A afirmação (ii) está errada. A afirmação correta seria "Uma função cuja derivada é positiva em um intervalo é crescente nesse intervalo.

Tamanho: px
Começar a partir da página:

Download "A afirmação (ii) está errada. A afirmação correta seria "Uma função cuja derivada é positiva em um intervalo é crescente nesse intervalo."

Transcrição

1 Questão nº 1 A afirmação (i) "A função f(x) = tg x... f' (x) = sec x" está correta. A afirmação (ii) está errada. A afirmação correta seria "Uma função cuja derivada é positiva em um intervalo é crescente nesse intervalo." A afirmação (iii) está errada. A afirmação correta seria "Logo, a função tangente é crescente em qualquer intervalo do seu domínio." A conclusão (iv) está evidentemente errada ( 1 não é maior que 1) e, apesar de 3 π π > 4 4, não se pode concluir que 3π π tg > tg 4 4 porque π 3π, 4 4 não é subconjunto do domínio da função tangente ( π π π, que está compreendido entre e 3, não pertence ao 4 4 domínio da função tangente). (valor: 0,0 pontos) Observação: Na argumentação acima, tem-se que (i) e (ii) implicam (iii) e (iv) (que são falsos). A falha do argumento se concentra em (ii). 1

2 Questão nº a) Se a não é divisível por 3, então a 1 ou a (mod 3). Daí, a 1 ou a 4 (mod 3), ou seja, em ambos os casos, a 1 (mod 3). (valor: 10,0 pontos) b) Suponhamos que (a + b ), 1 º caso: 3 a e b. Tem-se, então, b 0 (mod 3) e, pela parte a), a 1 (mod 3); donde a + b 1(mod 3), o que é incompatível com a hipótese. º caso: Por simetria, não se pode ter a e 3 b. 3 º caso: Falta examinar o caso em que 3 a e 3 b. Neste caso, tem-se, pela parte a), a + b (mod 3), ou seja a + b (mod 3), o que é também incompatível com a hipótese. Logo, a e b. Alternativa: não usar congruências e escrever a = 3 k + r, onde r pode ser 0,1 ou, e prosseguir a argumentação. (valor: 10,0 pontos)

3 Questão nº 3 a) f não é injetora pois, por exemplo, f(1) = 3 e f(14) = 9 = 3, em Z 6 ; logo não pode ser invertível. Pode-se também provar que f não é sobrejetora, pois, por exemplo, não pertence à imagem de f. (valor: 10,0 pontos) b) 1 a alternativa: q = 3p + 1 3p = q 1 p = 3 1. (q 1) p = 9(q 1) p = 9q 9, isto é, f 1 (q) = 9q a alternativa: O estudante, se não souber inverter a função algebricamente, poderá demonstrar iniciativa construindo a tabela para a função f e daí montar a tabela para a inversa, tendo em vista que o domínio de cada uma destas funções tem 6 elementos e os cálculos não são tão complicados. (valor: 10,0 pontos) Obs.: Serão também aceitas respostas com: alguma pesquisa sobre valores de f e de f 1 ; a apresentação da inversa mesmo sem prova. 3

4 Questão nº 4 1ª alternativa: a) β α x γ b a Contados a partir do nível dos olhos de Maria, sejam: a a altura total da estátua, incluindo o pedestal; b a altura do pedestal, x a distância dos olhos de Maria à estátua, medida na perpendicular à estátua. O ângulo γ será o ângulo sob o qual Maria vê a estátua. É preciso determinar x de modo que γ seja máximo. É claro que d = a b, altura da estátua excluindo o pedestal, pode ser introduzido no problema em substituição a a ou a b. (valor: 10,0 pontos) tg α tg β (a b) x b) Tem-se: tg γ = tg (α β) = = 1. =f(x), com x, a, b e a b > 0 e +tgα tgβ x + ab (a b) (ab x ) f (x) = (x + ab) que se anula para x > 0 somente quando x = ab, passando de valores positivos para negativos, o que confirma que, para este valor de x, a função f(x) passa por um máximo. Sendo a função arctg uma função crescente, para esse valor de x, tem-se que o valor de γ também será máximo. Logo o valor de x procurado é x = ab (valor: 10,0 pontos) ª alternativa: a) β α x γ b a (valor: 10,0 pontos) a b (a b)(ab x ) b) tg α = a x e tg β = b x. Como γ = arctg a x arctg b x tem-se que γ' = + = x +a x +b (x + a )(x + b ) que se anula para x > 0 somente quando x = ab, passando de valores positivos para negativos, o que confirma que, para este valor de x, γ passa por um máximo. Logo o valor de x procurado é x = ab (valor: 10,0 pontos) 4

5 Questão nº 5 a) Não. (valor: 5,0 pontos) b) Um exemplo de série convergente é o da série n 1 ( 1) n=1 n (converge porque é uma série alternada em que os valores absolutos dos termos formam uma seqüência decrescente tendendo a 0). Tomada, entretanto, a série só dos termos pares, tem-se: n ( 1) = = n=1 n n=1 n n=1 n e esta última é divergente para, pois é a série harmônica. (valor: 15,0 pontos) 5

6 PARTE C (BACHARELADO) Questão nº a alternativa: Consideremos γ orientada positivamente. O valor da integral I é igual a π ix Res. Calculando os resíduos da z int γ 1+ z função em seus pólos, i e i, temos: Res i 1 z i 1 1 = lim = lim = z i 1+ z 1+ z z i z + i i z De modo análogo, calcula-se o resíduo em z = i, que dá 1 i. Daí, têm-se os 4 casos: 1. γ não contém nem i nem i em seu interior, então: I = 0;. γ contém i no interior, mas não i, então: I = i x 1 π = π i 1 3. γ contém i no interior, mas não i, então: I = πi x = π; i γ contém i e i, no interior, então: I = π i + =0 i i Se γ estiver orientada negativamente, os valores da integral serão os simétricos dos valores encontrados acima. a alternativa: Consideremos γ orientada positivamente. Decompondo f em frações simples, chega-se a: f(z) = 1 = i z z +i z i Têm-se novamente os 4 casos: 1. γ não contém nem i nem i em seu interior; então a função é analítica no interior de γ e I = 0;. γ contém i no interior, mas não i; então a parcela i 1 x z + i é analítica no interior de γ, e o valor da integral se reduz à integral da outra parcela que, pela Fórmula de Cauchy 1 f(z) f(z 0 ) = π i! z z 0 dz, é: I = i π i x ( 1) = ; π 3. γ contém i no interior, mas não i; então é a parcela i 1 x que é analítica no interior de γ, e o valor da integral será o valor da z i integral da outra parcela, que também pode ser calculada pela Fórmula de Cauchy dando: i I = πi x () 1 = π; 4. γ contém i e i, no interior, então o valor da integral é a soma dos valores de I nos casos e 3, isto é: I = π π = 0. Se γ estiver orientada negativamente, os valores da integral serão os simétricos dos valores encontrados acima. (valor: 0,0 pontos) 6

7 Questão nº 7 Se u é harmônica, tem-se que: u = 0, mas u u u u u = u = + u e, analogamente : x x x x x u y u u = + u, donde : y y u u u = + + u u = 0 x y u u Se u é harmônica, tem-se então que + = 0, mas este 1º membro é o quadrado do módulo do gradiente de u. Sendo grad u = 0 x y no plano, que é conexo, tem-se u = constante. Alternativas: o graduando pode trabalhar com a diferencial, ou mesmo com as derivadas parciais de u em vez do gradiente. (valor: 0,0 pontos) 7

8 Questão nº 8 Esse resultado é verdadeiro no caso em que t 0 > 0 (dado não informado). Com efeito, se (A ) n=0 t 0 n converge, então ( n ) t 0 n lim A = 0. Logo, sendo c um número fixado entre 0 e 1, existe n 0 tal que para n n 0 tem-se que 0 < t A 0 n < c < 1. Mas, então, como a exponencial de base menor que 1 é decrescente, tem-se que, para todo n n 0 e t t > 0 : 0 < A = ( A ) 0 t t 0 t/t 0 n n t 0 A porque n t t0 1. Isto é, a série t (A n) admite uma série majorante convergente e essa majoração é a mesma para todo t. Então, (pelo critério M de n=0 Weierstrass) a série t (A n ) é uniformemente convergente. n=0 Alternativa: Se t 0 < 0, a tese não pode ser verdadeira, pois, neste caso, 0 [ t 0, [ e esta série não converge quando t = 0. (valor: 0,0 pontos) 8

9 Questão nº 9 1ª alternativa: Os autovalores dessa matriz são as raízes de λ λ λ = 0. São, portanto, λ = 0, e 3 e os respectivos autovetores são: (x, 0, 0), (y, y, y) e (z, 0, z). Daí tem-se, tomando a Forma Canônica de Jordan para A, que: A = P J P 1. onde J= 0 0, P= e P = Logo, A n = P J n P 1, mas: n n n n n n n n 1 n 1 n J = 0 0 e PJ P = 0 0. P = 0 0. n n n n n n ª alternativa: O polinômio característico é P(λ) = λ ( λ) (3 λ). Dividindo λ n por P(λ) teremos λ n = P(λ). Q (λ) + a λ + b λ + c. Para calcular a, b, e c, fazemos sucessivamente λ = 0, λ = e λ = 3, obtendo 0 = c, n = 4a + b e 3 n = 9a + 3b. Daí, a = 3 n 1 n 1, b = 3. n 1. 3 n 1, c = 0. Pelo Teorema de Cayley-Hamilton, P (A) = 0. Daí, n n n A n = a A + ba. Como n n A = e A = 0 0, A = 0 0 n n n ª alternativa: Calcular A, A 3, sugerir uma expressão para A n e provar por indução. (valor: 0,0 pontos) 9

10 Questão nº 10 1ª alternativa: Considerando as parametrizações em (θ, ϕ), S (θ, ϕ) = (R sen ϕ cos θ, R sen ϕ sen θ, R cos ϕ) para a esfera e C (θ, ϕ) = (R cos θ, R sen θ, R cos ϕ) para o cilindro, por um cálculo análogo têm-se: S θ = ( R sen ϕ sen θ, R sen ϕ cos θ, 0) e S ϕ = (R cos ϕ cos θ, R cos ϕ sen θ, R sen ϕ) na esfera e C θ = ( R sen θ, R cos θ, 0) e C ϕ = (0, 0, R sen ϕ) no cilindro. Daí, Su Sv = Cu Cv = R sen ϕ em ambas as superfícies. ª alternativa: Considerando as parametrizações em (θ, ϕ), S (θ, ϕ) = (R sen ϕ cos θ, R sen ϕ sen θ, R cos ϕ) para a esfera e C (θ, ϕ) = (R cos θ, R sen θ, R cos ϕ) para o cilindro, por um cálculo análogo têm-se: S θ = ( R sen ϕ sen θ, R sen ϕ cos θ, 0) e S ϕ = (R cos ϕ cos θ, R cos ϕ sen θ, R sen ϕ) na esfera e C θ = ( R sen θ, R cos θ, 0) e C ϕ = (0, 0, R sen ϕ) no cilindro. Daí, EG F = R 4 sen ϕ, em ambas as superfícies. 3ª alternativa: Tomando coordenadas (u, v), o cilindro de raio R pode ser parametrizado por: C (u, v) = (R cos u, R sen u, v) e a esfera por: S(u,v) = ( R v cos u, R v sen u, v). Relativamente a estas parametrizações, a projeção f corresponde à identidade em (u, v), isto é, os pontos correspondentes por f em cada uma das superfícies são imagens do mesmo par (u, v). Assim, basta ver o que acontece com a área da imagem de uma região no domínio das parametrizações em cada uma destas superfícies. Ora, a área de uma tal imagem pode ser calculada, em cada uma das superfícies, pela integral dupla da expressão EG F estendida ao mesmo domínio, onde E = <S u, S u > ; G = <S v, S v > e F = <S u, S v > na esfera e expressões análogas para o cilindro. Como u v S = ( R v sen u, R v cos u, 0), S = ( v cos u / R v, v sen u / R v, 1) C = ( Rsen u, R cos u, 0) e C = (0, 0, 1). u v tem-se que na esfera: EG F = (R v ) (sen u + cos u) [1 + v (cos u + sen u) / (R v )] [v sen u cos u v cos u sen u] = R e no cilindro: EG F = R (sen u + cos u) x 1 0 = R. Logo, áreas de regiões correspondentes são iguais. 10

11 4ª alternativa: Tomando coordenadas (u, v), o cilindro de raio R pode ser parametrizado por: C (u, v) = (R cos u, R sen u, v) e a esfera por: S(u,v) = ( R v cos u, R v sen u, v). Relativamente a estas parametrizações, a projeção f corresponde à identidade em (u, v), isto é, os pontos correspondentes por f em cada uma das superfícies são imagens do mesmo par (u, v). Assim, basta ver o que acontece com a área da imagem de uma região D no domínio das parametrizações em cada uma destas superfícies. Ora, a área de uma tal imagem na esfera pode ser calculada, pela integral dupla Su Sv du dv e no cilindro por D Cu Cv du dv, onde S u = ( R v sen u, R v cos u, 0), S v= ( v cos u / R v, v sen u / R v, 1), D C = ( Rsen u, R cos u, 0) e C = (0, 0, 1). u v Como Su Sv = ( R v cos u, R v sen u,v) = R e Cu Cv = (R cos u, R sen u,0) = R, tem-se que áreas de regiões correspondentes são iguais. (valor: 0,0 pontos) 11

12 PARTE C (LICENCIATURA) Questão nº 11 a) A resposta está certa. Melhor seria se o estudante respondesse aproximadamente 50%, de vez que ele só dispõe do desenho e não tem os dados numéricos. (valor: 10,0 pontos) b) A resposta do aluno está errada. A resposta certa seria afirmar que não se pode saber quem gastou mais em termos absolutos. A informação que se pode tirar do gráfico é que o estado I gastou com segurança uma porcentagem de sua arrecadação maior do que o estado II, em relação à própria arrecadação, mas, sem o dado sobre os respectivos totais de arrecadação, não se podem comparar as quantias gastas por um e por outro. (valor: 10,0 pontos) 1

13 Questão nº 1 a) Como y = 1 x, 0 x 1 x + y = 1, 0 x 1e 0 y 1, tem-se que o gráfico solicitado é o arco da circunferência de raio 1 e centro (0, 0), que fica no 1º quadrante. (valor: 10,0 pontos) b) A figura em questão pode ser decomposta em um triângulo de base 1 e altura 3 π π π, e um setor circular de ângulo central =. 3 6 Então sua área pode ser calculada como a soma de 1 x 1 x 3 = 3 com 8 1 x1 π π x =. 6 1 Ou seja, a área é: 3 + π. (valor: 10,0 pontos)

14 Questão nº 13 a) Qualquer grandeza cuja variação seja, em cada instante, proporcional ao seu valor nesse instante pode ser modelada por uma função exponencial que é a inversa do logaritmo. Alguns exemplos são: em Química, a quantidade de uma substância radioativa; em Economia, um capital empregado a juros; em Biologia, certas populações (de bactérias, por exemplo), etc. (valor: 10,0 pontos) b) Sendo x(t) a medida dessa grandeza no instante t, tem-se: x =kxe daí, se x (t 0 ) 0, tem-se: In x (t)/ x (t 0 ) = k (t t 0 ) ou x (t) = x (t 0 ) exp [k (t t 0 )] (e esta vale mesmo para x(t 0 ) = 0) (valor: 10,0 pontos) 14

15 Questão nº 14 a) Como a linha horizontal e o fio de prumo fazem um ângulo reto, o mesmo se dando com a borda do aparelho e o canudo, o ângulo formado pelo fio de prumo e o canudo terá por medida p + 90 = 90 + v, logo, p = v. (valor: 10,0 pontos) b) Seja W o topo da árvore, X o ponto em que estão os olhos do observador, Z o ponto de encontro entre a vertical traçada do topo da árvore e a linha que parte de X no plano horizontal e que encontra essa vertical. O triângulo XZW é retângulo em Z e o observador pode medir o ângulo <X = v. Em seguida, andando na direção de Z uma distância d, o observador faz uma nova medida a partir do ponto Y, obtendo o ângulo p. Considerando os triângulos retângulos XWZ e YWZ, tem-se que tg v 1 = x/(d + YZ) e tg v = x/yz Então, tg v 1 = x. tg v / (d. tg v + x), de onde x (tg v tg v 1 ) = d. tg v 1. tg v. Como os ângulos v 1 e v são diferentes (pois o ponto Y se encontra mais próximo de Z) e estão ambos entre 0 e 180, tem-se que a diferença tg v tg v 1 não se anula; logo, pode-se escrever: x = d. tg v 1. tg v / (tg v tg v 1 ), como a expressão que dá a altura pedida. Observação: Uma simplificação interessante no processo se dá quando seja possível localizar o aparelho de forma que os valores de v 1 e d 3 d (3+ 3) v sejam ângulos com tangente conhecida como por exemplo o caso em que v 1 = 45 e v = 60 quando então x= =. 3 1 (valor: 10,0 pontos) 15

16 Questão nº 15 a) 1 a alternativa: P é um octaedro regular inscrito no tetraedro, pois possui quatro pares de faces paralelas. Esses pares são formados por uma face do octaedro obtida pelo corte do plano que passa pelos três pontos médios de cada um dos vértices e por uma face triangular inscrita numa face do tetraedro. a alternativa: O aluno também poderá, simplesmente, apresentar um desenho dos poliedros como, por exemplo, o representado na figura do octaedro inscrito no tetraedro. (valor: 5,0 pontos) b) Como as arestas de T foram divididas ao meio para se obterem as arestas de t, e como T e t são tetraedros regulares figuras semelhantes, portanto, e com razão de semelhança igual a ½ o volume de T é oito vezes o volume de t. (valor: 5,0 pontos) c) Como V(T) = 4 V(t) + V(P) e V(T) = 8 V(t), tem-se: V(P) = 8 V(t) 4 V(t) = 4 V(t). (valor: 5,0 pontos) d) 1 a alternativa: O jogo poderá ser formado por 4 tetraedros regulares iguais a t (com arestas do tamanho da metade das de T) e quatro tetraedros não regulares, obtidos por cortes de P, de tal forma que cada dois desses tetraedros não regulares formem uma das pirâmides de base quadrada que compõem P. a alternativa: O aluno também poderá, simplesmente, apresentar um desenho dos poliedros como, por exemplo, o representado na figura anterior, onde aparece a diagonal do quadrado da base das duas pirâmides que formam o octaedro P. (valor: 5,0 pontos) 16

Capítulo 6. Prova. Relatório-Síntese 2000 ANEXO Matemática

Capítulo 6. Prova. Relatório-Síntese 2000 ANEXO Matemática Capítulo 6 Prova 113 114 QUESTÕES OBJETIVAS 1 Sendo este o gráfico de f(x), (C) 1 o ou 4 o (D) 2 o ou 3 o (E) 3 o ou 4 o o gráfico de f( x) será: 3 Multiplicando os números 42 567 896 095 416 765 443 769

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III

UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0 QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada

Leia mais

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 ( Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5 Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então

Leia mais

UPE/VESTIBULAR/2002 MATEMÁTICA

UPE/VESTIBULAR/2002 MATEMÁTICA UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas

Leia mais

TD GERAL DE MATEMÁTICA 2ª FASE UECE

TD GERAL DE MATEMÁTICA 2ª FASE UECE Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Vestibular - UECEVest Fones: 3101.9658 / E-mail: uecevest_itaperi@yahoo.com.br Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-903 Fone: 3101-9658/Site:

Leia mais

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n ITA MATEMÁTICA NOTAÇÕES = {,,,...} : conjunto dos números reais [a, b] = {x ; a x b} [a, b[ = {x ; a x < b} ]a, b[ = {x ; a < x < b} A\B = {x; x A e x B} k a n = a + a +... + a k, k n = k a n x n = a 0

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2

VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2 VESTIULR UFPE UFRPE / 1998 2ª ETP NOME DO LUNO: ESOL: SÉRIE: TURM: MTEMÁTI 2 01. nalise as afirmações: 0-0) 4 + 2 + 4 2 = 12 (as raízes quadradas são as positivas) 4 1-1) = 0,666... 11 log 2-2) 2 = 2 2

Leia mais

CONCURSO PÚBLICO DE PROVAS E TÍTULOS EDITAL ESPECÍFICO 92/ CAMPUS FORMIGA PROVA OBJETIVA - PROFESSOR EBTT ÁREA DE MATEMÁTICA EDUCAÇÃO MATEMÁTICA

CONCURSO PÚBLICO DE PROVAS E TÍTULOS EDITAL ESPECÍFICO 92/ CAMPUS FORMIGA PROVA OBJETIVA - PROFESSOR EBTT ÁREA DE MATEMÁTICA EDUCAÇÃO MATEMÁTICA MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE MINAS GERAIS CAMPUS FORMIGA Rua São Luiz Gonzaga, s/n Bairro São Luiz Formiga

Leia mais

Lista de Exercícios de Cálculo 3 Primeira Semana

Lista de Exercícios de Cálculo 3 Primeira Semana Lista de Exercícios de Cálculo 3 Primeira Semana Parte A 1. Se v é um vetor no plano que está no primeiro quadrante, faz um ângulo de π/3 com o eixo x positivo e tem módulo v = 4, determine suas componentes.

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a. GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual

Leia mais

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2 NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,

Leia mais

Nas respostas aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações

Nas respostas aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações PREPARAR EXAME NACINAL NACINAL PRVA-MDEL Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A

Leia mais

Ordenar ou identificar a localização de números racionais na reta numérica.

Ordenar ou identificar a localização de números racionais na reta numérica. Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura:

1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura: 7. Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MAN ˆ é igual a a) 5. b) 5.

Leia mais

QUESTÕES ABERTAS ESPECÍFICAS PARA OS FORMANDOS DE BACHARELADO. b) cos (α + β) = cos (α) cos (β) sen (α) sen (β) e (valor: 10,0 pontos)

QUESTÕES ABERTAS ESPECÍFICAS PARA OS FORMANDOS DE BACHARELADO. b) cos (α + β) = cos (α) cos (β) sen (α) sen (β) e (valor: 10,0 pontos) Questão nº QUESTÕES ABERTAS ESPECÍFICAS PARA OS FORMANDOS DE BACHARELADO i( + β) e = cos( + β) + isen( + β ) () i iβ e. e = (cos + isen ). (cos β + isen β) = =coscos β +i sensen β +isencos β +icossen β

Leia mais

(a) Determine a velocidade do barco em qualquer instante.

(a) Determine a velocidade do barco em qualquer instante. NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química - 10/10/2013. 1 a QUESTÃO : Um barco a vela de massa m = 1 parte

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y). MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ] MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere

Leia mais

Volume de Sólidos. Principio de Cavalieri

Volume de Sólidos. Principio de Cavalieri Volume de Sólidos Principio de Cavalieri Volume Entenderemos por sólido qualquer um dos seguintes subconjuntos do espaço: cilindro, cone, esfera, poliedro (que iremos definir no próximo capítulo) ou qualquer

Leia mais

AFA Sabe-se que o isótopo do carbono, C 14, tem uma meia vida de 5760 anos, isto é, o número N de átomos de C 14 na substância é

AFA Sabe-se que o isótopo do carbono, C 14, tem uma meia vida de 5760 anos, isto é, o número N de átomos de C 14 na substância é AFA 7. Uma pessoa caminha, ininterruptamente, a partir de um marco inicial, com velocidade constante, em uma pista circular. Ela chega à marca dos 5 m quando são exatamente 5 horas. Se às 5 horas e 5 minutos

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA 1 UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE MATEMÁTICA 1 a Lista de exercícios MAT 41 - Cálculo III - 01/II Coordenadas no espaço 1. Determinar o lugar geométrico

Leia mais

( ) ( ) FUVEST 08/01/ /11/2008 Seu pé direito nas melhores Faculdades MATEMÁTICA

( ) ( ) FUVEST 08/01/ /11/2008 Seu pé direito nas melhores Faculdades MATEMÁTICA FUVEST 08/0/009 //008 Seu pé direito nas melhores Faculdades MTEMÁTIC 0. Na figura, a reta r tem equação y x + no plano cartesiano Oxy. lém disso, os pontos 0,,, estão na reta r, sendo 0 0,). Os pontos

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρ cis α, onde: ρ = i i = + ) = tg α = = ;

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza

Geometria Analítica. Cônicas. Prof Marcelo Maraschin de Souza Geometria Analítica Cônicas Prof Marcelo Maraschin de Souza Hipérbole É o conjunto de todos os pontos de um plano cuja diferença das distâncias, em valor absoluto, a dois pontos fixos desse plano é constante.

Leia mais

RESOLUÇÕES E RESPOSTAS

RESOLUÇÕES E RESPOSTAS MATEMÁTICA GRUPO CV 0/00 RESOLUÇÕES E RESPOSTAS QUESTÃO a) No o 40 reservatório, há 600 (= 40 + 60) litros de mistura; em cada litro há L 600 de álcool. No o reservatório, há 40 (= 80 + 60) litros de mistura;

Leia mais

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015

MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 2015 MAT27 ÁLGEBRA LINEAR PARA ENGENHARIA I Gabarito da 2 a Prova - 1 o semestre de 201 Nesta prova considera-se fixada uma orientação do espaço e um sistema de coordenadas Σ (O, E) em E 3, em que E é uma base

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970

A Matemática no Vestibular do ITA. Material Complementar: Coletânea de Questões Isoladas ITA 1970 A Matemática no Vestibular do ITA Material Complementar: Coletânea de Questões Isoladas ITA 1970 Essas 24 questões foram coletadas isoladamente em diversas fontes bibliográficas. Seguindo sugestão de uma

Leia mais

Assinale as proposições verdadeiras some os resultados e marque na Folha de Respostas.

Assinale as proposições verdadeiras some os resultados e marque na Folha de Respostas. PROVA DE MATEMÁTICA a AVALIAÇÃO UNIDADE 8 a SÉRIE E M _ COLÉGIO ANCHIETA-A ELAORAÇÃO DA PROVA: PROF OCTAMAR MARQUES PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÕES DE A 8 Assinale as proposições verdadeiras

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 2007-2 a Chamada Proposta de resolução 1. Organizando todas as somas que o Paulo pode obter, com recurso a uma tabela, temos: + 1 2 3 4 5 6-6 -5-4 -3-2 -1 0-5 -4-3

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρe iα, onde: ρ = i i = + ) = tg α = = ; como

Leia mais

MATEMÁTICA A - 11o Ano Geometria - Produto escalar Propostas de resolução

MATEMÁTICA A - 11o Ano Geometria - Produto escalar Propostas de resolução MTEMÁTI - 11o no Geometria - Produto escalar Propostas de resolução Eercícios de eames e testes intermédios 1. omo para qualquer ponto P da circunferência de diâmetro [RS] o ângulo RP Q é reto, então para

Leia mais

MATEMÁTICA A - 10o Ano Geometria Propostas de resolução

MATEMÁTICA A - 10o Ano Geometria Propostas de resolução MATEMÁTIA A - 10o Ano Geometria Propostas de resolução Eercícios de eames e testes intermédios 1. omo os pontos A, B e têm abcissa 1, todos pertencem ao plano de equação = 1. Assim a secção produida no

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

UFSC. Matemática (Violeta) 21) Resposta: 38. Comentário. 01. Incorreta. f(0, 3) = f(0, 4) = Correta. m < 0 m 1 2 < 0.

UFSC. Matemática (Violeta) 21) Resposta: 38. Comentário. 01. Incorreta. f(0, 3) = f(0, 4) = Correta. m < 0 m 1 2 < 0. UFSC Matemática (Violeta) 1) Resposta: 8 01. Incorreta. f(0, ) = f(0, ) = 0 0. Correta. m < 0 m 1 < 0 1 Logo, f m = m 1 m 1 < m 1 < m 0. Correta. Pela função f(x) = x x z 08. Incorreta. Im(f) = z 16. Incorreta.

Leia mais

Dupla Projeção Ortogonal. PARTE III REPRESENTAÇÃO DO PLANO 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares

Dupla Projeção Ortogonal. PARTE III REPRESENTAÇÃO DO PLANO 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares 31 PARTE III REPRESENTAÇÃ D PLAN 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares b) um ponto e uma reta que não se pertencem 32 c) duas retas concorrentes d)

Leia mais

III REPRESENTAÇÃO DO PLANO. 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares

III REPRESENTAÇÃO DO PLANO. 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares 59 MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD020 Geometria Descritiva Curso

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2

Leia mais

Questão 01 EB EA = EC ED. 6 x = 3. x =

Questão 01 EB EA = EC ED. 6 x = 3. x = Questão 0 Seja E um ponto eterno a uma circunferência. Os segmentos EA e ED interceptam essa circunferência nos pontos B e A, e, C e D, respectivamente. A corda AF da circunferência intercepta o segmento

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 006 - a Fase Proposta de resolução GRUPO I. Como, pela observação da figura podemos constatar que os gráficos das duas funções se intersetam num ponto de ordenada

Leia mais

( ) ( ) ( ) 23 ( ) Se A, B, C forem conjuntos tais que

( ) ( ) ( ) 23 ( ) Se A, B, C forem conjuntos tais que Se A, B, C forem conjuntos tais que ( B) =, n( B A) n A =, nc ( A) =, ( C) = 6 e n( A B C) 4 n B =, então n( A ), n( A C), n( A B C) nesta ordem, a) formam uma progressão aritmética de razão 6. b) formam

Leia mais

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira: Aula 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r se define da seguinte maneira: (r1, r ) 0o se r1 e r são coincidentes, Se as retas são concorrentes, isto

Leia mais

SUMÁRIO CAPÍTULO 1 CAPÍTULO 2

SUMÁRIO CAPÍTULO 1 CAPÍTULO 2 SUMÁRIO CAPÍTULO 1 NÚMEROS COMPLEXOS 1 Somas e produtos 1 Propriedades algébricas básicas 3 Mais propriedades algébricas 5 Vetores e módulo 8 Desigualdade triangular 11 Complexos conjugados 14 Forma exponencial

Leia mais

Observação: Os sistemas de coordenadas considerados são cartesianos ortogonais. n(a B) = 23, n(b A) = 12, n(c A) = 10, n(b C) = 6 e n(a B C) = 4,

Observação: Os sistemas de coordenadas considerados são cartesianos ortogonais. n(a B) = 23, n(b A) = 12, n(c A) = 10, n(b C) = 6 e n(a B C) = 4, NOTAÇÕES N = {0, 1, 2, 3,...} i: unidadeimaginária;i 2 = 1 Z: conjuntodosnúmerosinteiros z : módulodonúmeroz C Q: conjuntodosnúmerosracionais z: conjugadodonúmeroz C R: conjuntodosnúmerosreais Re z: parterealdez

Leia mais

Programa Anual MATEMÁTICA EXTENSIVO

Programa Anual MATEMÁTICA EXTENSIVO Programa Anual MATEMÁTICA EXTENSIVO Os conteúdos conceituais de Matemática estão distribuídos em 5 frentes. A) Equações do 1º e 2º graus; Estudo das funções; Polinômios; Números complexos; Equações algébricas.

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 017-1 a Fase Proposta de resolução Caderno 1 1. Como 9 =,5 e 5,, temos que 5 < 9 indicados na definição do conjunto, vem que: e assim, representando na reta real os

Leia mais

6.1 equações canônicas de círculos e esferas

6.1 equações canônicas de círculos e esferas 6 C Í R C U LO S E E S F E R A S 6.1 equações canônicas de círculos e esferas Um círculo é o conjunto de pontos no plano que estão a uma certa distância r de um ponto dado (a, b). Desta forma temos que

Leia mais

3ª Série do Ensino Médio

3ª Série do Ensino Médio 3ª Série do Ensino Médio 01. Num laboratório, foi feito um estudo sobre a evolução de uma população de vírus. Ao final de um minuto do início das observações, existia 1 elemento na população; ao final

Leia mais

NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados

NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados ITA006 NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais i: unidade imaginária; i z = x+ iy, x, y = 1 : conjunto dos números reais : conjunto dos números inteiros = {0, 1,, 3,...

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013 Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 Cursos: 1 o Teste Versão A LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função

Leia mais

x Júnior lucrou R$ 4 900,00 e que o estoque por ele comprado tinha x metros, podemos afirmar que 50

x Júnior lucrou R$ 4 900,00 e que o estoque por ele comprado tinha x metros, podemos afirmar que 50 0. O Sr. Júnior, atacadista do ramo de tecidos, resolveu vender seu estoque de um determinado tecido. O estoque tinha sido comprado ao preço de R$,00 o metro. Esse tecido foi revendido no varejo às lojas

Leia mais

MATEMÁTICA. Questões de 01 a 04

MATEMÁTICA. Questões de 01 a 04 GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 01 a 04 01. Considere duas circunferências concêntricas em C, conforme figura, em que a externa representa o círculo trigonométrico e a interna, o velocímetro,

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 2017.1 Gabarito Questão 01 [ 1,25 ] Determine as equações das duas retas tangentes à parábola de equação y = x 2 2x + 4 que passam pelo ponto (2,

Leia mais

1. Verifique se as seguintes igualdades são válidas, seja por integração ou por. + (a + b)x3 3 + abx2 2 + c. + c. + c

1. Verifique se as seguintes igualdades são válidas, seja por integração ou por. + (a + b)x3 3 + abx2 2 + c. + c. + c Universidade Federal de Viçosa Centro de Ciências Eatas Departamento de Matemática a Lista MAT - Cálculo I 7/II. Verifique se as seguintes igualdades são válidas, seja por integração ou por derivação:

Leia mais

Av. João Pessoa, 100 Magalhães Laguna / Santa Catarina CEP

Av. João Pessoa, 100 Magalhães Laguna / Santa Catarina CEP Disciplina: Matemática Curso: Ensino Médio Professor(a): Flávio Calônico Júnior Turma: 3ª Série E M E N T A II Trimestre 2013 Conteúdos Programáticos Data 21/maio 28/maio Conteúdo FUNÇÃO MODULAR Interpretação

Leia mais

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática  Mestrado em Ensino de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 0 Etapa Questão. Considere f : [, ] R a função cujo gráfico

Leia mais

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 UFBA / UFRB 008 1a Fase Matemática Professora Maria Antônia Gouveia QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de

Leia mais

Produto interno e produto vetorial no espaço

Produto interno e produto vetorial no espaço 14 Produto interno e produto vetorial no espaço Sumário 14.1 Produto interno.................... 14. Produto vetorial.................... 5 14..1 Interpretação geométrica da norma do produto vetorial.......................

Leia mais

p a p. mdc(j,k): máximo divisor comum dos números inteiros j e k. n(x) : número de elementos de um conjunto finito X. (a,b) = {x : a < x < b}.

p a p. mdc(j,k): máximo divisor comum dos números inteiros j e k. n(x) : número de elementos de um conjunto finito X. (a,b) = {x : a < x < b}. MATEMÁTICA NOTAÇÕES = {0,,,,...} : conjunto dos números inteiros : conjunto dos números racionais : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária; i = Izl: módulo do

Leia mais

Prova final de MATEMÁTICA - 3o ciclo Época especial

Prova final de MATEMÁTICA - 3o ciclo Época especial Prova final de MATEMÁTICA - o ciclo 016 - Época especial Proposta de resolução Caderno 1 1. Como os triângulos [OAB] e [OCD] são semelhantes (porque têm um ângulo comum e os lados opostos a este ângulo

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P (A B) P (A B) P (B) P (A B) P (A B) P (B) vem que: P (A B) 6 0 60 0 Como P (A B) P (A) + P (B) P (A B), temos que:

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áreas Planas Suponha que uma certa região D do plano xy seja delimitada pelo eixo x, pelas retas x = a e x = b e pelo grá co de uma função contínua e não negativa y = f (x) ; a x b, como mostra a gura

Leia mais

EXERCICIOS - ÁREAS E ÂNGULOS:

EXERCICIOS - ÁREAS E ÂNGULOS: EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS IFPB» Concurso Público Professor Efetivo de Ensino Básico, Técnico e Tecnológico» Edital Nº 136/011 CONHECIMENTOS ESPECÍFICOS» MATEMÁTICA (Perfil ) «1. Considere as afirmações a seguir acerca das funções

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

ITA 2004 MATEMÁTICA. Você na elite das universidades! ELITE

ITA 2004 MATEMÁTICA. Você na elite das universidades! ELITE www.elitecampinas.com.br Fone: () -7 O ELITE RESOLVE IME PORTUGUÊS/INGLÊS Você na elite das universidades! ITA MATEMÁTICA www.elitecampinas.com.br Fone: () -7 O ELITE RESOLVE ITA MATEMÁTICA GABARITO ITA

Leia mais

PLANIFICAÇÃO MODULAR. Ano Letivo 2016/2017

PLANIFICAÇÃO MODULAR. Ano Letivo 2016/2017 AGRUPAMENTO DE ESCOLAS DE MIRA Escola Secundária c/3 Dr.ª Maria Cândida CURSO VOCACIONAL CURSO VOCACIONAL DO ENSINO BÁSICO: Jardinagem / Comércio / Socorrismo DISCIPLINA: MATEMÁTICA CICLO DE FORMAÇÃO:

Leia mais

1º S I M U L A D O - ITA IME - M A T E M Á T I C A

1º S I M U L A D O - ITA IME - M A T E M Á T I C A Professor: Judson Santos / Luciano Santos Aluno(a): nº Data: / /0 º S I M U L A D O - ITA IME - M A T E M Á T I C A - 0 0) Seja N o conjunto dos inteiros positivos. Dados os conjuntos A = {p N; p é primo}

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 18. Se f é uma função real de variável real definida por f() = a + b + c, onde a, b e c são números reais negativos, então o gráfico que melhor representa a derivada de f é: A) y B) y C) y D) y E) y Questão

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

SUMÁRIO. Unidade 1 Matemática Básica

SUMÁRIO. Unidade 1 Matemática Básica SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...

Leia mais

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2} 1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)

Leia mais

Soluções do Capítulo 8 (Volume 2)

Soluções do Capítulo 8 (Volume 2) Soluções do Capítulo 8 (Volume 2) 1. Não. Basta considerar duas retas concorrentes s e t em um plano perpendicular a uma reta r. As retas s e t são ambas ortogonais a r, mas não são paralelas entre si.

Leia mais

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos Ângulos entre retas Retas e Planos Perpendiculares Walcy Santos Ângulo entre duas retas A idéia do ângulo entre duas retas será adaptado do conceito que temos na Geometria Plana. Se duas retas são concorrentes

Leia mais

Preparar o Exame Matemática A

Preparar o Exame Matemática A 07. { {. 07. Como o polinómio tem coeficientes reais e é uma das suas raízes, então também é raiz de. Recorrendo à regra de Ruffini vem,. Utilizando a fórmula resolvente na equação, vem: ssim, as restantes

Leia mais

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1). GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos

Leia mais

1 Vetores no Plano e no Espaço

1 Vetores no Plano e no Espaço 1 Vetores no Plano e no Espaço Definimos as componentes de um vetor no espaço de forma análoga a que fizemos com vetores no plano. Vamos inicialmente introduzir um sistema de coordenadas retangulares no

Leia mais

ficha 6 espaços lineares com produto interno

ficha 6 espaços lineares com produto interno Exercícios de Álgebra Linear ficha espaços lineares com produto interno Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico o semestre 011/1 Notação

Leia mais

UECEVEST - ESPECÍFICA Professor: Rikardo Rodrigues

UECEVEST - ESPECÍFICA Professor: Rikardo Rodrigues UECEVEST - ESPECÍFICA Professor: Rikardo Rodrigues 01) (UECE 2017.2) Seja YOZ um triângulo cuja medida da altura OH relativa ao lado YZ é igual a 6 m. Se as medidas dos segmentos YH e HZ determinados por

Leia mais

Capítulo 1 Como motivação para a construção dos números complexos aconselha-se o visionamento do quinto do capítulo do documentário Dimensions, disponível em http://www.dimensions-math.org/ Slides de apoio

Leia mais

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak Solução dos Exercícios Capítulo 0 Exercício 0.: Seja f k : [0, ] R a função definida por Mostre que f k (x) = lim j (cos k!πx)2j. { f k (x) = se x {/k!, 2/k!,..., }, 0 senão e que f k converge pontualmente

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo. R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante

Leia mais