Teorema de Green e Aplicação

Tamanho: px
Começar a partir da página:

Download "Teorema de Green e Aplicação"

Transcrição

1 Teoem de Geen e Aplcção Alcm de Souz B Unvesdde tólc de Bsíl Deptmento de Mtemátc esumo: O teoem de een é um ement muto útl no cálculo de áes de us plns echds. Seu pncpo é utlzdo p demonstção de outos teoems. Neste tlho contmos um pouco d hstó do Teoem de Geen e de Geoe Geen emo tenh-se pouco soe vd pessol deste nde mtemátco e ísco nlês que esceveu e demonstou o teoem, nd most que o pncpo do teoem de Geen é utlzdo num pelho que clcul áes de us plns pens se movendo soe o contono d cuv echd. Plvs-chves: Plnímeto e Geen. Intodução Este tlho pesent um estudo nteessnte do teoem de Geen. Utlz como onte e nstumento de pesqus lvos ddátcos e tos. Geoe Geen nsceu em 973 e moeu em 8. Não este nenhum esto de mem deste nde mtemátco e ísco nlês. Geoe Geen e lho de um pdeo que vv em Notnhm onde unconv o estelecmento de seu p e o que pssou nde pte de su vd tlhndo. A hstó dz que ele eqüentou pens dos nos do ensno element e não c em clo como Geoe Geen oteve o conhecmento mtemátco já que não eqüentou nenhum nsttução de ensno eul. om 30 nos, Geen tonou-se memo d Suscpton L, Notnhm, nsttução undd em 86 e o ojetvo clo dest nsttução e o enconto de não-cdêmcos p dscut questões de vnço d cênc. Qundo completou 35 nos pulcou seu pmeo e ms mpotnte tlho: um o soe plcção d nálse mtemátc à eletcdde e o mnetsmo, onde o teoem de Geen o utlzdo, ms pssou despecedo pel pequen tem do tlho. omo est o teve um tem stnte eduzd, po que o nncd pelo uto e mos d Suscpton L, não teve nde epecussão. Geoe Geen o pme pesso us o temo potencl n teo do cmpo e ntoduzu váos teoems de nálse vetol que pemtm clcul o potencl eletostátco. om 0 nos nessou n Unvesdde de us, em mde como estudnte de lcenctu. Alum tempo depos cec de nos, omou-se com desempenho despontdo possvelmente po est enjdo em su pesqus, então voltou p su cs em Notnhm p cud de seus lhos e do monho de seu p, onde luns nos ms tde cou doente e leceu os 8 nos. Posteomente , Wllm Thomson Lod Kelvn, descou o tlho de Geoe Geen e conseuu pulc-lo num jonl mpotnte de nde cculção e espetdo n époc, com pulcção descou-se que outos centsts já tnhm chedo esultdos otdos po Geoe Geen, ente eles Guss, e de om ndependente. O tlho de Geoe Geen teve nluênc em Thomson, Stokes e Mwell.

2 A vd de Geoe Geen é um eemplo mpessonnte de um enômeno nto que o se humno pode te, o tlento mtemátco, este se pesent e m-se mesmo em ccunstncs desvoáves. Qulque um com tods s petensões se um mtemátco está em cente que s unções de Geoe Geen é de sum mpotânc e mutos de nós zemos um vd o de su eploção. O teoem de Geen elcon eetos do volume os eetos de supeíce, é um esultdo onto, undmentl às teos vtcons e eletomnétcs. Tod est teo veo de luém que teve qunze meses de educção oml e cujo os nos de dolescênc om stos tlhndo n pd e no monho de seu p. Est é hstó de um etodnáo êno que soe tods ests dculddes venceu.. Teoem de Geen O teoem de een é um ement d mtemátc utlzd p o cálculo de áes de us plns lmtds e echd; Além dsso seu pncpo é utlzdo p omulção de outos teoems como po eemplo o teoem de Stokes e Guss, sus plcções são etenss e etemmente útes ns áes d ísc, químc, ns enenhs, eolo e etc. Antes de demonstmos o teoem é pecso semos um pouco espeto mpos vetos e d ntel de lnh, vmos te um dé do que se tt ntel de lnh, pos o teoem de Geen tmém clcul esse vlo de um mne em ms ápd e det... mpos vetos O cmpo vetol ssoc um veto um ponto no espço. Se um unção F com vloes vetos é dendo num ol et B em 3 el é dd d seunte om, F,,zM,,zN,,zj,,zk, então F é um cmpo vetol. E o domíno do cmpo vetol é um suconjunto de 3... Intel de Lnh Suponh um oç eecd soe um ptícul no ponto,, em lum dsco eto B em ², sej dd pelo cmpo de oçs F,M, N,j, onde M e N são contnus em B. Sej cuv que está em B e tem equção vetol tt tj, t, s unções e tem devds e contnus em [,]. Vmos den cmnho de F o move ptícul o lono de, do ponto, té,. Em um ponto qulque de,po eemplo, t,t oç é dd ssm: Ft,tMt,tNt,tj, com t0 < t < t <... < tn < tn

3 Fu epesentção vetol de ntel de lnh. P é o ponto, t, t em, consdendo u cm temos que V P P t t ; loo V P P t t j [ t t j] V P P [ t t ] [ t t ] j com e são contnus em [,] estem c e d no ntevlo eto t, t, de modo que: t t c t t t t d t t epessndo t t t V P P c t t d t t V P P [ c d ] t t, e susttundo em temos que: V P P [ c d j] t P cd consdeemos o veto F M c, c N d, d j d um dos vetoes F,,3,..., n é um pomção do veto F t, t. O vlo dos vetoes n vção de no ntevlo eto são os vetoes muto pómos de F. Um pomção d medd do tlho elzdo po F t, t o lono de é dd pel n w w [ M c c N d d j c d j t,, ][ ], onde w [ M c, c c ] t [ N d, d d ] t como são váos então somtó n [ M c, c c ] t n [ N d, d d ] t, é um som de emnn, e se n

4 cesce sem lmtção podemos che à usemos F t p F t, t. [ M t, t t N t, t t ] dt, hemos seunte denção: é um cuv contd num dsco eto B em ², com equção tt tj, onde otomente ` e ` tem que seem contnus em [,], consdeemos tmém um cmpo de oçs em B dendo po F, M, N, j, onde M e N são contnus. Então medd do tlho elzdo po F o move um ptícul o lono de, de, té, é W. w [ M t, t t N t, t t ] dt w M t, t N t, t. t, t dt, ou; w F t. t dt A ntel de lnh mede o tlho elzdo p movment um ptícul o lono de um cuv. E é clculd utlzndo-se de dus notções pme wtlho é medd pelo cmpo de oçs F o se move o lono de Notção Deencle out usndo notção vetol. Ao vmos ze demonstção do teoem de Geen, oseve no áco o: A eão echd é dvdd em dus cuvs e, começ no ponto e v té o e v de té, echndo ssm todo o contono d eão. 0 Fu epesent um cuv echd dvdd em e.

5 A u epesent um cuv echd smples e secconlmente suve. As unções que M e N epesentm possuem devds pmes deente de zeo, e tem devds pcs pmes contnus em um dsco eto B em ². dn dm M, d N, d da d d Pov: vmos consde que unção ntecept no mámo dos pontos tnto n hozontl como n vetcl. A demonstção consste em most que: dm dn M, d da e d N, d da d P dm M, d da d {, /, } onsdendo ntel de lnh. M, d., d M, d M M, d 3, d M, d M, M d, d M, d onsdendo o ntel dupl M, M d 5 M, d [ M, M, ] d 6 M M da, onde é eão. da M da M da M da ompndo 6 e 0 temos que é vedde: M M, d d M d d ] d [ M, M, ] d

6 M, d dn A demonstção p N, d da é nálo. d dm d da Out eão: Fu 3 epesent um echd. eões como d u 3 podem se tlhds sem ndes dculddes. A equção nd se plc. Fu epesent um eão que é ul. A eão d u tmém pode se clculd com o Teoem de Geen, plcndo equção ndndo sempe no sentdo nt-hoáo. O teoem de Geen clt o cálculo de áes de eões lmtds po um cuv secconlmente suve, smples e echd. Isso pode contece utlzndo o seunte teoem que é conseqüênc do teoem de Geen. Se o um eão tendo po onte um cuv echd smples e secconlmente suve e A unddes de áe o áe de, então A d d.

7 Pov: sej M, e N,. Então, d d da d d da d d omo da é medd d áe de, então d d A Vmos ve um eemplo d plcção deste teoem p clcul áe dd po um elpse que tem como equção. As equções pmétcs d elpse são: cost, sen t, 0 t π loo devd d sen tdt e d sen tdt. Se o elpse e A o áe d eão d elpse, teemos: A d d A π 0 cos t 0 π π [ cost costdt sen t sen tdt ] sen t A dt, como cos t sen t loo, c da, multplcndo s pênteses oteemos, A dt, então teemos que, A π unddes de áe. Lous Lethold, p Aplcção. O Plnímeto: Em 85, o mtemátco Jco Amsle nventou um nstumento mecânco que e cpz de med áe de eões plns lmtds. omo dculdde p se med áes de us plns e eules e muto dícl nvenção de um pelho pequeno e tão ácl de se mnusedo o etemmente novdo, encdo com muto entussmo n ocsão e té hoje é vsto como um nstumento novdo. Vmos estud um pouco soe seu mnuseo e unconmento. Mecncmente, o Plnímeto tem um constução muto smples, possu dos ços de tmnhos us ou podem se de tmnho deente, mos eto de metl. Os ços são cpzes

8 de v o ânulo ente eles, desde 0º 80º us. N etemdde de um dos ços, temos um pont que pode se d n supeíce pln. N out pont temos um odnh que pependculmente o ço n qul é d. N pont dess odnh temos um contdo, que mede o númeo de volts que el dá qundo pont móvel do nstumento se desloc soe o contono d u pln se medd. Qundo pont se desloc soe todo o contono d u pln echd, o contdo ndcá áe cecd pel cuv. Ao pensmos em um nstumento tão smples, noss mnção é nduzd pncípos smples de unconmento, ms po tás deste nstumento tem um pncpo e um u de compleldde muto nde. É que ent o teoem de Geen. O Teoem de Geen ldo o Plnímeto, os dos juntos tem sdo de nde mpotânc p o clculo de áes de us plns echds. Um áe se medd pelo Plnímeto não deve conte etemdde do pelho e podemos -l em qulque lu desde que o d áe se medd, depos com etemdde móvel do pelho devemos pecoe cuv que é echd, sempe no sentdo nt-hoáopo cus do mcdo e pós pecoe todo o contono d u é clculd áe. P eplc como o Teoem de Geen ent n hsto, pecsmos desceve o cmpo de deções dendo pelo nstumento. P tl vmos den s coodends e. Escolhemos p oem do eo pont do Plnímeto que est, pt dí, dos eos pependcules e são tçdos. omo odnh pependculmente o ço no qul está d, o cmpo F, dendo pelo Plnímeto é pependcul o ço móvel e suponhmos que ele tenh módulo. F, 0 Fu 5 epesentção de um eão sendo medd po um plnmeto. Ao denemos equção, pmeo consdee que os ços do Plnímeto tenhm tmnhos us. o pmeo est com o cento n oem0,0, e o ço móvel em,. chmemos de v o veto que epesent o ço móvel do Plnímeto.

9 Fu 6 epesent os ços de um plnmeto um centdo n oem e o outo em,. Temos então v -,- e um veto pependcul é w --,-. como os ços tem compmento temos w v, loo o nosso cmpo é w w F,, pecsmos detemn e. onsdendo equção dos cículos que podem se desctos po cd um dos ços do Plnímeto. Desenvolvendo Seund equção cm temos que:, loo, susttundo esses vloes n equção do cculo com cento em 0,0 e desenvolvendo, teemos: 0 Usndo temos: 0 e loo, ou sej,, v, F, 0

10 om escolh de um vlo postvo p mplc smplesmente que o cmnho se pecodo pelo ço móvel do Plnímeto é o sentdo nt-hoáosentdo pdão de unconmento do pelho. om o vlo de dendo, o vlo de pece, consequentemente, como sendo: ou sej, lculdos os vloes de e temos que o cmpo p o Plnímeto é:,, Devndo s dus equções cm vmos ote: 8 8 zendo, e, k, loo k Peceemos que se plcmos o Teoem Geen o Plnímeto, constnte que multplc áe só depende do compmento dos ços, ou sej c po cecd áe d d *,,

11 Então p o unconmento do Plnímeto é necessáo semos o compmento dos ços, o dâmeto d odnh colocd pependculmente o ço móvel e o númeo de volts dd pel odnh, que é mcdo pelo contdo o pecoe cuv echd no sentdo nt-hoáo, esss medds são dds pels váves p compmento dos ços, d p dâmeto e k o númeo de volts dd pel odnh. O cmpo detemndo pelo Plnímeto é F,,. Então πd kπ d d d * áe cecd po ou sej: Áe cecd po k. elo, Adno c Boes.; Mnso, Fenndo Fee. O Plnímeto e o Teoem de Geen onclusão: Estem vs mnes de clcul áes de us eométcs eules como do quddo, etânulo, etc., ms outs áes eules como s que vmos ns us deste tlho, são ms díces p se clcul, no entnto com s ements pesentds no tlho pode c em ms ácl o clculo dests áes, tnto o teoem de Geen como o plnmeto pode ze este clculo. No século XIX qundo o nventdo o plnmeto sedo num teoem eltvmente smplesteoem de Geen, este nstumentoo plnmeto tão smples ms novdo o vsto com muto entussmo, já que pod clcul áe de eões eules e tudo sso se utlzndo do mesmo pncpo do teoem de Geen. Ests dus ements cusou muto entussmo n époc de sus nvenções e nd hoje são vstos com o mesmo entussmo de ntes, tendo plcções etenss e etemmente útes n enenh, n ísc, etc. São ests s conclusões que chemos que o teoem e o plnmeto são útes no d d de um enenheo, um ísco e outos possons. Ao temos otos de plnmeto. Fu 7 Plnmeto nlóco. elo, Adno Boes.; Mnso, Fenndo Fee. O Plnímeto e o Teoem de Geen. <.

12 Fu 8 Plnmeto dtl. eeênc Bloác: LEITHOLD, Lous. O álculo om Geomet Anlítc. São Pulo: H, 986. v, p SWOKOWSKI, El Wlln; FAIAS, Aledo Alves de Td.. álculo om Geomet Anlítc..ed São Pulo: Mkon, 995. v. ISBN elo, Adno Boes.; Mnso, Fenndo Fee. O Plnímeto e o Teoem de Geen. Dsponível em: <. Vllte, Jme. Geoe Geen. Dsponível em: < Polknhone FS, D. John. Geoe Geen nd mthemtcs. Dsponível em: <

NÚMEROS COMPLEXOS. z = a + bi a é a parte real e escreve-se a=re(z);

NÚMEROS COMPLEXOS. z = a + bi a é a parte real e escreve-se a=re(z); CMPLEXS º AN NÚMERS CMPLEXS Evolução do conceto de númeo: Ntus Inteos Rcons Icons gnáos Defn como undde mgná Númeo compleo é todo o númeo d fom + sendo e númeos es e undde mgná + é pte el e esceve-se ();

Leia mais

Solução da segunda lista de exercícios

Solução da segunda lista de exercícios UESPI Cmpu Pof. Alende Alve de Olve Cuo: ch. em Cênc d Computção Dcpln: Fíc 9h Pof. Olímpo Sá loco: Aluno: Dt: 9// Solução d egund lt de eecíco Quetão : N fgu, um fo eto de compmento tnpot um coente. Obte:

Leia mais

sistema. Considere um eixo polar. P números π 4 b) B = coincidir eixo dos y x e) r = 4

sistema. Considere um eixo polar. P números π 4 b) B = coincidir eixo dos y x e) r = 4 UNIVERSIDDE FEDERL D PRÍB ENTRO DE IÊNIS EXTS E D NTUREZ DEPRTMENTO DE MTEMÁTI ÁLULO DIFERENIL E INTEGRLL II PLIÇÕES D INTEGRLL. oodends Poles O sstem de coodends que conhecemos p dentfc pontos noo plno

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA PME 2200 MECÂNICA B 1ª

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA PME 2200 MECÂNICA B 1ª ESL PLTÉN D UNVESDDE DE SÃ PUL DEPTENT DE ENEN EÂN PE EÂN ª Pov 9/3/ Dução mnutos Não é pemtdo o uso de clculdos. b y ª Questão 3, pontos fu o ldo most um sstem mecânco. dsco, de mss, o e cento de mss,

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica. PME 2100 Mecânica A Segunda Prova 23 de outubro de 2007

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica. PME 2100 Mecânica A Segunda Prova 23 de outubro de 2007 ES PITÉNI D UNIVESIDDE DE SÃ PU Deptmento de Engenh Mecânc PME Mecânc Segund Po 3 de outuo de 7 ª Questão: (3,5 Ptos) com eto de otção constnte Ω Ω g no plno hoontl em tono de. nclnd pode desl em um lu

Leia mais

dv = πr 2 dx dv = π[f(x)] 2 dx b 8.2- Volume de Sólidos de Revolução

dv = πr 2 dx dv = π[f(x)] 2 dx b 8.2- Volume de Sólidos de Revolução 8.- Volume de Sóldos de Revolução Um egão tdmensonl (S) que possu s popeddes ) e ) segu é um sóldo: ) A fonte de S consste em um númeo fnto de supefíces lss que se nteceptm num númeo fnto de ests que po

Leia mais

MECÂNICA VETORES AULA 3 1- INTRODUÇÃO

MECÂNICA VETORES AULA 3 1- INTRODUÇÃO AULA 3 MECÂNICA VETOES - INTODUÇÃO N Físic usmos dois gupos de gndezs: s gndezs escles e s gndezs vetoiis. São escles s gndezs que ficm ccteizds com os seus vloes numéicos e sus espectivs uniddes. São

Leia mais

Física. Unidades fundamentais: -unidade de massa: Kg -unidade de comprimento: m -unidade de tempo: s

Física. Unidades fundamentais: -unidade de massa: Kg -unidade de comprimento: m -unidade de tempo: s ísc Unddes fundments: -undde de mss: Kg -undde de compmento: m -undde de tempo: s Unddes usus mecns e undde I equvlente Undde devd: - Undde de foç: N nlse Dmensonl: -mss: Kg------------M -compmento: m-----l

Leia mais

Potencial Elétrico. Prof. Cláudio Graça 2012

Potencial Elétrico. Prof. Cláudio Graça 2012 Potencal Elétco Po. Cláudo Gaça Campo elétco e de potencal Campo e Potencal Elétcos E Potencal gavtaconal Potencal Elétco O potencal elétco é a quantdade de tabalho necessáo paa move uma caga untáa de

Leia mais

Breve Revisão de Cálculo Vetorial

Breve Revisão de Cálculo Vetorial Beve Revsão de Cálculo Vetoal 1 1. Opeações com vetoes Dados os vetoes A = A + A j + A k e B = B + B j + B k, dene-se: Poduto escala ente os vetoes A e B A B A B Daí, cos A AB cos A B B A A B B AB A B

Leia mais

Análise de Componentes Principais

Análise de Componentes Principais PÓS-GRADUAÇÃO EM AGRONOMIA CPGA-CS Aálse Multvd Alcd s Cêcs Agás Aálse de Comoetes Pcs Clos Albeto Alves Vell Seoédc - RJ //008 Coteúdo Itodução... Mt de ddos X... 4 Mt de covâc S... 4 Pdoção com méd eo

Leia mais

5(6,67Ç1&,$(&$3$&,7Æ1&,$

5(6,67Ç1&,$(&$3$&,7Æ1&,$ 59 5(6,67Ç&,$(&$3$&,7Æ&,$ ÃÃ5(6,67Ç&,$Ã(Ã/(,Ã'(Ã+0 No pítulo 6 efinimos ução J σ omo seno um ensie e oente e onução. Multiplino mos os los po um áe S, el fiá: J.S σs (A (8. σs (A (8. Se o mpo elétio fo

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO ME100 Mecânc o Substtut 06 de Dezembo de 005 Dução: 100 mnutos Impotnte: não é pemtdo o uso de clculdos 1 (0 pontos) pso é o efeencl fo e colun psmátc (plel o eo z) está f neste pso. cento do dsco tmbém

Leia mais

Ajuste de curvas por quadrados mínimos lineares

Ajuste de curvas por quadrados mínimos lineares juste de cuvs o quddos mímos lees Fele eodo de gu e Wdele Iocêco oe Júo Egeh de s o. Peíodo Pofesso: ode Josué Bezue Dscl: Geomet lítc e Álgeb e. Itodução Utlzmos este método qudo temos um dstbução de

Leia mais

Aula-09 Campos Magnéticos Produzidos por Correntes. Curso de Física Geral F-328 2 o semestre, 2013

Aula-09 Campos Magnéticos Produzidos por Correntes. Curso de Física Geral F-328 2 o semestre, 2013 Aula-9 ampos Magnétcos Poduzdos po oentes uso de Físca Geal F-38 o semeste, 13 Le de Bot - Savat Assm como o campo elétco de poduzdo po cagas é: 1 dq 1 dq db de ˆ, 3 ε ε de manea análoga, o campo magnétco

Leia mais

ANÁLISE DE EXPERIMENTOS EM LÁTICE QUADRADO COM ÊNFASE EM COMPONENTES DE VARIÂNCIA.

ANÁLISE DE EXPERIMENTOS EM LÁTICE QUADRADO COM ÊNFASE EM COMPONENTES DE VARIÂNCIA. ANÁLISE DE EXPERIMENTOS EM LÁTICE QUADRADO. II. ANÁLISE CONJUNTA 987 ANÁLISE DE EXPERIMENTOS EM LÁTICE QUADRADO COM ÊNFASE EM COMPONENTES DE VARIÂNCIA. II. ANÁLISE CONJUNTA ADAIR JOSÉ REGAZZI, EYDER DINIZ

Leia mais

Geometria Plana 04 Prof. Valdir

Geometria Plana 04 Prof. Valdir pé-vestiul e ensino médio QUILÁTS TÁVIS 1. efinição É o polígono que possui quto ldos. o nosso estudo, vmos onside pens os qudiláteos onveos. e i Sendo:,,, véties do qudiláteo; i 1, i, i 3, i 4 ângulos

Leia mais

Ondas Eletromagnéticas Interferência

Ondas Eletromagnéticas Interferência Onds Eletomgnétics Intefeênci Luz como ond A luz é um ond eletomgnétic (Mxwell, 1855). Ess ond é fomd po dois cmpos, E (cmpo elético) e B (cmpo mgnético). Esses cmpos estão colocdos de um fom pependicul

Leia mais

6 Resultados e Discussão I - Obtenção do pk a a partir da fluorescência estacionária e resolvida no tempo

6 Resultados e Discussão I - Obtenção do pk a a partir da fluorescência estacionária e resolvida no tempo 6 Resultdos e Discussão I - Obtenção do K ti d luoescênci estcionái e esolvid no temo 6.1 Equilíbio de ionizção O H de um solução é um medid de su concentção de H, o qul ode se deinido como: 1 H log1 log1[

Leia mais

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS

CAPÍTULO 5 CINEMÁTICA DO MOVIMENTO PLANO DE CORPOS RÍGIDOS 4 CPÍTULO 5 CINEMÁTIC DO MOVIMENTO PLNO DE CORPOS RÍGIDOS O estudo d dinâmic do copo ígido pode se feito inicilmente tomndo plicções de engenhi onde o moimento é plno. Neste cpítulo mos nlis s equções

Leia mais

Universidade Estadual de Mato Grosso do Sul Curso de Física - Laboratório de Física Experimental A

Universidade Estadual de Mato Grosso do Sul Curso de Física - Laboratório de Física Experimental A Unesdde Estdul de Mto Gosso do Sul Cuso de ísc - otóo de ísc Expeentl A Pof. Pulo Cés de Souz (ט) OTEIO DA EXPEIÊNCIA Nº 9 VISCOSÍMETO DE STOKES 1. Ojetos Estud o efeto do tto scoso nu fludo tés d qued

Leia mais

Análise Vetorial. Prof Daniel Silveira

Análise Vetorial. Prof Daniel Silveira nálise Vetoil Pof Dniel Silvei Intodução Objetivo Revisão de conceitos de nálise vetoil nálise vetoil fcilit descição mtemátic ds equções encontds no eletomgnetismo Vetoes e Álgeb Vetoil Escles Vetoes

Leia mais

GABARITO LISTA 2. A firma 2 resolve um problema semelhante e tem como CPO:

GABARITO LISTA 2. A firma 2 resolve um problema semelhante e tem como CPO: Fundção Getúlo Vgs FGV-RJ Gdução em dmnstção Mcoeconom II of: ulo omb Monto: Flvo Moes GBRITO LIST No duopólo de ounot, cd fm escolhe untdde ue mmz o seu luco dd untdde d out fm sendo ue escolh é smultâne

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

Definição: Seja a equação diferencial linear de ordem n e coeficientes variáveis:. x = +

Definição: Seja a equação diferencial linear de ordem n e coeficientes variáveis:. x = + Vléi Zum Medeios & Mihil Lemotov Resolução de Equções Difeeciis Liees po Séies Poto Odiáio (PO) e Poto Sigul (PS) Defiição: Sej equção difeecil lie de odem e coeficietes viáveis: ( ) ( ) b ( ) é dito poto

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2015 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2015 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR DA FUVEST-FASE POR PROFA MARIA ATÔIA C GOUVEIA M gu bo ccueêc de ceto em O e o tgec o ldo BCdo tâgulo ABC o poto D e tgec et AB o poto E Os potos A D e O

Leia mais

O atrito de rolamento.

O atrito de rolamento. engengens. Obseve-se que s foçs de tito de olmento epesentds n figu (F e f ) têm sentidos opostos. (Sugeimos que voê, ntes de possegui, poue i um modelo que pemit expli s foçs de tito de olmento). "Rffiniet

Leia mais

Matemática para CG. Soraia Raupp Musse

Matemática para CG. Soraia Raupp Musse Mtemátic p CG Soi Rupp Musse 1 Sumáio Intodução Revisão Mtemátic Vetoes Mties Intodução Em CG, tlh-se com ojetos definidos em um mundo 3D Todos os ojetos têm fom, posição e oientção Pecismos de pogms de

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2 Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CI-II Resumo ds Auls Teórics (Semn 12) 1 Teorem de Green no Plno O cmpo vectoril F : R 2 \ {(, )} R 2 definido

Leia mais

Magnetostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas

Magnetostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas Fuldde de Engenhi Mgnetostáti OpE - M 7/8 Pogm de Ópti e Eletomgnetismo Fuldde de Engenhi Análise Vetoil (evisão) uls Eletostáti e Mgnetostáti 8 uls mpos e Onds Eletomgnétis 6 uls Ópti Geométi 3 uls Fis

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Fculdde de Enenhri, Arquiteturs e Urnismo FEAU Pro. Dr. Serio Pillin IPD/ Físic e Astronomi V Ajuste de curvs pelo método dos mínimos qudrdos Ojetivos: O ojetivo dest ul é presentr o método

Leia mais

T E X T O D E R E V I S Ã O C Á L C U L O D I F E R E N C I A L & I N T E G R A L P A R A A F Í S I C A 3 JOSÉ ARNALDO REDINZ (DPF/UFV) JULHO DE 2004

T E X T O D E R E V I S Ã O C Á L C U L O D I F E R E N C I A L & I N T E G R A L P A R A A F Í S I C A 3 JOSÉ ARNALDO REDINZ (DPF/UFV) JULHO DE 2004 T E X T O D E E V I S Ã O DE C Á L C U L O D I F E E N C I A L & I N T E G A L P A A A F Í S I C A JOSÉ ANALDO EDINZ (DPF/UFV) JULHO DE 4 PEFÁCIO Dunte o tempo em que ministmos disciplin Físic, voltd p

Leia mais

TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela

TIPOS DE GRANDEZAS. Grandeza escalar necessita apenas de uma. Grandeza vetorial Além do MÓDULO, ela TIPO DE GRANDEZA Gndez escl necessit pens de um infomção p se compeendid. Nesse cso, qundo citmos pens o MÓDULO d gndez (intensidde unidde) el fic definid. Exemplo: tempetu(30ºc), mss(00kg), volume(3400

Leia mais

Capítulo 3 ATIVIDADES PARA SALA PÁG. 50 GEOMETRIA. Projeções, ângulos e distâncias. 2 a série Ensino Médio Livro 1 1

Capítulo 3 ATIVIDADES PARA SALA PÁG. 50 GEOMETRIA. Projeções, ângulos e distâncias. 2 a série Ensino Médio Livro 1 1 esoluções pítulo ojeções, ângulos e distâncis 0 Sendo pojeção otogonl do ponto soe o plno, tem-se o tiângulo, etângulo em, confome figu. t TIIS SL ÁG. 0 0 0 onte luminos 7 cm 8 cm estcndo o tiângulo, tem-se

Leia mais

5/21/2015. Física Geral III

5/21/2015. Física Geral III 5/1/15 Físic Gel III Aul eóic 17 (Cp. 1 pte /): 1) Lei de Ampèe ) Cmpo Mgnético fo de um fio etilíneo longo ) Cmpo Mgnético dento de um fio etilíneo longo 4) 5) oóide Pof. Mcio R. Loos Andé-Mie Ampèe 1775

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

Eletromagnetismo. 3 a lista de exercícios. Prof. Carlos Felipe. Campos magnéticos devido a correntes Dado: µ o =4π.10-7 Tm/A

Eletromagnetismo. 3 a lista de exercícios. Prof. Carlos Felipe. Campos magnéticos devido a correntes Dado: µ o =4π.10-7 Tm/A Eletomgnetsmo. 3 lst de execícos. of. Clos Felpe Cmpos mgnétcos dedo coentes Ddo: o =4π.10-7 Tm/A 1) Esce s equções de Mxwell do eletomgnetsmo e elcone equção que nclu ou é equlente : ) As lnhs de foç

Leia mais

MATEMÁTICA II - Engenharias/Itatiba SISTEMAS LINEARES

MATEMÁTICA II - Engenharias/Itatiba SISTEMAS LINEARES - Mauco Fabb MATEMÁTICA II - Engenhaas/Itatba o Semeste de Pof Mauíco Fabb a Sée de Eecícos SISTEMAS IEARES IVERSÃO DE MATRIZES (I) Uma mat quadada A é nvetível se est a mat A - tal que AA - I Eecíco Pove

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Soluções do Capítulo 9 (Volume 2)

Soluções do Capítulo 9 (Volume 2) Soluções do pítulo 9 (Volume ) 1. onsidee s ests oposts e do tetedo. omo e, os pontos e estão, mbos, no plno medido de, que é pependicul. Logo, et é otogonl, po est contid em um plno pependicul.. Tomemos,

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO D PROV DE MTEMÁTIC UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. é, sem úv, o lmento refero e mutos ulsts. Estm-se que o onsumo áro no Brsl sej e, mlhão e s, seno o Esto e São Pulo resonsável or % esse

Leia mais

Profª Cristiane Guedes DERIVADA. Cristianeguedes.pro.br/cefet

Profª Cristiane Guedes DERIVADA. Cristianeguedes.pro.br/cefet Proª Cristine Guedes 1 DERIVADA Cristineguedes.pro.br/ceet Ret Tngente Como determinr inclinção d ret tngente curv y no ponto P,? 0 0 Proª Cristine Guedes Pr responder ess pergunt considermos um ponto

Leia mais

HALLIDAY, RESNICK, WALKER, FUNDAMENTOS DE FÍSICA, 8.ED., LTC, RIO DE JANEIRO, 2008. FÍSICA 1 CAPÍTULO 3 VETORES

HALLIDAY, RESNICK, WALKER, FUNDAMENTOS DE FÍSICA, 8.ED., LTC, RIO DE JANEIRO, 2008. FÍSICA 1 CAPÍTULO 3 VETORES Polems Resolvios e Físi Pof. Aneson Cose Guio Depto. Físi UFES HALLIDAY, RESNICK, WALKER, FUNDAMENTOS DE FÍSICA, 8.ED., LTC, RIO DE JANEIRO, 008. FÍSICA 1 CAPÍTULO 3 VETORES 16. N som A + = C, o veto A

Leia mais

Tópico 2. Em cada caso, observe o sentido do campo magnético devido ao f io e determine o sentido da corrente que passa por ele.

Tópico 2. Em cada caso, observe o sentido do campo magnético devido ao f io e determine o sentido da corrente que passa por ele. Tópco ogem do campo magnétco Tópco Um campo magnétco é geado: a) po eletzação: o polo note magnétco é postvo e o polo sul magnétco é negatvo. b) po cagas elétcas em epouso. c) po cagas elétcas necessaamente

Leia mais

O ROTACIONAL E O TEOREMA DE STOKES

O ROTACIONAL E O TEOREMA DE STOKES 14 O ROTACONAL E O TEOREMA DE STOKES 14.1 - O ROTACONAL A equção:. dl ( A) (14.1) ecion integ de inh do veto intensidde de cmpo mgnético fechdo L com coente tot envovid po esse cminho. o ongo de um cminho

Leia mais

QUESTÃO 01 01) ) ) ) ) 175 RESOLUÇÃO:

QUESTÃO 01 01) ) ) ) ) 175 RESOLUÇÃO: QUESTÃO A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE II- COLÉGIO ANCHIETA-BA ELABOAÇÃO: POF. ADIANO CAIBÉ e WALTE POTO. POFA, MAIA ANTÔNIA C. GOUVEIA Sejm ABC e ADE dois tiângulos etângulos conguentes, com AB

Leia mais

CAPÍTULO 6. Seja um corpo rígido C, de massa m e centro de massa G, realizando um movimento plano paralelo ao plano de referência xy, figura 6.1.

CAPÍTULO 6. Seja um corpo rígido C, de massa m e centro de massa G, realizando um movimento plano paralelo ao plano de referência xy, figura 6.1. 55 AÍTULO 6 DINÂMIA DO MOVIMENTO LANO DE OROS RÍIDOS O estdo d dnâc do copo ígdo pode se feto nclente tondo plcções de engenh onde o ovento é plno. Neste cpítlo vos nls s eqções d dnâc do copo ígdo, no

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

TRABALHO E POTENCIAL ELÉTRICO

TRABALHO E POTENCIAL ELÉTRICO NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO TRABALHO E POTENCIAL ELÉTRICO 01.INTRODUÇÃO O conceito de enegi potencil foi intoduzido no Cpítulo Enegi Mecânic em conexão com foçs consevtivs como gvidde e

Leia mais

2ª Lei de Newton. Quando a partícula de massa m é actuada pela força a aceleração da partícula tem de satisfazer a equação

2ª Lei de Newton. Quando a partícula de massa m é actuada pela força a aceleração da partícula tem de satisfazer a equação ª Lei de Newton ª Lei de Newton: Se foç esultnte ctunte num ptícul é difeente de zeo, então ptícul teá um celeção popocionl à intensidde d foç esultnte n diecção dess esultnte. P um ptícul sujeit às foçs

Leia mais

O transistor de junção bipolar (BJT) NPN Base. PNP Base. Departamento de Engenharia Electrotécnica (DEE)

O transistor de junção bipolar (BJT) NPN Base. PNP Base. Departamento de Engenharia Electrotécnica (DEE) Depatamento de ngenhaa lectotécnca (D) O tanssto de junção bpola (J) pola dos tpos de cagas, electões e buacos, enoldos nos fluxos de coente Junção duas junções pn. Junção base/emsso e junção base/colecto

Leia mais

Aula 4: O Potencial Elétrico

Aula 4: O Potencial Elétrico Aula 4: O Potencal létco Cuso de Físca Geal III F-38 º semeste, 4 F38 S4 Potencal elétco Como podemos elacona a noção de oça elétca com os concetos de enega e tabalho? Denndo a enega potencal elétca (Foça

Leia mais

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0.

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0. LTROMAGNTIMO TT 7 d Ail d 00 ROLUÇÕ Ao longo do io dos yy, o vcto cmpo léctico é pllo o io dos pont p squd Isto dv-s o fcto qu qulqu ponto no io dos yy stá quidistnt d dus ptículs cujs cgs são iguis m

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

INCERTEZA. Notas complementares. Preferências de loterias espaço de escolhas é composto por loterias

INCERTEZA. Notas complementares. Preferências de loterias espaço de escolhas é composto por loterias PPGE/FRGS - Prof. Sno Porto Junor 9/0/005 INCERTEZA Nots complementres Preferêncs de loters espço de escolhs é composto por loters Pessos otém utldde de oters e não de Apples As preferêncs sore ens são

Leia mais

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2 Definição 1 Sej : omprimento de urvs x x(t) y y(t) z z(t) um curv lis definid em [, b]. O comprimento d curv é definido pel integrl L() b b [x (t)] 2 + [y (t)] 2 + [z (t)] 2 dt (t) dt v (t) dt Exemplo

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Resolução feita pelo Intergraus! Módulo Objetivo - Matemática FGV 2010/1-13.12.2009

Resolução feita pelo Intergraus! Módulo Objetivo - Matemática FGV 2010/1-13.12.2009 FGV 010/1-13.1.009 VESTIBULAR FGV 010 DEZEMBRO 009 MÓDULO OBJETIVO PROVA TIPO A PROVA DE MATEMÁTICA QUESTÃO 1 (Prova: Tipo B Resposta E; Tipo C Resposta C; Tipo D Resposta A) O gráfico abaio fornece o

Leia mais

1 a) O que é a pressão atmosférica? No S.I. em que unidades é expressa a pressão?

1 a) O que é a pressão atmosférica? No S.I. em que unidades é expressa a pressão? Escol Secundái Anselmo de Andde Ciêncis Físico - Químics 8º Ano Ano Lectivo 07/08 ACTIVIDADES: Execícios de plicção Pof. Dulce Godinho 1 ) O que é pessão tmosféic? No S.I. em que uniddes é expess pessão?

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2]

6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2] 6 Cálculo Integrl. (Eercício VI. de []) Considere função f definid no intervlo [, ] por se [, [ f () = se = 3 se ], ] () Mostre que pr tod decomposição do intervlo [, ], s soms superior S d ( f ) e inferior

Leia mais

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras:

Física. Resolução das atividades complementares. F4 Vetores: conceitos e definições. 1 Observe os vetores das figuras: Resolução ds tiiddes copleentres Físic F4 Vetores: conceitos e definições p. 8 1 Obsere os etores ds figurs: 45 c 45 b d Se 5 10 c, b 5 9 c, c 5 1 c e d 5 8 c, clcule o ódulo do etor R e cd cso: ) R 5

Leia mais

MÉTODOS NUMÉRICOS. Integração Numérica. por Chedas Sampaio. Época 2002/2003. Escola Náutica I.D.Henrique 1de 33

MÉTODOS NUMÉRICOS. Integração Numérica. por Chedas Sampaio. Época 2002/2003. Escola Náutica I.D.Henrique 1de 33 Métodos umércos - ntegrção umérc Escol áutc.d.henrque MÉTODOS UMÉRCOS ntegrção umérc por Cheds Smpo Époc /3 Escol áutc.d.henrque de 33 Sumáro Regrs áscs Regrs do Rectngulo Regr do Trpézo Regr de Smpson

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidde Federl d Bhi Instituto de Mtemátic DISCIPLINA: MATA0 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atulizd 008. Coordends Polres [1] Ddos os pontos P 1 (, 5π ), P (, 0 ), P ( 1, π ), P 4(, 15

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

Cálculo III-A Módulo 6

Cálculo III-A Módulo 6 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 6 Aul urvs Prmetrids Objetivo Prmetrir curvs plns e espciis. Prmetrição de curvs Prmetrir

Leia mais

Matriz-coluna dos segundos membros das restrições técnicas. Matriz-linha dos coeficientes das variáveis de decisão, em f(x) = [ c c ] [ 6 8] e C a

Matriz-coluna dos segundos membros das restrições técnicas. Matriz-linha dos coeficientes das variáveis de decisão, em f(x) = [ c c ] [ 6 8] e C a Versão Mtrcl do Splex VI Versão Mtrcl do Splex Introdução onsdere-se o segunte odelo de PL: Mx () 6x + 8x 2 sujeto : 3x + 2x 2 3 5x + x 2 x, x 2 Mtrzes ssocds o odelo: Mtrz Tecnológc 3 5 2 Mtrz-colun ds

Leia mais

UFPA / PPGEE. Equação de Onda. Rodrigo M. S. de Oliveira

UFPA / PPGEE. Equação de Onda. Rodrigo M. S. de Oliveira UFPA / PPGEE Equção de Ond Rodigo M. S. de Olivei A Equção de Ond As equções otcionis de Mwell, no domínio do tempo, p meios não dispesivos e Isotópicos, são dds po: Fd Ampèe Qundo é clculdo o otcionl

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POLEMAS ESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudo Depatamento de Físca Cento de Cêncas Eatas Unvesdade Fedeal do Espíto Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Últma atualzação: 3/8/5

Leia mais

x podem ser reais ou complexos. Nós estamos interessados apenas nas raízes reais. O exemplo mais simples de raiz é da equação linear.

x podem ser reais ou complexos. Nós estamos interessados apenas nas raízes reais. O exemplo mais simples de raiz é da equação linear. CAPÍTULO ZEROS DE FUNÇÕES. INTRODUÇÃO Neste cpítulo pocumos esolve polems que fequentemente ocoem n áe de engenhi e ciêncis ets, que consiste n esolução de divesos tipos de equções. Sendo esss equções

Leia mais

ATIVIDADES PARA SALA PÁG. 14

ATIVIDADES PARA SALA PÁG. 14 Resoluções pítulo 5 Poliedos 01 = 1 dos: F 6 = 8 = 6 F8 TIVIES PR SL PÁG. 14 eve-se te: I. F = 1 + 8 + 6 F = 6 II. = 1 4 + 8 6 + 6 8 = 144 = 144 = 7 III. V + F = + V + 6 = 7 + V= 74 6 V = 48 0 dos: = 8;

Leia mais

4ª Unidade: Geometria Analítica no Espaço

4ª Unidade: Geometria Analítica no Espaço Geoeti Anlíti Engenhi Quíi/Quíi Industil 5 ª Unidde: Geoeti Anlíti no Espço Equções d et no IR Seos que dois pontos define u et Co pens u dos pontos té é possível defini posição de u et desde que tenhos

Leia mais

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais.

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais. EXPOENTE 2 3 = 8 RESULTADO BASE Podeos entender potencição coo u ultiplicção de ftores iguis. A Bse será o ftor que se repetirá O expoente indic qunts vezes bse vi ser ultiplicd por el es. 2 5 = 2. 2.

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

Quantidade de oxigênio no sistema

Quantidade de oxigênio no sistema EEIMVR-UFF Refino dos Aços I 1ª Verificção Junho 29 1. 1 kg de ferro puro são colocdos em um forno, mntido 16 o C. A entrd de oxigênio no sistem é controld e relizd lentmente, de modo ir umentndo pressão

Leia mais

Serviços de Acção Social da Universidade de Coimbra

Serviços de Acção Social da Universidade de Coimbra Serviços de Acção Socil d Universidde de Coimbr Serviço de Pessol e Recursos Humnos O que é o bono de fmíli pr crinçs e jovens? É um poio em dinheiro, pgo menslmente, pr judr s fmílis no sustento e n educção

Leia mais

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}.

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}. Mrzes Mrz rel Defnção Sem m e n dos números neros Um mrz rel de ordem m n é um conuno de mn números res, dsrbuídos em m lnhs e n coluns, formndo um bel que se ndc em gerl por 9 Eemplo: A mrz A é um mrz

Leia mais

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por:

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por: FUNÇÕES EM IR n Deinição: Sej D um conjunto de pres ordendos de números reis Um unção de dus vriáveis é um correspondênci que ssoci cd pr em D ectmente um número rel denotdo por O conjunto D é o domínio

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PM 300 MÂNI I Segund Po 5 de mo de 05 ução d Po: 0 mnuos (não é pemdo uso de clculdos) ª Quesão (0 ponos) No ssem mosdo n fgu o dsco de ceno fxo em o R e eo de oção consne. dsco ol sem escoeg em elção

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

Teorema de Green no Plano

Teorema de Green no Plano Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires Teorem de Green no Plno O teorem de Green permite relcionr o integrl de linh o longo de um curv fechd com

Leia mais

Revisão de Matemática Simulado 301/302. Fatorial. Análise combinatória

Revisão de Matemática Simulado 301/302. Fatorial. Análise combinatória Revsão de Mtemátc Smuldo / Ftorl Eemplos: )! + 5! =! b) - Smplfcr (n+)! (n-)! b) Resolv s equções: (+)! = Permutção Smples Análse combntór Permutções são grupmentos com n elementos, de form que os n elementos

Leia mais

Capítulo V INTEGRAIS DE SUPERFÍCIE

Capítulo V INTEGRAIS DE SUPERFÍCIE Cpítulo V INTEAIS DE SUPEFÍCIE Cpítulo V Iters de Superfíce Cpítulo V Vmos flr sobre ters sobre superfíces o espço tr-dmesol Estes ters ocorrem em problems evolvedo fluídos e clor electrcdde metsmo mss

Leia mais

RESNICK, HALLIDAY, KRANE, FÍSICA, 4.ED., LTC, RIO DE JANEIRO, FÍSICA 3 CAPÍTULO 27 CARGA ELÉTRICA E LEI DE COULOMB

RESNICK, HALLIDAY, KRANE, FÍSICA, 4.ED., LTC, RIO DE JANEIRO, FÍSICA 3 CAPÍTULO 27 CARGA ELÉTRICA E LEI DE COULOMB Pobles Resolvidos de ísic Pof. Andeson Cose Gudio Depto. ísic UES RESNICK, HALLIDAY, KRANE, ÍSICA,.ED., LTC, RIO DE JANEIRO, 996. ÍSICA CAPÍTULO CARGA ELÉTRICA E LEI DE COULOMB. ul deve se distânci ente

Leia mais

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30 Motvção: O prole d det Itrodução os Sstes Leres U pesso e det ecesst dgerr drete s segutes qutddes de vts: g de vt A 6 g de vt B 4 g de vt C El deve suprr sus ecessddes prtr do cosuo de três letos dferetes

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles c L I S T A DE E X E R C Í C I O S CÁLCULO INTEGRAL Prof. ADRIANO PEDREIRA CATTAI Somos o que repetidmente fzemos. A ecelênci portnto, não é um feito, ms um hábito. Aristóteles Integrl Definid e Cálculo

Leia mais

Capítulo 4. Vetores. Recursos com copyright incluídos nesta apresentação:

Capítulo 4. Vetores. Recursos com copyright incluídos nesta apresentação: Cpítulo 4 Vetores Reursos om oprght nluídos nest presentção: Grndes eslres: mss, volume, tempertur,... Epresss por um número e undde Grndes vetors: deslomento, forç,... Requerem módulo, dreção, sentdo

Leia mais

Exemplos relativos à Dinâmica (sem rolamento)

Exemplos relativos à Dinâmica (sem rolamento) Exeplos reltivos à Dinâic (se rolento) A resultnte ds forçs que ctu no corpo é iul o produto d ss pel celerção por ele dquirid: totl Cd corpo deve ser trtdo individulente, escrevendo u equção vectoril

Leia mais

PROJETO ASTER: ESTRATÉGIA PARA MANOBRAS DE RENDEZVOUS DA SONDA ESPACIAL BRASILEIRA COM O ASTERÓIDE 2001 SN263

PROJETO ASTER: ESTRATÉGIA PARA MANOBRAS DE RENDEZVOUS DA SONDA ESPACIAL BRASILEIRA COM O ASTERÓIDE 2001 SN263 839 PROJETO ASTER: ESTRATÉGIA PARA MANOBRAS DE RENDEZOUS DA SONDA ESPACIAL BRASILEIRA COM O ASTERÓIDE 2001 SN263 Abeuçon Atanáso Alves 1 ;AntonoDelson Conceção de Jesus 2 1. Bolssta voluntáo, Gaduando

Leia mais

Aula 3 Trabalho e Energia - Bioenergética

Aula 3 Trabalho e Energia - Bioenergética Aula 3 Tabalho e Enega - Boenegétca Cálculo deencal Taa de vaação nstantânea de uma unção: lm ( ) ( ) (Função devada) Notação: lm ( ) ( ) d d Cálculo ntegal Áea sob o gáco de uma unção: ( 1 ) ) ( 2 Áea

Leia mais

fator de compressibilidade

fator de compressibilidade //018 GASES REAIS of. Hley. Mtins Filho Desvios d idelidde N H Idel Rel Idel Rel Medid do desvio: fto de opessibilidde Z Z id n / n (1) 1 //018 sepções inteoleules édis (1 diâetos oleules), foçs ttivs

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro;

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro; O Campo Magnético 1.Intodução: Gegos(+2000 anos): Obsevaam que pedas da egião Magnézia (magnetita) ataiam pedaços de feo; Piee Maicout(1269): Obsevou a agulha sobe imã e macou dieções de sua posição de

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais