Algoritmos de retrocesso

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Algoritmos de retrocesso"

Transcrição

1 Algoritmos de retrocesso Algoritmos em que se geram escolhas que vão sendo testadas e eventualmente refeitas Problemas para os quais não existem algoritmos eficientes: retrocesso é melhor que pesquisa exaustiva solução é gerada e avaliada parcialmente quando uma solução parcial não satisfaz objectivos, retrocesso apenas desfaz última escolha evita-se a pesquisa em ramos que garantidamente não levam a solução - poda da árvore de pesquisa : arranjo da mobília numa casa grande número de possibilidades cada peça de mobília é colocada, solução é arranjo satisfatório chegando a ponto onde qualquer arranjo é inconveniente, desfaz-se o último passo e tenta-se alternativa muitos arranjos nunca são testados Problema da portagem Dados: n pontos p1, p2,..., pn situados no eixo dos xx xi é a coordenada x de pi x1= 0 determinam n (n-1)/2 distâncias d1, d2,..., dm da forma xi - xj Distâncias podem ser geradas em tempo O(n 2 ) Problema inverso: coordenadas dos pontos a partir das distâncias: mais difícil Não há algoritmo garantido como polinomial para o problema D - conjunto das distâncias D = m = n (n-1) / 2 Algoritmo que se segue: O(n 2 log n) - é conjectura Cristina Ribeiro Retrocesso - 1

2 D= {1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8, 10} D = 15 -> n = 6 x1 = 0, x6 = 10 x1 = 0 x6 = 10 D= {1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7, 8} maior distância: 8 então x2 = 2 ou x5 = 8 (escolha é indiferente) x1 = 0 x5 = 8 x6 = 10 D= {1, 2, 2, 3, 3, 3, 4, 5, 5, 5, 6, 7} 7 - maior valor em D -> x4 = 7 ou x2 = 3 x4 = 7 x2 = 3 distâncias x6-7 = 3 e x5-7 = 1 estão em D distâncias 3-x1 = 3 e x5-3 = 5 estão em D x1 = 0 x4 = 7 x5 = 8 x6 = 10 D= {2, 2, 3, 3, 4, 5, 5, 5, 6} 6 - maior valor em D -> x3 = 6 ou x2 = 4 x3 = 6 distância x4 - x3 = 1 impossível, já não existe 1 em D x2 = 4 distâncias x2-x1 = 4 e x5 - x2 = 4 impossível, só 1 vez 4 em D É preciso retroceder! Cristina Ribeiro Retrocesso - 2

3 x4 = 7 não conduziu a solução tenta-se agora x2 = 3 x1 = 0 x2 = 3 x5 = 8 x6 = 10 D= {1, 2, 2, 3, 3, 4, 5, 5, 6} 6 - maior valor em D -> x4 = 6 ou x3 = 4 x3 = 4 impossível, só 1 vez 4 em D x1 = 0 x2 = 3 x4 = 6 x5 = 8 x6 = 10 D= {1, 2, 3, 5, 5} x1 = 0 x2 = 3 x3 = 5 x4 = 6 x5 = 8 x6 = 10 D = { } x 1 =0, x 5 =10 x 5 =8 Árvore de decisão x ** 4 =7 x 2 =3 * * x 3 =6 x 2 =4 x 3 =4 x 4 =6 x 3 =5 Cristina Ribeiro Retrocesso - 3

4 Na ausência de retrocesso Análise D pode ser mantido como árvore de pequisa equilibrada O(n 2 ) operações em D remoção: D tem O(n 2 ) elementos, não há reinserções, total é O(n 2 ) pesquisa: 1 tentativa de colocação faz no máximo 2n, total é O(n 2 ) Tempo total é O(n 2 log n) Com retrocesso: perde-se eficiência não existe limite polinomial para o retrocesso requerido não estão identificados exemplos patológicos com pontos de coordenadas inteiras e distribuídas uniformemente, conjectura é que retrocesso não ocorre mais que O(1) Jogos Como jogar automaticamente um jogo estratégico? : jogo do galo pode construir-se algoritmo que nunca perde e aproveita oportunidades para ganhar posições críticas armazenadas em tabela escolha de jogada baseada na posição corrente usando uma tabela... todo a análise do jogo feita pelo programador Em geral, em jogos não triviais não é possível dispor de decisões para todos os caminhos a partir de uma posição é preciso recomputar a cada jogada é impraticável explorar todas as hipóteses Cristina Ribeiro Retrocesso - 4

5 imax Estratégia minimax função de avaliação da qualidade de uma posição 1 se posição de vitória 0 se é empate -1 se é para perder se se pode fazer avaliação por inspecção do tabuleiro: posição terminal posição não terminal: valor é determinado assumindo recursivamente jogadas óptimas de ambos os lados Um jogador tenta minimizar e o outro maximizar o valor da posição Para posição P: Se é a minha vez de jogar avalio recursivamente as posições sucessoras Ps, escolhendo o valor maior; ao avaliar Ps as suas sucessoras são avaliadas e o menor valor é escolhido (caso mais favorável para o oponente) Pesquisa com limite de profundidade Em jogos complexos: inviável pesquisar todos os nós terminais para avaliar a posição parar a determinada profundidade nós onde pára a recursão tratados como nós terminais função de estimativa para avaliar nós terminais Ex: xadrez - avaliar peças e suas posições Para aumentar o factor de previsão - métodos que avaliam menos nós e não perdem informação sobre posições já avaliadas X X O X X O X X O X O X tabela de transposição Cristina Ribeiro Retrocesso - 5

6 Árvore do jogo Estrutura da pesquisa de posições (nós) e valores das avaliações C A Cortes α β 44 Estrutura da pesquisa de posições (nós) e valores das avaliações D B Cristina Ribeiro Retrocesso - 6

7 Corte α D? Valor em D não pode aumentar resultado na raiz: o seu nó pai é min e tem valor garantidamente inferior ao conseguido na raiz até ao momento Corte β D? Valor em C não pode aumentar resultado na raiz: nó pai é max e tem valor garantidamente superior ao conseguido na raiz até ao momento Cristina Ribeiro Retrocesso - 7

Técnicas de Desenho de Algoritmos

Técnicas de Desenho de Algoritmos Técnicas de Desenho de Algoritmos Mudança de ênfase: da implementação de algoritmos para o desenho de algoritmos A ver: 5 tipos de algoritmos abordagem ao problema exemplos complexidade em tempo e espaço

Leia mais

INTELIGÊNCIA ARTIFICIAL 2008/09

INTELIGÊNCIA ARTIFICIAL 2008/09 INTELIGÊNCIA ARTIFICIAL 2008/09 JOGOS Ex. 1) ( Teste 2005/06) Considere a seguinte árvore de procura de dois agentes. Reordene as folhas de modo a maximizar o número de cortes com uma procura da esquerda

Leia mais

Busca Competitiva. Inteligência Artificial. Até aqui... Jogos vs. busca. Decisões ótimas em jogos 9/22/2010

Busca Competitiva. Inteligência Artificial. Até aqui... Jogos vs. busca. Decisões ótimas em jogos 9/22/2010 Inteligência Artificial Busca Competitiva Aula 5 Profª Bianca Zadrozny http://www.ic.uff.br/~bianca/ia-pos Capítulo 6 Russell & Norvig Seção 6.1 a 6.5 2 Até aqui... Problemas sem interação com outro agente.

Leia mais

CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 02

CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 02 . CEFET/RJ Disciplina: Inteligência Artificial Professor: Eduardo Bezerra Lista de exercícios 02 Créditos: alguns itens desta lista são adaptados do material da disciplina CS188 - Artificial Intelligence

Leia mais

Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula VI Busca Competitiva

Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula VI Busca Competitiva Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação http://www.inf.unioeste.br/~claudia/ia2017.html Inteligência Artificial Resolução de problemas por meio de algoritmos

Leia mais

Alternativamente pode ser pensado como uma forma de maximizar o minimo ganho possível.

Alternativamente pode ser pensado como uma forma de maximizar o minimo ganho possível. Inteligência Artificial Algoritmo i com cortes Alfa-Beta Ana Saraiva 050509087 Ana Barbosa 050509089 Marco Cunha 050509048 Tiago Fernandes 050509081 FEUP - MIEIC 3ºAno/ºSemestre 1 Introdução O algoritmo

Leia mais

Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: f=7 f=7 f=1 f=2

Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: f=7 f=7 f=1 f=2 LERCI/LEIC Tagus 2005/06 Inteligência Artificial Exercícios sobre Minimax: Ex. 1) Considere que a árvore seguinte corresponde a uma parte do espaço de estados de um jogo de dois agentes: Max Min f=4 f=7

Leia mais

Sumário. Decisões óptimas em jogos (minimax) Cortes α-β Decisões imperfeitas em tempo real

Sumário. Decisões óptimas em jogos (minimax) Cortes α-β Decisões imperfeitas em tempo real Jogos Capítulo 6 Sumário Decisões óptimas em jogos (minimax) Cortes α-β Decisões imperfeitas em tempo real Jogos vs. Problemas de Procura Adversário imprevisível" necessidade de tomar em consideração todas

Leia mais

Árvore de Jogos Minimax e Poda Alfa-Beta

Árvore de Jogos Minimax e Poda Alfa-Beta Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Árvore de Jogos Minimax e Poda Alfa-Beta Inteligência Artificial Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

Introdução à Inteligência Artificial. Procura em contextos competitivos jogos (cont.)

Introdução à Inteligência Artificial. Procura em contextos competitivos jogos (cont.) Introdução à Inteligência Artificial Procura em contextos competitivos jogos (cont.) Sumário n Vimos Jogos de 2 jogadores n Determinísticos, soma nula, informação perfeita Estratégia óptima minimax Algoritmos

Leia mais

Jogos com Oponentes. March 13, 2017

Jogos com Oponentes. March 13, 2017 Jogos com Oponentes March 13, 2017 Jogos com Oponentes Problemas de busca: não assumem a presença de um oponente Jogos: oponente INCERTEZA! Incerteza porque não se conhece as jogadas exatas do oponente

Leia mais

Jogos com Oponentes. espaço de busca muito grande tempo para cada jogada

Jogos com Oponentes. espaço de busca muito grande tempo para cada jogada Jogos com Oponentes Jogos com Oponentes ˆ Problemas de busca: não assumem a presença de um oponente ˆ Jogos: oponente INCERTEZA! ˆ Incerteza porque não se conhece as jogadas exatas do oponente e não por

Leia mais

Jogos com Oponentes. Problemas de busca: não assumem a presença de um oponente

Jogos com Oponentes. Problemas de busca: não assumem a presença de um oponente istemas Inteligentes, 10-11 1 Jogos com ponentes Problemas de busca: não assumem a presença de um oponente Jogos: oponente INCERTEZA! Incerteza porque não se conhece as jogadas exatas do oponente e não

Leia mais

Técnicas para Implementação de Jogos

Técnicas para Implementação de Jogos Técnicas para Implementação de Jogos Solange O. Rezende Thiago A. S. Pardo Considerações gerais Aplicações atrativas para métodos de IA Formulação simples do problema (ações bem definidas) Ambiente acessível

Leia mais

Jogos com Oponentes. Problemas de busca: não assumem a presença de um oponente

Jogos com Oponentes. Problemas de busca: não assumem a presença de um oponente Sistemas Inteligentes, 13-14 1 Jogos com ponentes Problemas de busca: não assumem a presença de um oponente Jogos: oponente INCERTEZA! Incerteza porque não se conhece as jogadas exatas do oponente e não

Leia mais

Busca competitiva. Inteligência Artificial. Profª. Solange O. Rezende

Busca competitiva. Inteligência Artificial. Profª. Solange O. Rezende Profª. Solange O. Rezende 1 O que vimos até agora... Busca não informada Baseada somente na organização de estados e a sucessão entre eles Busca informada Utiliza, também, informações a respeito do domínio

Leia mais

PMR Computação para Mecatrônica

PMR Computação para Mecatrônica PMR3201 - Computação para Mecatrônica Prof. Thiago de Castro Martins Prof. Newton Maruyama Prof. Marcos de S.G. Tsuzuki Monitor: Pietro Teruya Domingues Exercício Programa 2 - Versão 2017 Resolvendo o

Leia mais

CTC-17 Inteligência Artificial Busca Competitiva e Busca Iterativa. Prof. Paulo André Castro

CTC-17 Inteligência Artificial Busca Competitiva e Busca Iterativa. Prof. Paulo André Castro CTC-17 Inteligência Artificial Busca Competitiva e Busca Iterativa Prof. Paulo André Castro pauloac@ita.br www.comp.ita.br/~pauloac Sala 110, IEC-ITA Sumário Busca Competitiva Para Ambientes multiagentes...

Leia mais

a) Defina em Prolog iguais/1, um predicado que recebe um estado do jogo e que verifica que todas as pilhas têm o mesmo número de peças.

a) Defina em Prolog iguais/1, um predicado que recebe um estado do jogo e que verifica que todas as pilhas têm o mesmo número de peças. Introdução à Inteligência Artificial 2ª Época 29 Janeiro 2015 Nº Aluno: Nome Completo: Exame com consulta. Responda às perguntas nesta própria folha, nos espaços indicados. (I) O jogo do Nim (também chamado

Leia mais

Inteligência Artificial (SI 214) Aula 6 Busca com Adversário. Prof. Josenildo Silva

Inteligência Artificial (SI 214) Aula 6 Busca com Adversário. Prof. Josenildo Silva Inteligência Artificial (SI 214) Aula 6 Busca com Adversário Prof. Josenildo Silva jcsilva@ifma.edu.br 2015 2012-2015 Josenildo Silva (jcsilva@ifma.edu.br) Este material é derivado dos slides de Hwee Tou

Leia mais

Backtracking. Backtracking

Backtracking. Backtracking Notas de aula da disciplina IME 0-0 ALGORITMOS E ESTRUTURAS DE DADOS II Paulo Eustáquio Duarte Pinto (pauloedp arroba ime.uerj.br) É uma técnica de solução de problemas (construção de algoritmos) que eamina

Leia mais

INTELIGÊNCIA ARTIFICIAL

INTELIGÊNCIA ARTIFICIAL INTELIGÊNCIA ARTIFICIAL Primeiro Exame 7 de Julho de 2005 9:00-11:00 Este exame é composto por 9 págínas contendo 8 grupos de perguntas. Identifique já todas as folhas do exame com o seu nome e número.

Leia mais

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br

IA: Busca Competitiva. Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br IA: Busca Competitiva Ricardo Britto DIE-UFPI rbritto@ufpi.edu.br Sumário Introdução Árvores de Jogos Minimax Antecipação Limitada Poda Alfa-beta Introdução Jogos têm sido continuamente uma importante

Leia mais

Exemplo de aprendizagem máquina

Exemplo de aprendizagem máquina (Primeiro exemplo) Jogo de damas c/ aprendizagem Tom Mitchell, Machine Learning, McGraw-Hill, 1997 chapter 1 17-Jul-13 http://w3.ualg.pt/~jvo/ml 12 1 Exemplo de aprendizagem máquina 1. Descrição do problema

Leia mais

Introdução à Inteligência Artificial 2007/08

Introdução à Inteligência Artificial 2007/08 Introdução à Inteligência rtificial 2007/08 Procura em contextos competitivos jogos Contexto Um agente vs multiagente mbiente cooperativo vs competitivo Teoria dos jogos (ramo da Economia) Sistema multiagente

Leia mais

Enunciados dos Exercícios Cap. 2 Russell & Norvig

Enunciados dos Exercícios Cap. 2 Russell & Norvig Enunciados dos Exercícios Cap. 2 Russell & Norvig 1. (2.2) Tanto a medida de desempenho quanto a função de utilidade medem o quanto um agente está desempenhando bem suas atividades. Explique a diferença

Leia mais

Sistemas Baseados em Conhecimento

Sistemas Baseados em Conhecimento Departamento de Informática Faculdade de Ciências Universidade de Lisboa Sistemas Baseados em Conhecimento Primeiro Teste 24 de Abril de 2008 Nome Completo: Nº Aluno: Licenciatura: com consulta 1 hora

Leia mais

Romildo Martins da S Bezerra Julho 2001

Romildo Martins da S Bezerra Julho 2001 Algoritmo do Kalah Romildo Martins da S Bezerra Julho 2001 Índice 1. O Jogo...3 2. Mudanças para Implementação...3 3. O Algoritmo...4 3.1 MINIMAX...4 3.2 Poda Alpha-Beta...4 3.3 Estrutura Utilizada...5

Leia mais

Jogos e Busca. Silvio Lago

Jogos e Busca. Silvio Lago 1 Jogos e Busca Silvio Lago slago@ime.usp.br 2 Sumário Jogos adversariais Algoritmo MINIMAX Algoritmo de poda α-β Função de avaliação e corte Jogos de sorte 3 Jogos Ambientes competitivos, em que as metas

Leia mais

Teoria de Jogos. Algoritmo Minimax e Alfa-Beta AED - 2002

Teoria de Jogos. Algoritmo Minimax e Alfa-Beta AED - 2002 Teoria de Jogos Algoritmo Minimax e Alfa-Beta AED - 2002 Conceptualização do Problema Jogar pode ser visto como uma generalização do problema de procura em espaço de estados, em que existem agentes hostis

Leia mais

SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS

SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS Universidade Federal do Tocantins SOLUÇÕES HEURÍSTICAS PARA O JOGO DE DAMAS Diogo Rigo de Brito Guimarães Alexandre Tadeu Rossini da Silva Objetivo Implementar soluções heurísticas para o Jogo de Damas

Leia mais

PROCURA E PLANEAMENTO

PROCURA E PLANEAMENTO PROCURA E PLANEAMENTO Primeiro Exame 13 de Janeiro de 2007 11:00-13:30 Este exame é composto por 13 páginas contendo 6 grupos de perguntas. Identifique já todas as folhas do exame com o seu nome e número.

Leia mais

Anatomia do motor de um programa de xadrez. Hugo Vinicius M. D. Santana Orientador: José Coelho de Pina

Anatomia do motor de um programa de xadrez. Hugo Vinicius M. D. Santana Orientador: José Coelho de Pina Anatomia do motor de um programa de xadrez Hugo Vinicius M. D. Santana Orientador: José Coelho de Pina Conteúdo Objetivo O que é um motor de xadrez? Arquitetura Entrada e saída Representação do tabuleiro

Leia mais

INTRODUÇÃO A BUSCA EXERCÍCIOS

INTRODUÇÃO A BUSCA EXERCÍCIOS INTRODUÇÃO USC EXERCÍCIOS 1. Formule um problema de busca de forma que um agente possa planejar sua ida do Portal da Graciosa à ntonina pelo caminho de menor custo. Não é necessário prever caminhos de

Leia mais

C. Requejo (UA) Métodos de Investigação Operacional MIO / 37

C. Requejo (UA) Métodos de Investigação Operacional MIO / 37 Programação Dinâmica C. Requejo (UA) Métodos de Investigação Operacional MIO 2015-2016 1 / 37 Programação Dinâmica a Programação Dinâmica (PD) é uma técnica muito útil que permite obter uma sequência de

Leia mais

Inteligência Artificial Projecto 2

Inteligência Artificial Projecto 2 Bantumi ESPECIFICAÇÕES O projecto destina-se a resolver um conjunto de problemas do jogo Bantumi utilizando métodos de procura em espaço de estados. Bantumi é um jogo derivado do jogo Mancala de origem

Leia mais

Acesso Sequencial Indexado

Acesso Sequencial Indexado Acesso Sequencial Indexado Utiliza o princípio da pesquisa seqüencial cada registro é lido seqüencialmente até encontrar uma chave maior ou igual a chave de pesquisa. Providências necessárias para aumentar

Leia mais

INTELIGÊNCIA ARTIFICIAL

INTELIGÊNCIA ARTIFICIAL INTELIGÊNCIA ARTIFICIAL Segundo Exame 11 de Julho de 2006 9:00-11:00 Este exame é composto por 11 páginas contendo 8 grupos de perguntas. Identifique já todas as folhas do exame com o seu nome e número.

Leia mais

Gatos & Cães Simon Norton, 1970s

Gatos & Cães Simon Norton, 1970s Gatos & Cães Simon Norton, 1970s Um tabuleiro quadrado 8 por 8. 28 peças gato e 28 peças cão (representadas respectivamente por peças negras e brancas). Ganha o jogador que realizar a última jogada. zona

Leia mais

Aprendizado por Árvores de Decisão

Aprendizado por Árvores de Decisão Universidade Federal de Santa Maria Departamento de Eletrônica e Computação Prof. Cesar Tadeu Pozzer Disciplina de Programação de Jogos 3D E-mail: pozzer@inf.ufsm.br Período: 2006/01 Aprendizado por Árvores

Leia mais

Busca com Adversários: Jogos. Maria Carolina Monard

Busca com Adversários: Jogos. Maria Carolina Monard Busca com Adversários: Jogos Thiago A. S. Pardo Maria Carolina Monard Busca com Adversários Diferentemente da busca tradicional vista até agora, na qual a situação não troca durante a busca, a busca com

Leia mais

BCC204 - Teoria dos Grafos

BCC204 - Teoria dos Grafos BCC204 - Teoria dos Grafos Marco Antonio M. Carvalho (baseado nas notas de aula do prof. Haroldo Gambini Santos) Departamento de Computação Instituto de Ciências Exatas e Biológicas Universidade Federal

Leia mais

Distribuição de Jogos por Ciclo

Distribuição de Jogos por Ciclo REGRAS DOS JOGOS Distribuição de Jogos por Ciclo 1º CEB 2º CEB 3º CEB Sec. Semáforo x Gatos & Cães x x Rastros x x x Produto x x x Avanço x x Flume x 2 Semáforo Autor: Alan Parr 8 peças verdes, 8 amarelas

Leia mais

Resumo. Como um agente busca de seqüência de ações para alcançar seus objetivos.

Resumo. Como um agente busca de seqüência de ações para alcançar seus objetivos. Resumo Inteligência Artificial Russel e Norvig Capítulos 3,4 e 5 Prof. MsC Ly Freitas UEG Resolução de problemas por meio de busca Como um agente busca de seqüência de ações para alcançar seus objetivos.

Leia mais

Recursividade Exaustiva e Backtracking

Recursividade Exaustiva e Backtracking Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Recursividade Exaustiva e Tópicos Especiais em Programação Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

Resolução de problemas por meio de busca. Capítulo 3 Russell & Norvig Seções 3.4 e 3.5

Resolução de problemas por meio de busca. Capítulo 3 Russell & Norvig Seções 3.4 e 3.5 Resolução de problemas por meio de busca Capítulo 3 Russell & Norvig Seções 3.4 e 3.5 Formulação de problemas Um problema é definido por quatro itens: 1. Estado inicial ex., em Arad" 2. Ações ou função

Leia mais

Aula 9 TECNOLOGIA EM JOGOS DIGITAIS PROGRAMACAO E INTEGRACAO DE JOGOS I. Marcelo Henrique dos Santos

Aula 9 TECNOLOGIA EM JOGOS DIGITAIS PROGRAMACAO E INTEGRACAO DE JOGOS I. Marcelo Henrique dos Santos Aula 9 TECNOLOGIA EM JOGOS DIGITAIS PROGRAMACAO E INTEGRACAO DE JOGOS I Marcelo Henrique dos Santos Marcelo Henrique dos Santos Mestrado em Educação (em andamento) Pós-graduação em Negócios em Mídias Digitais

Leia mais

Backtracking. Túlio Toffolo Marco Antônio Carvalho BCC402 Aula 10 Algoritmos e Programação Avançada

Backtracking. Túlio Toffolo  Marco Antônio Carvalho BCC402 Aula 10 Algoritmos e Programação Avançada Backtracking Túlio Toffolo www.toffolo.com.br Marco Antônio Carvalho marco.opt@gmail.com BCC402 Aula 10 Algoritmos e Programação Avançada Backtracking Backtracking é um refinamento do algoritmo de busca

Leia mais

Artifical (utilizando o Jogo da Velha)

Artifical (utilizando o Jogo da Velha) Ensinando Técnicas de Inteligência Artifical (utilizando o Jogo da Velha) Prof. Dr. Luciano Antonio Digiampietri Escola de Artes, Ciências e Humanidades da USP Roteiro Contexto Educativo Descrição do Jogo

Leia mais

Gatos & Cães Simon Norton, 1970s

Gatos & Cães Simon Norton, 1970s Gatos & Cães Simon Norton, 970s Um tabuleiro quadrado 8 por 8. 8 peças gato e 8 peças cão (representadas respectivamente por peças negras e brancas). Ganha o jogador que realizar a última jogada. zona

Leia mais

FICHA DE REVISÕES Micro 1

FICHA DE REVISÕES Micro 1 FIH DE REVISÕES Micro 1 1) Monopólio Num determinado mercado, servido só por uma empresa, a procura de mercado desse bem é dada por Q D = 100 P +, em que P é o preço do bem e os gastos em publicidade efectuados

Leia mais

Projecto de Algoritmos e Estruturas de Dados

Projecto de Algoritmos e Estruturas de Dados Projecto de Algoritmos e Estruturas de Dados Licenciatura em Engenharia Electrotécnica e de Computadores Licenciatura em Engenharia Electrónica 1 o ano, 2 o Semestre, 2005/2006 Instituto Superior Técnico

Leia mais

7 a Lista de Exercícios Assunto: Funções e passagem por referência com vetor e matriz (Tópico 7)

7 a Lista de Exercícios Assunto: Funções e passagem por referência com vetor e matriz (Tópico 7) 7 a Lista de Exercícios Assunto: Funções e passagem por referência com vetor e matriz (Tópico 7) Essa lista de exercícios tem como objetivo principal desenvolver algoritmos a partir dos conteúdos abordados

Leia mais

Jogo de Damas. Alunos: Sávio Mendes de Figueiredo Sômulo Nogueira Mafra

Jogo de Damas. Alunos: Sávio Mendes de Figueiredo Sômulo Nogueira Mafra Jogo de Damas Alunos: Sávio Mendes de Figueiredo (savio@cos.ufrj.br) Sômulo Nogueira Mafra (somulo@cos.ufrj.br) Prof.: Inês dutra Inteligência artificial Coppe sistemas - UFRJ 1. Algumas Frases 2. Origens

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência rtificial usca ompetitiva Jogos usca ompetitiva Num ambiente multiagente, é necessário considerar as ações de outros agentes e o modo como essas ações nos afetam. imprevisibilidade de outros

Leia mais

CÁLCULOS DOS TEMPOS DE AVANÇO T L E DE INFILTRAÇÃO T R

CÁLCULOS DOS TEMPOS DE AVANÇO T L E DE INFILTRAÇÃO T R CÁLCULOS DOS TEMPOS DE AVANÇO T L E DE INFILTRAÇÃO T R TITICO DE SOUZA 08/0/007 RETROSPECTIVA 006 Etapas de um projeto por sulcos convencionais:. Vazão máxima não-erosiva. Número mínimo de sulcos por lote

Leia mais

Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula I - Introdução

Inteligência Artificial. Resolução de problemas por meio de algoritmos de busca. Aula I - Introdução Universidade Estadual do Oeste do Paraná Curso de Bacharelado em Ciência da Computação http://www.inf.unioeste.br/~claudia/ia2017.html Inteligência Artificial Resolução de problemas por meio de algoritmos

Leia mais

INF 1771 Inteligência Artificial

INF 1771 Inteligência Artificial Edirlei Soares de Lima INF 1771 Inteligência Artificial Aula 24 Aprendizado Por Reforço Formas de Aprendizado Aprendizado Supervisionado Árvores de Decisão. K-Nearest Neighbor (KNN).

Leia mais

Busca em Espaço de Estados a

Busca em Espaço de Estados a Busca em Espaço de Estados a Fabrício Jailson Barth BandTec Agosto de 2012 a Slides baseados no material do Prof. Jomi F. Hübner (UFSC) Introdução 2 Agente orientado a meta O projetista não determina um

Leia mais

1 Refazer a Prova 2 2 Fazer o TC 3 Refazer as listas que a Professora Ivânia entregou em aula.

1 Refazer a Prova 2 2 Fazer o TC 3 Refazer as listas que a Professora Ivânia entregou em aula. Exercícios para a Prova 3 de Matemática 2 Trimestre 1 Refazer a Prova 2 2 Fazer o TC 3 Refazer as listas que a Professora Ivânia entregou em aula. Módulo 19 Equações de 2 Grau, Fórmula de Báskara 1. Calcule

Leia mais

PCS Inteligência Artificial

PCS Inteligência Artificial PCS 2059 - Inteligência Artificial 1a. Lista de Exercícios Prof. Responsável: Jaime Simão Sichman A. Introdução à IA 1. Descreva resumidamente o que é o Teste de Turing. B. Representação por Espaço de

Leia mais

JOGOS LIVRO REGRAS M AT E M Á T I CO S. 11.º Campeonato Nacional

JOGOS LIVRO REGRAS M AT E M Á T I CO S. 11.º Campeonato Nacional Vila Real JOGOS M AT E M Á T I CO S.º Campeonato Nacional LIVRO DE REGRAS Semáforo Autor: Alan Parr Material Um tabuleiro retangular por. 8 peças verdes, 8 amarelas e 8 vermelhas partilhadas pelos jogadores.

Leia mais

Inteligência Artificial Projecto 1

Inteligência Artificial Projecto 1 Bantumi ESPECIFICAÇÕES O projecto destina-se a resolver um conjunto de problemas do jogo Bantumi utilizando métodos de procura em espaço de estados. Bantumi é um jogo derivado do jogo Mancala de origem

Leia mais

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas

Inteligência Artificial. Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas Inteligência Artificial Prof. Tiago A. E. Ferreira Aula 5 Resolvendo Problemas 1 Agente solucionador de problemas (guiado por objetivo) O agente reativo Escolhe suas ações com base apenas nas percepções

Leia mais

Fernando Silva DCC-FCUP. Estruturas de Dados

Fernando Silva DCC-FCUP. Estruturas de Dados 3. Recursividade, Bactracking e Dividir-para-Conquistar Fernando Silva DCC-FCUP Estruturas de Dados Fernando Silva (DCC-FCUP) 3. Recursividade, Bactracking e Dividir-para-Conquistar Estruturas de Dados

Leia mais

Buscas Informadas ou Heurísticas - Parte II

Buscas Informadas ou Heurísticas - Parte II Buscas Informadas ou Heurísticas - Parte II Prof. Cedric Luiz de Carvalho Instituto de Informática - UFG Graduação em Ciência da Computação / 2006 FUNÇÕES HEURÍSTICAS - 1/7 FUNÇÕES HEURÍSTICAS - 2/7 Solução

Leia mais

Investigação Operacional

Investigação Operacional Métodos de Programação Linear: Big M, Fases, S Dual (Licenciatura) Tecnologias e Sistemas de Informação http://dps.uminho.pt/pessoais/zan - Escola de Engenharia Departamento de Produção e Sistemas 1 Simplex

Leia mais

INTELIGÊNCIA ARTIFICIAL

INTELIGÊNCIA ARTIFICIAL INTELIGÊNCIA ARTIFICIAL Primeiro Teste 29 de Outubro de 2011 17:00-18:30 Este teste é composto por 9 páginas contendo 11 perguntas. Para perguntas com resposta de escolha múltipla, respostas erradas com

Leia mais

UTILIZAÇÃO DE APRENDIZADO POR REFORÇO PARA APRENDER A ESTRATÉGIA DO JOGO DA VELHA

UTILIZAÇÃO DE APRENDIZADO POR REFORÇO PARA APRENDER A ESTRATÉGIA DO JOGO DA VELHA Anais do 12 O Encontro de Iniciação Científica e Pós-Graduação do ITA XII ENCITA / 2006 Instituto Tecnológico de Aeronáutica São José dos Campos SP Brasil Outubro 16 a19 2006 UTILIZAÇÃO DE APRENDIZADO

Leia mais

SUMÁRIO. Fundamentos Árvores Binárias Árvores Binárias de Busca

SUMÁRIO. Fundamentos Árvores Binárias Árvores Binárias de Busca ÁRVORES SUMÁRIO Fundamentos Árvores Binárias Árvores Binárias de Busca 2 ÁRVORES Utilizadas em muitas aplicações Modelam uma hierarquia entre elementos árvore genealógica Diagrama hierárquico de uma organização

Leia mais

Interessado em conhecer nosso trabalho? Nosso objetivo é participar da sua evolução!

Interessado em conhecer nosso trabalho? Nosso objetivo é participar da sua evolução! A Darwin Jogos surgiu no início de 2012 a partir da experiência de 3 anos da Galápagos Jogos na criação, produção e aplicação de ferramentas lúdicas no ambiente corporativo. O sucesso foi tão grande que

Leia mais

Aula 5. Apontamentos Teórico-Práticos de Algoritmia Avançada LEI/ISEP Métodos de Pesquisa Carlos Ramos 60

Aula 5. Apontamentos Teórico-Práticos de Algoritmia Avançada LEI/ISEP Métodos de Pesquisa Carlos Ramos 60 Aula 5 60 O método Minimax é o método mais conhecido para lidar com jogos. Admite-se que existe um gerador de estados e uma função que avalia a vantagem ou desvantagem de um dado estado. Vamos considerar

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

Pesquisa em Grafos. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Pesquisa em Grafos 2014/ / 33

Pesquisa em Grafos. Pedro Ribeiro 2014/2015 DCC/FCUP. Pedro Ribeiro (DCC/FCUP) Pesquisa em Grafos 2014/ / 33 Pesquisa em Grafos Pedro Ribeiro DCC/FCUP 2014/2015 Pedro Ribeiro (DCC/FCUP) Pesquisa em Grafos 2014/2015 1 / 33 Pesquisa em Grafos Uma das tarefas mais importantes é saber percorrer um grafo, ou seja

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Segundo Teste 31 de Janeiro de 2014 08:00-11:00 A 1.º Enunciado Esta prova é constituída por 3 enunciados separados. Preencha cuidadosamente o nome e número na primeira página de

Leia mais

Inteligência Computacional

Inteligência Computacional Rafael D. Ribeiro, M.Sc. rafaeldiasribeiro@gmail.com http://www.rafaeldiasribeiro.com.br Agente: É um elemento qualquer capaz de perceber seu ambiente por meio de sensorese de agir sobre este ambiente

Leia mais

Microsoft Faculty Connection

Microsoft Faculty Connection Microsoft Faculty Connection Plataforma de Jogos como Ferramenta Multidisciplinar Prof. Dr. LucianoAntonio Digiampietri EACH-USP Roteiro Introdução Objetivos Detalhamentodo Projeto Conclusões Introdução

Leia mais

Trabalho Prático. Bruno Coswig Fiss Kauê Soares da Silveira. Disciplina INF Inteligência Artificial. Professor: Paulo Martins Engel

Trabalho Prático. Bruno Coswig Fiss Kauê Soares da Silveira. Disciplina INF Inteligência Artificial. Professor: Paulo Martins Engel Bruno Coswig Fiss Kauê Soares da Silveira Trabalho Prático Disciplina INF01048 - Inteligência Artificial Professor: Paulo Martins Engel UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 1 de julho de 2010 Sumário

Leia mais

Hashing: conceitos. Hashing

Hashing: conceitos. Hashing Hashing: conceitos hashing é uma técnica conhecida como espalhamento, mapeamento ou randomização que tenta distribuir dados em posições aleatórias de uma tabela (array) associa cada objeto (de um determinado

Leia mais

Implementação e Avaliação do Algoritmo MCTS-UCT para o jogo Chinese Checkers

Implementação e Avaliação do Algoritmo MCTS-UCT para o jogo Chinese Checkers Implementação e Avaliação do Algoritmo MCTS-UCT para o jogo Chinese Checkers Jhonny Manuel Campos Moreira Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Departamento de Ciência de Computadores

Leia mais

Simulação do Jogo Tic-Tac-Toe com o uso de Técnicas de Inteligência Artificial

Simulação do Jogo Tic-Tac-Toe com o uso de Técnicas de Inteligência Artificial STIN Simpósio de Tecnologia da Informação da Região Noroeste do RS 163 Simulação do Jogo Tic-Tac-Toe com o uso de Técnicas de Inteligência Artificial Aluísio de Ávila, Angélica Caetane Pelizza, Bruno Barbosa

Leia mais

Medida do Tempo de Execução de um Programa. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR

Medida do Tempo de Execução de um Programa. David Menotti Algoritmos e Estruturas de Dados II DInf UFPR Medida do Tempo de Execução de um Programa David Menotti Algoritmos e Estruturas de Dados II DInf UFPR Classes de Comportamento Assintótico Se f é uma função de complexidade para um algoritmo F, então

Leia mais

Inteligência Computacional

Inteligência Computacional Rafael D. Ribeiro, M.Sc. rafaeldiasribeiro@gmail.com http://www.rafaeldiasribeiro.com.br Métodos Revogáveis de Busca Busca em profundidade Backtracking Busca em largura Busca em profundidade iterativa

Leia mais

O peão Se um peão consegue chegar até a outra extremidade do tabuleiro(linha 8), ele é promovido. Um peão promovido é substituído, ainda na mesma jogada em que o movimento foi feito, por um cavalo, bispo,torreoudamadamesmacor.

Leia mais

Trabalho de Implementação Jogo Reversi

Trabalho de Implementação Jogo Reversi Trabalho de Implementação Jogo Reversi Paulo Afonso Parreira Júnior {paulojr@comp.ufla.br} Rilson Machado de Olivera {rilson@comp.ufla.br} Universidade Federal de Lavras UFLA Departamento de Ciência da

Leia mais

1.1. O jogo Neste jogo parte-se de um tabuleiro com um número ímpar de discos (no caso da figura abaixo são 9), dispostos em linha,

1.1. O jogo Neste jogo parte-se de um tabuleiro com um número ímpar de discos (no caso da figura abaixo são 9), dispostos em linha, 1. Jogo dos saltos 1.1. O jogo Neste jogo parte-se de um tabuleiro com um número ímpar de discos (no caso da figura abaixo são 9), dispostos em linha, e por um conjunto de fichas de 2 cores diferentes

Leia mais

Jogo King Relatório da Melhoria do Trabalho Inteligência Artificial. Tiago Fonseca, ei02100

Jogo King Relatório da Melhoria do Trabalho Inteligência Artificial. Tiago Fonseca, ei02100 Jogo King Relatório da Melhoria do Trabalho Inteligência Artificial Tiago Fonseca, ei02100 19 de Julho de 2005 Resumo Conteúdo 1 Introdução 3 1.1 Objectivo................................... 3 1.2 Motivação...................................

Leia mais

Professor: Paulo Adolfo Kepler (Zé)

Professor: Paulo Adolfo Kepler (Zé) Professor: Paulo Adolfo Kepler (Zé) INTRODUÇÃO Caro aluno! Você acaba de ingressar no fascinante mundo do Xadrez, o jogo de tabuleiro mais praticado no mundo. Você estará no comando de um poderoso exército,

Leia mais

Jogo da Velha 3D ou JV3D

Jogo da Velha 3D ou JV3D Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza-CCEN Programa Institucional de Bolsas de Iniciação á Docência Departamento de Matemática Oficina pedagógica: JV3D IV Semana da Matemática

Leia mais

1/ 36. Computação 1 - Python Aula 1 - Teórica: Introdução

1/ 36. Computação 1 - Python Aula 1 - Teórica: Introdução 1/ 36 Computação 1 - Python Aula 1 - Teórica: Introdução Conhecendo a turma Experiência com programação e uso do computador Quantos já programaram antes? Quais linguagens? Quantos tem computador em casa

Leia mais

INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DO 2 o TESTE

INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos. RESOLUÇÃO DO 2 o TESTE INSTITUTO SUPERIOR TÉCNICO Análise e Síntese de Algoritmos Ano Lectivo de 2006/2007 2 o Semestre RESOLUÇÃO DO 2 o TESTE I. (2,0+2,0+2,0 = 6,0 val.) 1) Calcule o valor óptimo da função objectivo e o respectivo

Leia mais

7. Introdução à Complexidade de Algoritmos

7. Introdução à Complexidade de Algoritmos 7. Introdução à Complexidade de Algoritmos Fernando Silva DCC-FCUP Estruturas de Dados Fernando Silva (DCC-FCUP) 7. Introdução à Complexidade de Algoritmos Estruturas de Dados 1 / 1 Análise de Algoritmos

Leia mais

8. Árvores. Fernando Silva DCC-FCUP. Estruturas de Dados. Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38

8. Árvores. Fernando Silva DCC-FCUP. Estruturas de Dados. Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38 8. Árvores Fernando Silva DCC-FCUP Estruturas de Dados Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38 Árvores - estruturas não lineares (1) Uma lista é um exemplo de uma estrutura de dados

Leia mais

8. Árvores. Fernando Silva. Estruturas de Dados DCC-FCUP. Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38

8. Árvores. Fernando Silva. Estruturas de Dados DCC-FCUP. Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38 8. Árvores Fernando Silva DCC-FCUP Estruturas de Dados Fernando Silva (DCC-FCUP) 8. Árvores Estruturas de Dados 1 / 38 Árvores - estruturas não lineares (1) Uma lista é um exemplo de uma estrutura de dados

Leia mais

Semáforo. Um tabuleiro retangular 4 por 3. 8 peças verdes, 8 amarelas e 8 vermelhas partilhadas pelos jogadores.

Semáforo. Um tabuleiro retangular 4 por 3. 8 peças verdes, 8 amarelas e 8 vermelhas partilhadas pelos jogadores. Semáforo Autor: Alan Parr Um tabuleiro retangular por. 8 peças verdes, 8 amarelas e 8 vermelhas partilhadas pelos jogadores. Ser o primeiro a conseguir uma linha de três peças da mesma cor na horizontal,

Leia mais

Estruturas de Dados 2

Estruturas de Dados 2 Estruturas de Dados 2 Recorrências IF64C Estruturas de Dados 2 Engenharia da Computação Prof. João Alberto Fabro - Slide 1/31 Recorrências Análise da Eficiência de Algoritmos: Velocidade de Execução; Análise

Leia mais

Definição. Árvores B Parte III. Propriedades Gerais. Propriedade (No. Mín. de Chaves) Leandro C. Cintra Maria Cristina F.

Definição. Árvores B Parte III. Propriedades Gerais. Propriedade (No. Mín. de Chaves) Leandro C. Cintra Maria Cristina F. Algoritmos e Estruturas de Dados II Prof. Ricardo J. G. B. Campello Árvores B Parte III Eliminação, Redistribuição & Concatenação Adaptado e Estendido dos Originais de: Leandro C. Cintra Maria Cristina

Leia mais

Métodos de Busca. Estratégias de Busca Cega

Métodos de Busca. Estratégias de Busca Cega Métodos de Busca Métodos de Busca Estratégias de Busca Cega encontram soluções para problemas pela geração sistemática de novos estados, que são comparados ao objetivo; são ineficientes na maioria dos

Leia mais

Árvores. Thiago Martins, Fabio Gagliardi Cozman. PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo

Árvores. Thiago Martins, Fabio Gagliardi Cozman. PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo PMR2300 / PMR3201 Escola Politécnica da Universidade de São Paulo Árvore: estrutura composta por nós e arestas entre nós. As arestas são direcionadas ( setas ) e: um nó (e apenas um) é a raiz; todo nó

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 6 Algoritmos Genéticos M.e Guylerme Velasco Roteiro Introdução Otimização Algoritmos Genéticos Representação Seleção Operadores Geneticos Aplicação Caixeiro Viajante Introdução

Leia mais