma força de 125 Newtons, qual será a deformação da mola?

Leia mais

Dimensionamento de Estruturas de Suporte Rígidas

Dimensionamento de Estruturas de Suporte Rígidas INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA Área Departamental de Engenharia Civil ISEL Dimensionamento de Estruturas de Suporte Rígidas SÉRGIO NASCIMENTO Licenciado Dissertação para obtenção do grau de

Leia mais

TC 3 UECE - 2013 FASE 2 MEDICINA e REGULAR

TC 3 UECE - 2013 FASE 2 MEDICINA e REGULAR TC 3 UECE - 03 FASE MEICINA e EGULA SEMANA 0 a 5 de dezembro POF.: Célio Normando. A figura a seguir mostra um escorregador na forma de um semicírculo de raio = 5,0 m. Um garoto escorrega do topo (ponto

Leia mais

FIS-14 Lista-05 Setembro/2012

FIS-14 Lista-05 Setembro/2012 FIS-14 Lista-05 Setembro/2012 1. A peça fundida tem massa de 3,00 Mg. Suspensa em uma posição vertical e inicialmente em repouso, recebe uma velocidade escalar para cima de 200 mm/s em 0,300 s utilizando

Leia mais

1ª LISTA DE DINÂMICA E ESTÁTICA. está inicialmente em repouso nas coordenadas 2,00 m, 4,00 m. (a) Quais são as componentes da

1ª LISTA DE DINÂMICA E ESTÁTICA. está inicialmente em repouso nas coordenadas 2,00 m, 4,00 m. (a) Quais são as componentes da Universidade do Estado da Bahia UNEB Departaento de Ciências Exatas e da Terra DCET I Curso de Engenharia de Produção Civil Disciplina: Física Geral e Experiental I Prof.: Paulo Raos 1 1ª LISTA DE DINÂMICA

Leia mais

FORÇA DE ATRITO PLANO INCLINADO

FORÇA DE ATRITO PLANO INCLINADO FORÇA DE ATRITO PLANO INCLINADO Prof. Ms. Edgar Leis de Newton - dinâmica Pensamento Antigo Associavam o movimento a presença obrigatória de uma força. Esta idéia era defendida por Aristóteles, e só foi

Leia mais

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F.

9) (UFMG/Adap.) Nesta figura, está representado um bloco de peso 20 N sendo pressionado contra a parede por uma força F. Exercícios - Aula 6 8) (UFMG) Considere as seguintes situações: I) Um carro, subindo uma rua de forte declive, em movimento retilíneo uniforme. II) Um carro, percorrendo uma praça circular, com movimento

Leia mais

Construções Fundamentais. r P r

Construções Fundamentais. r P r 1 Construções Fundamentais 1. De um ponto traçar a reta paralela à reta dada. + r 2. De um ponto traçar a perpendicular à reta r, sabendo que o ponto é exterior a essa reta; e de um ponto P traçar a perpendicular

Leia mais

5. ENGRENAGENS Conceitos Básicos

5. ENGRENAGENS Conceitos Básicos Elementos de Máquinas I Engrenagens Conceitos Básicos 34 5. EGREAGES Conceitos Básicos 5.1 Tipos de Engrenagens Engrenagens Cilíndricas Retas: Possuem dentes paralelos ao eixo de rotação da engrenagem.

Leia mais

SÉRIE: DISCIPLINA: CARGA HORÁRIA SEMANAL: CARGA HORÁRIA SEMESTRAL:

SÉRIE: DISCIPLINA: CARGA HORÁRIA SEMANAL: CARGA HORÁRIA SEMESTRAL: OBRAS DE TERRA MUROS DE ARRIMO OU DE CONTENÇÃO CURSO: Engenharia Civil SÉRIE: 10º Semestre DISCIPLINA: Obras de Terra CARGA HORÁRIA SEMANAL: 02 aulas-hora CARGA HORÁRIA SEMESTRAL: 40 aulas-hora 1.DEFINIÇÕES

Leia mais

Cabos. Um motorista dirigia, quando, de repente, Conceito

Cabos. Um motorista dirigia, quando, de repente, Conceito A U A UL LA Cabos Introdução Um motorista dirigia, quando, de repente, surgiu um problema na embreagem do carro. Por mais que tentasse, o motorista não conseguia engatar a marcha. O carro foi rebocado

Leia mais

Física. Resolução. Q uestão 01 - A

Física. Resolução. Q uestão 01 - A Q uestão 01 - A Uma forma de observarmos a velocidade de um móvel em um gráfico d t é analisarmos a inclinação da curva como no exemplo abaixo: A inclinação do gráfico do móvel A é maior do que a inclinação

Leia mais

Capítulo 6 ELEMENTOS GEOMÉTRICOS DAS ESTRADAS DE RODAGEM

Capítulo 6 ELEMENTOS GEOMÉTRICOS DAS ESTRADAS DE RODAGEM Capítulo 6 ELEMENTOS GEOMÉTRICOS DAS ESTRADAS DE RODAGEM 6.1. INTRODUÇÃO A geometria de uma estrada é definida pelo traçado do seu eixo em planta e pelos perfis longitudinal e transversal. A Fig. 6.1 apresentada

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I Estruturas II. Capítulo 5 Torção

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I Estruturas II. Capítulo 5 Torção Capítulo 5 Torção 5.1 Deformação por torção de um eixo circular Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e

Leia mais

d= 0.8m E y cp = y cg + Y cg =0.4m y cp = 0.533 m d= 0.8m E= 320 kgf Y cp =0.533 a ) Cálculo do módulo do empuxo: E = h cg γ A

d= 0.8m E y cp = y cg + Y cg =0.4m y cp = 0.533 m d= 0.8m E= 320 kgf Y cp =0.533 a ) Cálculo do módulo do empuxo: E = h cg γ A 0) Uma caixa de água de 800litros mede 1.0 x 1.0 x 0.80m. Determinar o empuxo ( em kgf) que atua em uma de suas paredes laterais e a profundidade de seu ponto de aplicação (Y cp ) b1.0m cg : 0 d 0.8m cp

Leia mais

Equipe de Física FÍSICA

Equipe de Física FÍSICA Aluno (a): Série: 3ª Turma: TUTORIAL 8B Ensino Médio Equipe de Física Data: FÍSICA Estática de um ponto Para que um ponto esteja em equilíbrio precisa satisfazer a seguinte condição: A resultante de todas

Leia mais

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo.

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo. DINÂMICA Quando se fala em dinâmica de corpos, a imagem que vem à cabeça é a clássica e mitológica de Isaac Newton, lendo seu livro sob uma macieira. Repentinamente, uma maçã cai sobre a sua cabeça. Segundo

Leia mais

a) os módulos das velocidades angulares ωr NOTE E ADOTE

a) os módulos das velocidades angulares ωr NOTE E ADOTE 1. Um anel condutor de raio a e resistência R é colocado em um campo magnético homogêneo no espaço e no tempo. A direção do campo de módulo B é perpendicular à superfície gerada pelo anel e o sentido está

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS

Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS Elementos geométricos de uma estrada (Fonte: PONTES FILHO, 1998) GEOMETRIA DE VIAS 1. INTRODUÇÃO: A geometria de uma estrada é definida pelo traçado do

Leia mais

Elementos de Engenharia Civil 2007/2008. Enunciados dos problemas *

Elementos de Engenharia Civil 2007/2008. Enunciados dos problemas * DEPARTAMENTO DE ENGENHARIA CIVIL E ARQUITECTURA SECÇÁO DE HIDRÁULICA E RECURSOS HÍDRICOS E AMBIENTAIS Elementos de Engenharia Civil 2007/2008 2 SEMESTRE Enunciados dos problemas * (módulo de Hidráulica)

Leia mais

EQUILÍBRIO DO CORPO EXTENSO

EQUILÍBRIO DO CORPO EXTENSO EQUILÍBIO DO COPO EXTENSO Questão - A barra a seguir é homogênea da seção constante e está apoiada nos pontos A e B. Sabendo-se que a reação no apoio A é A = 00KN, e que F = 0KN e F = 500KN, qual é o peso

Leia mais

Geotecnia e Fundações, Arquitectura. Capítulo 7 ESTRUTURAS DE SUPORTE DE TERRAS

Geotecnia e Fundações, Arquitectura. Capítulo 7 ESTRUTURAS DE SUPORTE DE TERRAS Capítulo 7 ESTRUTURAS DE SUPORTE DE TERRAS 1. Tipos de estruturas de suporte Há necessidade de construir uma estrutura de suporte sempre que se pretende um desnível de terreno com altura h e o terreno

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar)

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) 1. OBJETIVOS DA EXPERIÊNCIA 1) Esta aula experimental tem como objetivo o estudo do movimento retilíneo uniforme

Leia mais

LISTA 1 CS2. Cada aluno deve resolver 3 exercícios de acordo com o seu númeo FESP

LISTA 1 CS2. Cada aluno deve resolver 3 exercícios de acordo com o seu númeo FESP LISTA 1 CS2 Cada aluno deve resolver 3 exercícios de acordo com o seu númeo FESP Final 1 exercícios 3, 5, 15, 23 Final 2 exercícios 4, 6, 17, 25 Final 3- exercícios 2, 7, 18, 27 Final 4 exercícios 1 (pares),

Leia mais

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos:

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: 1. Forças externas (que representam as acções externas sobre o corpo rígido) 2. Forças internas (que representam

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

Centro Educacional Juscelino Kubitschek. Roteiro e Lista de Recuperação de Física

Centro Educacional Juscelino Kubitschek. Roteiro e Lista de Recuperação de Física Centro Educacional Juscelino Kubitschek ALUNO: N.º: DATA: / / ENSINO: ( ) Fundamental (x ) Médio SÉRIE: 1º TURMA: TURNO: DISCIPLINA: FÍSICA PROFESSOR: Equipe de Física Roteiro e Lista de Recuperação de

Leia mais

CAPÍTULO V CISALHAMENTO CONVENCIONAL

CAPÍTULO V CISALHAMENTO CONVENCIONAL 1 I. ASPECTOS GERAIS CAPÍTULO V CISALHAMENTO CONVENCIONAL Conforme já foi visto, a tensão representa o efeito de um esforço sobre uma área. Até aqui tratamos de peças submetidas a esforços normais a seção

Leia mais

ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE

ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ESTADO DE MATO GROSSO SECRETARIA DE CIÊNCIA E TECNOLOGIA UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP DEPARTAMENTO DE ENGENHARIA CIVIL NÚCLEO CENTRAL DE INÉRCIA (NCI) A partir da

Leia mais

Capítulo 7 Conservação de Energia

Capítulo 7 Conservação de Energia Função de mais de uma variável: Capítulo 7 Conservação de Energia Que para acréscimos pequenos escrevemos Onde usamos o símbolo da derivada parcial: significa derivar U parcialmente em relação a x, mantendo

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (D) 80 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 0 cm a medida, em cm, de XZ é: (A) 0 (B)

Leia mais

Ação do vento. c) calcular a pressão dinâmica q:

Ação do vento. c) calcular a pressão dinâmica q: Ação do vento Neste item são apresentados os principais procedimentos para a determinação da ação do vento sobre edificações, extraídos da NBR 6123 (ABNT, 1988). 2.3.1 Procedimentos para o cálculo das

Leia mais

Para análise e solução dos problemas mais importantes de engenharia de solos é necessário o conhecimento das características de resistência ao

Para análise e solução dos problemas mais importantes de engenharia de solos é necessário o conhecimento das características de resistência ao Vários materiais sólidos empregados em construção normalmente resistem bem as tensões de compressão, porém têm uma capacidade bastante limitada de suportar tensões de tração e de cisalhamento. Geralmente

Leia mais

RESOLUÇÕES DA PROVA DE FÍSICA UFC 2006. PROFESSOR Célio Normando

RESOLUÇÕES DA PROVA DE FÍSICA UFC 2006. PROFESSOR Célio Normando RESOLUÇÕES DA PROVA DE FÍSICA UFC 006 Ari Duque de Caxias Ari Washington Soares Ari Aldeota Da 5ª Série ao Pré-Vestibular Sede Hildete de Sá Cavalcante (da Educação Infantil ao Pré-Vestibular) Rua Monsenhor

Leia mais

ESTUDO GRÁFICO DOS MOVIMENTOS. Gráfico posição x tempo (x x t)

ESTUDO GRÁFICO DOS MOVIMENTOS. Gráfico posição x tempo (x x t) ESTUDO GRÁFICO DOS MOVIMENTOS No estudo do movimento é bastante útil o emprego de gráficos. A descrição de um movimento a partir da utilização dos gráficos (posição x tempo; velocidade x tempo e aceleração

Leia mais

Ações dos Ventos nas Edificações

Ações dos Ventos nas Edificações Ações dos Ventos nas Edificações Cálculo da pressão do vento atuante nas estruturas FTC-116 Estruturas Metálicas Eng. Wagner Queiroz Silva UFAM Ação do vento Vento = movimento de massas de ar É produzido

Leia mais

Podemos considerar a elipse como uma circunferência achatada. Para indicar o maior ou menor achatamento, definimos a excentricidade:

Podemos considerar a elipse como uma circunferência achatada. Para indicar o maior ou menor achatamento, definimos a excentricidade: Leis de Kepler Considerando um referencial fixo no Sol, por efeito da lei da gravitação universal, o movimento dos planetas ao redor do Sol acontece segundo as três leis de Kepler. Na verdade, as leis

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro

Leia mais

As assíntotas são retas que passam no centro da hipérbole e tem coeficiente angular m = b / a e m = b / a, logo temos:

As assíntotas são retas que passam no centro da hipérbole e tem coeficiente angular m = b / a e m = b / a, logo temos: Exercício 01. Dada à hipérbole de equação 5x 2 4y 2 20x 8y 4 = 0 determine os focos e as equações das assintotas. Escrevendo a hipérbole da maneira convencional teríamos 5[x 2 4x + 4 4] 4[y 2 + 2y + 1]

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

Noções de Topografia Para Projetos Rodoviarios

Noções de Topografia Para Projetos Rodoviarios Página 1 de 9 Noções de Topografia Para Projetos Rodoviarios Capitulos 01 - Requisitos 02 - Etaqpas 03 - Traçado 04 - Trafego e Clssificação 05 - Geometria 06 - Caracteristicas Técnicas 07 - Distancia

Leia mais

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / /

NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO ALUNO(A): Nº TURMA: TURNO: DATA: / / NTD DE FÍSICA 1 a SÉRIE ENSINO MÉDIO Professor: Rodrigo Lins ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1) Na situação esquematizada na f igura, a mesa é plana, horizontal e perfeitamente polida. A

Leia mais

ENGENHARIA CIVIL. Baseado nestas informações, atenda ao solicitado abaixo.

ENGENHARIA CIVIL. Baseado nestas informações, atenda ao solicitado abaixo. 1 Você foi designado para fazer parte de uma equipe de um projeto de drenagem urbana. Em um dos trechos, está prevista a construção de um canal retangular em concreto, enterrado no solo, conforme mostra

Leia mais

Geomecânica dos resíduos sólidos

Geomecânica dos resíduos sólidos III Conferência Internacional de Gestão de Resíduos da América Latina Geomecânica dos resíduos sólidos urbanos: uma introdução Miriam Gonçalves Miguel Faculdade de Engenharia Civil, Arquitetura e Urbanismo

Leia mais

Produtos. 4.1 Produtos escalares

Produtos. 4.1 Produtos escalares Capítulo 4 Produtos 4.1 Produtos escalares Neste tópico iremos estudar um novo tipo de operação entre vetores do plano e do espaço. Vamos fazer inicialmente uma consideração geométrica, como segue. Seja

Leia mais

γ = 5,0m/s 2 2) Cálculo da distância percorrida para a velocidade escalar reduzir-se de 30m/s para 10m/s. V 2 2

γ = 5,0m/s 2 2) Cálculo da distância percorrida para a velocidade escalar reduzir-se de 30m/s para 10m/s. V 2 2 OBSERVAÇÃO (para todas as questões de Física): o valor da aceleração da gravidade na superfície da Terra é representado por g. Quando necessário, adote: para g, o valor 10 m/s 2 ; para a massa específica

Leia mais

Relatório-Síntese 2000 ANEXO Engenharia Civil

Relatório-Síntese 2000 ANEXO Engenharia Civil Capítulo 6 Prova 103 1 Você foi designado para fazer parte de uma equipe de um projeto de drenagem urbana. Em um dos trechos, está prevista a construção de um canal retangular em concreto, enterrado no

Leia mais

Exercícios 6 Aplicações das Leis de Newton

Exercícios 6 Aplicações das Leis de Newton Exercícios 6 plicações das Leis de Newton Primeira Lei de Newton: Partículas em Equilíbrio 1. Determine a intensidade e o sentido de F de modo que o ponto material esteja em equilíbrio. Resp: = 31,8 0,

Leia mais

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos

Leia mais

Lista de Eletrostática da UFPE e UPE

Lista de Eletrostática da UFPE e UPE Lista de Eletrostática da UFPE e UPE 1. (Ufpe 1996) Duas pequenas esferas carregadas repelem-se mutuamente com uma força de 1 N quando separadas por 40 cm. Qual o valor em Newtons da força elétrica repulsiva

Leia mais

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se

Leia mais

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 * Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b

Leia mais

DESENVOLVIMENTO DE SOFTWARE PARA CÁLCULO DE MUROS DE ARRIMO PEDRO CRISTIANO DO COUTO NETO

DESENVOLVIMENTO DE SOFTWARE PARA CÁLCULO DE MUROS DE ARRIMO PEDRO CRISTIANO DO COUTO NETO Centro Universitário de Brasília Faculdade de Tecnologia e Ciências Sociais Aplicadas FATECS Graduação de Engenharia Civil DESENVOLVIMENTO DE SOFTWARE PARA CÁLCULO DE MUROS DE ARRIMO PEDRO CRISTIANO DO

Leia mais