Métodos Estatísticos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Métodos Estatísticos"

Transcrição

1 Métodos Estatísticos Cristina Maria Martins Maria da Graça Temido Departamento de Matemática Universidade de Coimbra Hidrologia Urbana Módulo I

2 Conceitos básicos Probabilidade Experiência aleatória Acontecimentos Como calcular as probabilidades de acontecimentos? Definição frequencista Hidrologia Urbana Módulo I 1

3 Definição clássica de probabilidade (Laplace). Se Ω é finito e todos os seus elementos têm a mesma possibilidade de ocorrência, então a probabilidade de um acontecimento A é o quociente entre o número de casos favoráveis à ocorrência de A e o número de casos possíveis de obter ao realizar a experiência. Simbolicamente, P (A) = #A #Ω. Hidrologia Urbana Módulo I 2

4 Definição axiomática de probabilidade (Kolmogorov). Uma probabilidade é uma função P com valores em [0, 1] que verifica P (Ω) = 1 e tal que, para qualquer sucessão de acontecimentos A 1, A 2,..., A n,..., dois a dois incompatíveis, verifica P (A 1 A 2... A n...) = P (A 1 ) + P (A 2 ) P (A n ) +... Hidrologia Urbana Módulo I 3

5 1. P ( ) = Se A e B são acontecimentos incompatíveis, então P (A B) = P (A) + P (B). 3. Se A B, então P (A) P (B). 4. Se A e B são acontecimentos quaisquer, então a) P (A) = 1 P (A); b) P (A B) = P (A) + P (B) P (A B). Hidrologia Urbana Módulo I 4

6 Variáveis aleatórias e distribuições Seja Ω um espaço fundamental. Damos o nome de variável aleatória real a uma função X : Ω R para a qual é sempre possível calcular para qualquer real x. P (X x) = P ({ω : X(ω) x}), A F (x) = P (X x), chamamos função de distribuição de X. Hidrologia Urbana Módulo I 5

7 A partir da função de distribuição de X podemos calcular as probabilidades de qualquer tipo de acontecimentos definidos à custa de X. Por exemplo: P (a < X b) = F (b) F (a) P (X > a) = 1 F (a) Variáveis aleatórias discretas e contínuas. Distinção Suporte e distribuição Hidrologia Urbana Módulo I 6

8 Em rigor, uma variável aleatória contínua é definida a partir de uma função densidade. Damos o nome de função densidade (ou apenas densidade) sobre R a uma função real de variável real, f, que seja não negativa e verifique + f(x) dx = 1. Uma variável aleatória real X diz-se absolutamente contínua se existe uma densidade f tal que F (u) = u f(x)dx, u R. Hidrologia Urbana Módulo I 7

9 1. a função de distribuição, F, de uma variável aleatória contínua é contínua; 2. P (X [a, b]) = P (X ]a, b]) = P (X [a, b[) = P (X ]a, b[) = F (b) F (a) = b a f(t)dt. Figura 1: Representação gráfica da probabilidade P (a X b), com X contínua de densidade f. Hidrologia Urbana Módulo I 8

10 Valor médio, desvio padrão e quantis de uma variável aleatória 1. Se X é uma variável discreta, a média (valor médio ou esperança matemática) de X é definida por E(X) = x S X xp (X = x). 2. Se X é uma variável contínua com densidade f, a média (valor médio ou esperança matemática) de X é definida por E(X) = + xf(x) dx. Hidrologia Urbana Módulo I 9

11 A variância de X é dada por V (X) = E((X E(X)) 2 ) = E(X 2 ) (E(X)) 2 O desvio padrão de X é definido por V (X). V (ax) = a 2 V (X), a R (em particular, V ( X) = V (X)); V (X + b) = V (X), b R. Definir Quantis de uma variável aleatória contínua Hidrologia Urbana Módulo I 10

12 Lei normal ou de Gauss Uma variável aleatória X tem distribuição normal de parâmetros m e σ ( σ > 0) se tem densidade da forma f(x) = 1 2πσ e 1 2 (x m σ )2, x R. Usamos a notação X N (m, σ). Figura 2: Esboço do gráfico da densidade de uma lei N (m, σ). Hidrologia Urbana Módulo I 11

13 1. Se X N (m, σ) então Z = X m σ N (0, 1). 2. Se Z N (0, 1) então X = σz + m N (m, σ). 3. Se Z N (0, 1), tem-se a) F Z (x) = 1 F Z ( x), x R, b) P ( x Z 0) = P (0 Z x), x R. F X (x) = P (X x) = P ( X m σ x m ) σ ( ) x m = F Z σ (1) Hidrologia Urbana Módulo I 12

14 Cálculo de probabilidades e de quantis da lei normal.(excel) Exercício: X N (2, 5) Calcular P (1 X < 4) Calcular x tal que P (X > x) = 0.68 Hidrologia Urbana Módulo I 13

15 Validação de uma lei de Gauss Amostra de precipitações totais anuais (em mm), obtidos a partir dos registos diários num determinado posto udométrico, referentes a 17 anos. Ano Prec. total anual Ano Prec. total anual Histograma Papel de probabilidade Teste de Kolmogorov-Smirnov Hidrologia Urbana Módulo I 14

16 Somos assim conduzidos a aceitar a hipótese de que a variável aleatória T, que representa a precipitação total anual registada no posto udométrico em causa, segue a lei N (1038.2, 174.9). Calcular P (T > 950) P (800 < T < 850) t tal que P (T > t) = 0, 02 Hidrologia Urbana Módulo I 15

17 Teorema limite central Se X 1,..., X n são variáveis aleatórias independentes seguindo todas a mesma lei de média m e desvio padrão σ > 0, então a soma X X n é uma variável aleatória com lei aproximadamente normal de valor médio nm e desvio padrão n σ. Hidrologia Urbana Módulo I 16

18 Teoria de Extremos Modelar a ocorrência e frequência de acontecimentos raros Secas, inundações, terramotos, furacões, ventos ciclónicos, etc Método dos máximos anuais versus leis de máximos O Método dos máximos anuais ou método de Gumbel é de algum modo natural quando observamos fenómenos hidrológicos ao longo do tempo, como, por exemplo, níveis máximos de água num rio ou de alturas de precipitação, onde se espera uma certa repetição de valores semelhantes em períodos de um ano. Hidrologia Urbana Módulo I 17

19 Objectivos Perante uma amostra de máximos pretendemos calcular Probabilidades de ocorrência Quantis elevados Tempos de recorrência (ou período de retorno) T R = 1 P (A) Hidrologia Urbana Módulo I 18

20 Leis de máximos A função de distribuição do máximo de amostras suficientemente grandes pode ser aproximada por uma função de distribuição que apresenta uma das três formas seguintes: Ψ(x) := { exp ( ( x λ δ )α) x λ 0 x > λ, Φ(x) := ( Λ(x) := exp { ( exp ( x λ δ ) α) x λ 0 x < λ, e x λ δ ), x R, onde α > 0, δ > 0 e λ é um real qualquer. Estas três funções de distribuição recebem os nomes de Weibull, Fréchet e Gumbel, respectivamente. Hidrologia Urbana Módulo I 19

21 Validação de uma lei de extremos Papel de probabilidade da Gumbel x i:n versus ln( ln i n+1 ) Amostra: Hidrologia Urbana Módulo I 20

22 Estimação de λ e de δ Exemplo continuação δ = s = = e λ = x 0.45 s = = Q(0.98)= ln( ln(0.98)) = l/s O tempo de recorrência de um caudal igual a 800 l/s é dado por T R (800) = exp ( ) anos. Hidrologia Urbana Módulo I 21

23 Exemplo Construção de comporta Altura significativa da onda máxima anual em zonas costeiras, em metros, respeitantes aos últimos 24 anos. O estudo foi baseado na amostra de máximos seguinte: Papel de probabilidade Hidrologia Urbana Módulo I 22

24 Exemplo Continuação G(x) = exp ( ( 1 + ξ x λ ) ) 1/ξ, 1 + δ 0, 1 + ξ(x λ) δ ξ(x λ) δ > 0, ξ 0 0 Estimação de ξ λ e de δ: ξ = δ = λ = Hidrologia Urbana Módulo I 23

25 Exemplo Continuação A variável aleatória M (representa a altura máxima anual da altura significativa da onda) segue uma lei de Weibull com função de distribuição G(x) = exp ( ( x ) ) x < x Hidrologia Urbana Módulo I 24

26 Exemplo Continuação A probabilidade do máximo anual da altura significativa da onda exceder 4 metros é P (M > 4) = 1 G(4) = 0.08 T R (3.8) = 1/(1 G(3.8)) 6 anos. O valor de altura da onda máxima anual com probabilidade 0.01 de ser excedido é 1 ( ln(0.99)) Q(0.99) = metros. Hidrologia Urbana Módulo I 25

0.1 Modelação de dados

0.1 Modelação de dados 0.1. MODELAÇÃO DE DADOS 1 0.1 Modelação de dados Comecemos por admitir que temos acesso a dados (x 1,..., x n ) que podem ser encarados como observações de variáveis aleatórias independentes e identicamente

Leia mais

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia

Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia Departamento de Engenharia Civil Prof. Dr. Doalcey Antunes Ramos Capítulo 3: Elementos de Estatística e Probabilidades aplicados à Hidrologia 3.1 - Objetivos Séries de variáveis hidrológicas como precipitações,

Leia mais

Fundamentos de Estatística

Fundamentos de Estatística Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA mrborges@lncc.br Petrópolis, 9 de Fevereiro

Leia mais

Análise de Dados e Simulação

Análise de Dados e Simulação Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco Simulação de Variáveis Aleatórias Contínuas. O método da Transformada Inversa Teorema Seja U U (0,1). Para qualquer

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte I 2012/02 1 Variáveis Aleatórias Contínuas 2 Distribuições de Probabilidade e Funções Densidades de Probabil 3 4 Objetivos Ao final

Leia mais

Distribuições de Probabilidade. Distribuição Normal

Distribuições de Probabilidade. Distribuição Normal Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 7 6 5 4 3 2 1 0 Normal 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Temperatura do ar 20 18 16 14 12 10 8 6 4 2 0 Assimetrica Positiva 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Precipitação

Leia mais

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007 ESTATÍSTICA I Variáveis Aleatórias 1 Definição: A uma função X de domínio Ω com valores em Ñ X:Ω Ñ, ω X(ω)=x, chamamos variável aleatória (v.a.) em Ω. Ao contradomínio da função X, designaremos por V X

Leia mais

CAPÍTULO II Inferência a partir dos dados

CAPÍTULO II Inferência a partir dos dados CAPÍTULO II Inferência a partir dos dados As conclusões válidas para uma amostra, obtidas através dos métodos da Estatística Descritiva, não o são necessariamente para toda a população. Isso é notório,

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório? Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

ESCOLA SECUNDÁRIA DE CALDAS DAS TAIPAS

ESCOLA SECUNDÁRIA DE CALDAS DAS TAIPAS ESCOLA SECUNDÁRIA DE CALDAS DAS TAIPAS Ano letivo 2016/2017 PLANIFICAÇÃO ANUAL MATEMÁTICA A 12.º ANO CURSO C. H. DE CIÊNCIAS E TECNOLOGIAS CURSO C. H. DE CIÊNCIAS SOCIOECONÓMICAS Arminda Machado José Temporão

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

2.1 Variáveis Aleatórias Discretas

2.1 Variáveis Aleatórias Discretas 4CCENDMMT02-P PROBABILIDADE E CÁLCULO DIFERENCIAL E INTEGRAL Girlan de Lira e Silva (1),José Gomes de Assis (3) Centro de Ciências Exatas e da Natureza /Departamento de Matemática /MONITORIA Resumo: Utilizamos

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Distribuição Normal Motivação: Distribuição

Leia mais

Momentos: Esperança e Variância. Introdução

Momentos: Esperança e Variância. Introdução Momentos: Esperança e Variância. Introdução Em uma relação determinística pode-se ter a seguinte relação: " + " = 0 Assim, m =, é a declividade e a e b são parâmetros. Sabendo os valores dos parâmetros

Leia mais

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017 padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

Introdução aos Proc. Estocásticos - ENG 430

Introdução aos Proc. Estocásticos - ENG 430 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 34 1 Motivação 2 Conceitos

Leia mais

Nome: N. o : 7. Total

Nome: N. o : 7. Total ESTATÍSTICA I. o Ano/Gestão. o Semestre Época Normal Duração: horas 1. a Parte Teórica N. o de Exame: 1431 5.6.14 Nome: N. o : TEÓRICA Espaço reservado a classicações PRÁTICA EM 1.a.a 3.a 4.a 6. 1.b.b

Leia mais

Probabilidades- Teoria Elementar

Probabilidades- Teoria Elementar Probabilidades- Teoria Elementar Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

Princípios de Modelagem Matemática Aula 10

Princípios de Modelagem Matemática Aula 10 Princípios de Modelagem Matemática Aula 10 Prof. José Geraldo DFM CEFET/MG 19 de maio de 2014 1 Alguns resultados importantes em estatística A distribuição normal tem importante papel em estatística pois

Leia mais

Nome: N o : Espaço reservado a classificações

Nome: N o : Espaço reservado a classificações ESTATÍSTICA I 2 o Ano/Gestão 1 o Semestre Época Normal Duração: 2 horas 1 a Parte Teórica N o de Exame: abcde 03.Jan.11 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação: 8 valores).

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Frederico Caeiro 2009/10 Observação: Estas folhas servem de apoio às aulas de Probabilidades e Estatística. Para uma melhor compreensão dos assuntos abordados, aconselha-se

Leia mais

1 Distribuição Uniforme

1 Distribuição Uniforme Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 03 Aula 8 Professor: Carlos Sérgio UNIDADE 4 - Distribuições Contínuas (Notas de Aula) Distribuição Uniforme

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Aula Valor esperado como solução do problema do menor erro quadrático médio e Quantis 03/14 1 / 15 Valor esperado como solução

Leia mais

Probabilidade. Experiências aleatórias

Probabilidade. Experiências aleatórias Probabilidade Experiências aleatórias 1 Experiências aleatórias Acontecimento: Qualquer colecção de resultados de uma experiência. Acontecimento elementar: Um resultado que não pode ser simplificado ou

Leia mais

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23 Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Variáveis Aleatórias Contínuas 14/10 1 / 25 VALE A PENA VER DE NOVO:Variáveis Aleatórias

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuições Teóricas de Probabilidade Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas

Leia mais

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria-PPGEAB Prova de Conhecimentos Específicos

Universidade Federal de Alfenas Programa de Pós-graduação em Estatística Aplicada e Biometria-PPGEAB Prova de Conhecimentos Específicos -PPGEAB Dados que podem ser necessários na resolução de algumas questões: Quantis de distribuições P (t > t α ) = α P (F > F 0,05 ) = 0, 05 ν 1 ν 0,05 0,025 ν 2 42 43 56 57 89 1,66 1,99 42 1,67 1,67 1,63

Leia mais

Métodos Experimentais em Ciências Mecânicas

Métodos Experimentais em Ciências Mecânicas Métodos Experimentais em Ciências Mecânicas Professor Jorge Luiz A. Ferreira Função que descreve a chance que uma variável pode assumir ao longo de um espaço de valores. Uma distribuição de probabilidade

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Um conceito importante em Probabilidades e Estatística é o de

Um conceito importante em Probabilidades e Estatística é o de Variáveis Aleatórias Um conceito importante em Probabilidades e Estatística é o de Variável Aleatória. Variável Aleatória Seja (Ω, A) um espaço de acontecimentos. À função X : Ω IR chamamos variável aleatória.

Leia mais

13 DOTAÇÕES DE REGA 13.1 Introdução 13.2 Evapotranspiração Cultural 13.3 Dotações de Rega 13.4 Exercícios Bibliografia

13 DOTAÇÕES DE REGA 13.1 Introdução 13.2 Evapotranspiração Cultural 13.3 Dotações de Rega 13.4 Exercícios Bibliografia PREFÁCIO 1 INTRODUÇÃO À HIDROLOGIA E AOS RECURSOS HÍDRICOS 1.1 Conceitos Gerais 1.2 Breve Nota Sobre a Evolução da Ciência da Hidrologia 1.2.1 A hidrologia na Antiguidade Oriental 1.2.2 A hidrologia na

Leia mais

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω. PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses

Leia mais

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17)

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17) Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 016/17) 1- Modelos de probabilidade(136) 1.1) Introdução.(36) (Vídeo: 33) 1.) Fenómenos aleatórios(138) Experiência determinística-produz

Leia mais

Conceito de Estatística

Conceito de Estatística Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Distribuição Gaussiana

Distribuição Gaussiana Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Distribuição Gaussiana Introdução à Bioestatística Turma Nutrição Aula 7: Distribuição Normal (Gaussiana) Distribuição

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

1 Variáveis Aleatórias

1 Variáveis Aleatórias Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis

Leia mais

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e

Leia mais

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES

FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES FAMÍLIA EXPONENCIAL DE DISTRIBUIÇÕES 1 Os modelos lineares generalizados, propostos originalmente em Nelder e Wedderburn (1972), configuram etensões dos modelos lineares clássicos e permitem analisar a

Leia mais

Lucas Santana da Cunha de junho de 2017

Lucas Santana da Cunha de junho de 2017 VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados

Leia mais

Departamento de InformáAca - PUC- Rio. Hélio Lopes Departamento de InformáAca PUC- Rio. A plataforma R

Departamento de InformáAca - PUC- Rio. Hélio Lopes Departamento de InformáAca PUC- Rio. A plataforma R Introdução à Simulação Estocás5ca usando R INF2035 PUC- Rio, 2013.1 Departamento de InformáAca - PUC- Rio Hélio Lopes Departamento de InformáAca PUC- Rio A plataforma R R é uma linguagem de programação

Leia mais

9.º Ano. Planificação Matemática 16/17. Escola Básica Integrada de Fragoso 9.º Ano

9.º Ano. Planificação Matemática 16/17. Escola Básica Integrada de Fragoso 9.º Ano 9.º Ano Planificação Matemática 1/17 Escola Básica Integrada de Fragoso 9.º Ano Funções, sequências e sucessões Álgebra Organização e tratamento de dados Domínio Subdomínio Conteúdos Objetivos gerais /

Leia mais

HIDROLOGIA BÁSICA Capítulo 5 - Hidrologia Estatística 5 HIDROLOGIA ESTATÍSTICA 5.1

HIDROLOGIA BÁSICA Capítulo 5 - Hidrologia Estatística 5 HIDROLOGIA ESTATÍSTICA 5.1 5 HIDROLOGIA ESAÍSICA 5.1 5 - HIDROLOGIA ESAÍSICA 5.1 - Considerações Iniciais Séries de variáveis hidrológicas como precipitações, vazões, evaporação e outras, quando observadas ao longo do tempo, apresentam

Leia mais

Limites e Continuidade

Limites e Continuidade MAT111 p. 1/2 Limites e Continuidade Gláucio Terra glaucio@ime.usp.br Departamento de Matemática IME - USP Revisão MAT111 p. 2/2 MAT111 p. 3/2 Limite de uma Função num Ponto DEFINIÇÃO Sejam f : A R R,

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500 Planificação Anual /Critérios de avaliação. Disciplina: Matemática A 12º ano 2016/2017

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500 Planificação Anual /Critérios de avaliação. Disciplina: Matemática A 12º ano 2016/2017 AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500 Planificação Anual /Critérios de avaliação Disciplina: Matemática A 12º ano 2016/2017 Início Fim

Leia mais

Definição: É uma coleção bem definida de

Definição: É uma coleção bem definida de EST029 Cálculo de Probabilidade I Cap. 1: Introdução à Probabilidade Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Conjuntos: Definição e notação Definição: É uma coleção bem definida de objetos,

Leia mais

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade de Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade de Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

ESCOLA SECUNDÁRIA JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROÍSMO

ESCOLA SECUNDÁRIA JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROÍSMO ESCOLA SECUNDÁRIA JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROÍSMO PLANIFICAÇÃO ANUAL ANO LECTIVO: 008/009 DISCIPLINA: Matemática ANO: 1º Aulas previstas 1º período: 7 (5 ) º período: 7 (5 ) 3º período:

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Revisões de Matemática e Estatística

Revisões de Matemática e Estatística Revisões de Matemática e Estatística Joaquim J.S. Ramalho Contents 1 Operadores matemáticos 2 1.1 Somatório........................................ 2 1.2 Duplo somatório....................................

Leia mais

Nome: N. o : 7. Total

Nome: N. o : 7. Total ESTATÍSTICA I 2. o Ano/Gestão 2. o Semestre Época Normal Duração: 2 horas 1. a Parte Teórica N. o de Exame: 14231 05.06.2015 Nome: N. o : TEÓRICA Espaço reservado a classicações PRÁTICA EM 1.a) 2.a) 3.a)

Leia mais

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL Aula 6 META Estudar o comportamento e aplicação das Variáveis Aleatórias Contínuas, bem como da Distribuição Normal. OBJETIVOS Ao final

Leia mais

Capítulo4- Modelos de probabilidade.

Capítulo4- Modelos de probabilidade. Capítulo4- Modelos de probabilidade. 1- Modelos de probabilidade(110) 1.1) Introdução.(110) 1.) Fenómenos aleatórios(11) Experiência determinística-produz sempre o mesmo resultado desde que seja repetido

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS ... 1º PERÍODO. Medidas de localização

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS ... 1º PERÍODO. Medidas de localização ANO LETIVO 2017/2018... 1º PERÍODO DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS Metas Curriculares Conteúdos Aulas Previstas Medidas de localização

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

A estacionariedade prova-se de maneira semel- hante.

A estacionariedade prova-se de maneira semel- hante. Se por outro lado (U 1, U 2,...) é IID então mostremos que X n U 1 + + U n tem incrementos independentes e estacionários. De facto, dados n > m temos que X n X m U m+1 + + U n. Tome-se quaisquer n 1

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA. Ministério da Educação INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E tecnologia PARAÍBA Ministério da Educação Instituto Federal de Educação, Ciência e Tecnologia da Paraíba - Campus Cajazeiras Diretoria de Ensino / Coord. do Curso

Leia mais

Distribuições Discretas

Distribuições Discretas META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

Distribuição de frequências. Prof. Dr. Alberto Franke

Distribuição de frequências. Prof. Dr. Alberto Franke Distribuição de frequências Prof. Dr. Alberto Franke E-mail: alberto.franke@ufsc.br 1 Distribuição de frequências Há necessidade de distinguir entre: Distribuição observada Distribuição verdadeira Distribuição

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

Métodos Estatísticos Aplicados à Economia II (GET00118) Variáveis Aleatórias Contínuas

Métodos Estatísticos Aplicados à Economia II (GET00118) Variáveis Aleatórias Contínuas Universidade Federal Fluminense Instituto de Matemática e Estatística Métodos Estatísticos Aplicados à Economia II GET118) Variáveis Aleatórias Contínuas Ana Maria Lima de Farias Departamento de Estatística

Leia mais

Conteúdo Teórico: 04 Esperança

Conteúdo Teórico: 04 Esperança ACH2053 Introdução à Estatística Conteúdo Teórico: 04 Esperança Marcelo de Souza Lauretto Sistemas de Informação EACH www.each.usp.br/lauretto Referência: Morris DeGroot, Mark Schervish. Probability and

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da

Leia mais

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um experimento. Evento é qualquer subconjunto do espaço amostral. Evento combinado: Possui duas

Leia mais

INSTITUTO SUPERIOR TÉCNICO DEPARTAMENTO DE ENGENHARIA CIVIL E ARQUITECTURA SECÇÃO DE HIDRÁULICA E DOS RECURSOS HÍDRICOS E AMBIENTAIS

INSTITUTO SUPERIOR TÉCNICO DEPARTAMENTO DE ENGENHARIA CIVIL E ARQUITECTURA SECÇÃO DE HIDRÁULICA E DOS RECURSOS HÍDRICOS E AMBIENTAIS INSTITUTO SUPERIOR TÉCNICO DEPARTAMENTO DE ENGENHARIA CIVIL E ARQUITECTURA SECÇÃO DE HIDRÁULICA E DOS RECURSOS HÍDRICOS E AMBIENTAIS 4º Ano da Licenciatura em Engenharia Civil 00/004 1º semestre Hidrologia

Leia mais

ME-310 Probabilidade II Lista 0

ME-310 Probabilidade II Lista 0 ME-310 Probabilidade II Lista 0 1. Sejam A e B eventos disjuntos tais que P(A) = 0.1 e P(B) = 0.. Qual é a probabilidade que (a) A ou B ocorra; (b) A ocorra, mas B não ocorra; (c) repita (a) e (b) se os

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância Variáveis Contínuas 10/13 1 / 1 Esperança Definição 2.1:(Valor Esperado

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Probabilidade, distribuição normal e uso de tabelas padronizadas

Probabilidade, distribuição normal e uso de tabelas padronizadas Probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é probabilidade? Número de 0 até 1 que expressa a tendência de

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Probabilidade, distribuição normal e uso de tabelas padronizadas

Probabilidade, distribuição normal e uso de tabelas padronizadas Probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é probabilidade? Número de 0 até 1 que expressa a tendência de

Leia mais

AGRUPAMENTO DE ESCOLAS DO CADAVAL

AGRUPAMENTO DE ESCOLAS DO CADAVAL AGRUPAMENTO DE ESCOLAS DO CADAVAL DEPARTAMENTO: PLANIFICAÇÃO ANUAL - ANO LETIVO: DISCIPLINA: Matemática A (12.º ano) Matemática e Ciências Experimentais 2015/2016 UNIDADE Tema 1 - Probabilidades e Combinatória

Leia mais

Estruturas Marítimas Utilizando Métodos Probabilísticos de Níveis II e III. Maria Teresa Reis João Alfredo Santos

Estruturas Marítimas Utilizando Métodos Probabilísticos de Níveis II e III. Maria Teresa Reis João Alfredo Santos Verificação da Segurança a de Estruturas Marítimas Utilizando Métodos Probabilísticos de Níveis II e III Maria Teresa Reis João Alfredo Santos SUMÁRIO >Introdução > Conceitos básicos >Software PARASODE-BALI

Leia mais

Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014

Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014 Cálculo das Probabilidades I - Sexta Lista - Rio, 13/09/2014 1. O diâmetro X de{ um cabo elétrico é uma variável aleatória com densidade de probabilidade K(2x x dada por 2 ), 0 x 1 0, x < 0 ou x > 1. (a)

Leia mais

PROBABILIDADE E ESTATÍSTICA EM HIDROLOGIA

PROBABILIDADE E ESTATÍSTICA EM HIDROLOGIA Introdução 1 PROBABILIDADE E ESTATÍSTICA EM HIDROLOGIA Fenômeno - MODELO MATEMÁTICO Q = L.H 3/2 F= γ.h.a Ênfase: forma da expressão relação entre : L e H Q γ, h e A F Aula 1 Introdução 2 HIDROLOGIA " É

Leia mais

Tipos de variáveis aleatórias

Tipos de variáveis aleatórias Tipos de variáveis aleatórias Variáveis aleatórias discretas se assumem um conjunto finito ou infinito numerável de valores. Exemplos: número de pintas que sai no lançamento de um dado; registo, a intervalos

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Tipos de Modelos Determinístico Sistema Real Probabilístico Modelo determinístico Causas Efeito Exemplos Gravitação F GM 1 M /r

Leia mais

Modelos de Distribuições

Modelos de Distribuições 4/05/014 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Tucuruí CTUC Curso de Engenharia Mecânica 4/05/014 06:56 ESTATÍSTICA

Leia mais

Distribuições Truncadas e Aplicações

Distribuições Truncadas e Aplicações Distribuições Truncadas e Aplicações Raydonal Ospina Departamento de Estatística - CCEN/UFPE Gustavo H. Esteves Departamento de Estatística - CCT/UEPB 58ª RBRAS - 15º SEAGRO Campina Grande - Paraíba -

Leia mais

Estimação e Testes de Hipóteses

Estimação e Testes de Hipóteses Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis

Leia mais