Experimento 1 Estudo da Lei de Hooke

Tamanho: px
Começar a partir da página:

Download "Experimento 1 Estudo da Lei de Hooke"

Transcrição

1 Experimeto 1 Estudo da Lei de Hooke 1.1 Objetivos Físicos Verificação experimetal da lei de Hooke para uma mola helicoidal: Medida experimetal do módulo de rigidez do material μ. 1. Objetivos Didáticos Elaboração de relatório de atividades; Realização de medidas com istrumetal adequado; Aplicação da estatística pertiete, icluido propagação de erros; Obteção de valores através do método de regressão liear de um gráfico; 1.3 Material Necessário Mola helicoidal; Portamassas; Massas aferidas de 10 e 50g; Suporte para molas; Paquímetro; 1.4 Modelo Quado uma mola helicoidal é submetida a uma força de tração ou compressão, ela sofre certa deformação. Robert Hooke ( ) foi o primeiro a descrever a força de reação exercida por uma mola, como fução de sua deformação: F = k x ode x é a distesão ou compressão da mola, k é a costate elástica da mola e F é a itesidade da força elástica restitutiva: sempre oposta à força que causa a deformação. A costate elástica da mola depede do material do qual a mola é composta e de sua geometria. É possível demostrar que: μ d4 k = 8 N D 3 ode d represeta o diâmetro do fio, N é o úmero de espiras e D é o diâmetro itero das espiras. A quatidade μ é chamada módulo de Youg, módulo de rigidez, ou módulo de cisalhameto do material. 1.5 Procedimeto Fixar uma das extremidades da mola o suporte. A mola ficará a vertical. Aotar a posição da extremidade livre, a qual será defiida como posição de relaxameto x o. O portamassas tem etão sua massa 1

2 m 1 medida com a balaça de precisão e é depedurado a extremidade livre da mola. A distesão da mola x 1 é medida, com relação à posição de relaxameto x o. O par (m 1, x 1 ) costitui a primeira medida. Em seguida, massas diferetes são acrescidas ao portamassas e o cojuto (portamassas + massas adicioais) tem sua massa aferida a balaça de precisão. Para cada cojuto de massa total diferete o deslocameto causado a mola é medido, sempre com relação à posição iicial x o. Deve-se realizar o máximo de medidas possível com o material dispoível o laboratório. Para cada medida descrita acima, deve-se realizar medidas idepedetes, ode é o úmero de itegrates do grupo. Cada itegrate irá produzir uma tabela relacioado as massas e os deslocametos: m i (g) x i (mm) Etão as tabelas são sitetizadas em uma úica e a média aritmética de cada medida é obtida: m i (g) x i (mm) m i (g) x i (mm) m i (g) x i (mm) m i (g) x i (mm) Por fim, as características geométricas da mola são medidas: o diâmetro do fio d, o diâmetro itero das espiras D e o úmero de espiras N. As medidas de d e D devem ser feitas com um paquímetro. Novamete, cada itegrate do grupo deve realizar uma medida, de preferêcia em regiões diferetes da mola de forma a cosiderar pequeas variações a geometria ao logo da mola. As medidas podem ser colocadas em uma úica tabela para que o fial a média seja feita sobre elas: Lembre-se de que cada uma destas medidas tem um erro. Os erros serão descritos a seção de tratameto de dados. No caso de haver mais de uma mola diferete dispoível, deve-se repetir todo o procedimeto para pelo meos duas molas, separado todas as tabelas com os títulos Mola 1 e Mola. 1.6 Tratameto de Dados Devem ser levadas em cota todas as fotes de icerteza o tratameto dos dados, a fim de se obter ão só um valor cetral para as medidas idiretas de k e μ, como também seus erros Δk e Δμ. Cada medida direta x i e m i tem um erro associado ao istrumeto de medida. No caso do paquímetro (utilizado para medir x i ) há um erro correspodete à metade do fudo de escala, ou seja, metade da meor divisão de sua escala. No caso mais simples, o paquímetro tem divisões de décimo de milímetro, ou seja, 0,1mm. Sedo assim, o erro associado a todas as medidas feitas com o paquímetro é metade deste: δ = 0,05mm

3 Outros modelos de paquímetros podem ser mais precisos. O estudate deve coferir a escala do paquímetro utilizado ates de assumir que o erro correspodete à suas medidas é 0,05mm. Este valor é o limite do seu istrumeto: ehuma medida feita por este paquímetro pode ser mais precisa do que cico cetésimos de milímetro. Etretato, existem outras fotes de erro, em geral muito maiores do que esta. O paquímetro depede de seus olhos para realizar as medidas, por exemplo. Depededo do âgulo que se observa, o valor lido parece diferete. Este efeito é chamado de paralaxe e ão é fácil estimar sua ifluêcia. Outra fote de erro é a irregularidade geométrica dos objetos. Por exemplo, o fio que compõe a mola pode variar seu diâmetro ao logo do seu comprimeto. Porém, a fórmula há espaço para apeas um valor (idealização). Tato a paralaxe quato a irregularidade geométrica são fotes de icerteza das quais ão podemos os livrar, mas podemos ter idéia da sua gradeza estudado seus efeitos as medidas. Todas as icertezas aleatórias causam uma variabilidade as medidas. É por este motivo que dois colegas de classe podem realizar a mesma medida e acabar com valores diferetes. No caso de um grupo de cico itegrates, por exemplo, cada medida foi feita = 5 vezes. Neste caso, o valor fial do que chamaremos de medida é a média aritmética x dada por: x = x 1 + x + + x Para ter cotrole dos erros aleatórios cometidos, realizamos várias vezes a mesma medida e estimamos o desvio padrão da medida de acordo com a seguite expressão: s = i=j x j x 1 Por outro lado, cada medida tem um erro atural proveiete do istrumeto δ. Medidas feitas com um mesmo paquímetro, por exemplo, têm o mesmo erro. Propagar o erro de cada medida para calcular o erro da média pode ser feito pela fórmula para o erro da soma: δ = Erro x = δx 1 + δx + + δx Porém, o caso do paquímetro, todos os erros δx i são iguais ao erro míimo δ: Portato: δ = δ = δ δ = δ Por fim, deve-se combiar o erro do paquímetro com a variação das medidas a forma de um úico erro: Δx = δ + s As massas medidas através da balaça de precisão podem ter erros diferetes. Isto ocorre porque algumas balaças têm suas icertezas dadas em porcetages do valor medido. No caso de medidas que resultam em valores próximos, o erro pode ser aproximado pelo maior erro cometido. Mas o caso de massas que variem de 1g a 500g, por exemplo, o erro absoluto de cada medida será muito diferete para ser cosiderado costate. Neste caso, δ deve ser obtido sem simplificações: 3

4 δ = δm 1 + δm + + δm Este processo é feito para cada grupo de medidas repetidas (posições, massas, e características geométricas das molas) de forma que o fial, obtêm-se duas tabelas para cada mola: m i (g) Δm i (g) x i (mm) Δx i (mm) Medida valor erro N Uma vez que lidamos com os erros, vamos aplicar o cohecimeto do modelo para determiar a costate da mola k. Em cada medida, a força aplicada a mola é equivalete ao peso, em ewtos, da massa. Etão, em módulo, temos: Isolado a massa, temos: F = k x m g = k x m = k g x Esta expressão pode ser comparada a uma reta: y i = a x i ode o coeficiete agular da reta a cotém o valor da costate da mola k (dividido pela aceleração da gravidade g). Assim, faz-se um gráfico (em papel milimetrado ou em software de aálise estatística, como Excel ou Origi) e estima-se o coeficiete liear da reta e seu erro. Idepedete do gráfico, pode-se estimar o coeficiete agular de uma reta através do método dos míimos quadrados: a = y i x y i x i x A estimativa do erro de a pode ser obtida por: Δa = y i a x i ( ) x i x Neste caso, ão represeta as repetições de cada medida (como ateriormete), mas sim, o úmero total de medidas diferetes realizadas. De posse de a ± Δa, precisamos assumir um valor para g e Δg. A aceleração da gravidade é ligeiramete diferete em cada poto da Terra, devido à altitude, à latitude, e até a composição local do solo. Etão podemos assumir um valor mais impreciso e admitir certa margem de erro. Para todos os efeitos, vamos adotar g = 9,8 ± 0, m/s, o que cobre valores etre 9,6 e 10,0m/s. Assim, podemos fialmete obter o valor de k: k = a g 4

5 E seu erro, com base a fórmula para propagação de erros a multiplicação: Δk = k Δa a + Δg g O resultado fial deve ser apresetado a forma de k = k ± Δk N/m. De posse do valor de k, podemos obter o valor do módulo de Youg do material: E seu erro: k = μ d4 8 k N D3 μ = 8 N D3 d 4 Δμ = μ ΔN N + 3 ΔD D + 4 Δd d 1.7 Coclusões O resultado fial deve ser apresetado a forma de μ = μ ± Δμ? (Qual é a uidade de μ?). Compare seus valores obtidos, especialmete para μ, com os da literatura (ou a iteret). Você cosegue dizer qual metal compõe as suas molas? Como um guia para o relatório tete respoder às seguites pergutas, ao logo do seu texto (estes item serão avaliados para ota): 1) Qual a uidade de μ? Faça uma aálise dimesioal. ) Qual o erro do úmero de espiras N? Este úmero é mesmo um úmero iteiro? 3) Você etedeu a difereça etre repetir a mesma medida várias vezes e tomar diversas medidas para o experimeto? (ou seja, quado é que represeta os elemetos do seu grupo e quado ele represeta o úmero total de medidas diferetes feitas?) 4) Você sabe ode foi parar o coeficiete liear da reta que ajustamos? Pesquise a literatura sobre o método dos míimos quadrados e pese sobre o assuto. 5) Os erros de cada medida foram cosiderados a determiação do coeficiete agular da reta? Pesquise a literatura métodos alterativos para se fazer este ajuste (a maioria ecessita de um computador). 6) Você cosegue reproduzir as fórmulas de erro usadas aqui? É importate que a dedução destas fórmulas, com base as fórmulas que vimos em sala, apareça o relatório. 7) Por fim, o que você coclui sobre seus resultados? De que material suas molas são feitas? Você cosegue fizer só pelo módulo de Youg obtido? Seus erros foram muito grades? Quais foram os erros fiais, em porcetagem (erro relativo). 5

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Laboratório de Física e Química Uiversidade São Judas Tadeu Faculdade de Tecologia e Ciêcias Exatas Laboratório de Física e Química Aálise de Medidas Físicas Quado fazemos uma medida, determiamos um úmero para caracterizar uma gradeza

Leia mais

Exercício: Mediu-se os ângulos internos de um quadrilátero e obteve-se 361,4. Qual é o erro de que está afetada esta medida?

Exercício: Mediu-se os ângulos internos de um quadrilátero e obteve-se 361,4. Qual é o erro de que está afetada esta medida? 1. Tratameto estatísticos dos dados 1.1. TEORIA DE ERROS O ato de medir é, em essêcia, um ato de comparar, e essa comparação evolve erros de diversas origes (dos istrumetos, do operador, do processo de

Leia mais

CF358 Física BásicaExperimental I

CF358 Física BásicaExperimental I CF358 Física BásicaExperimetal I CONFIGURAÇÃO MÓDULO TEÓRICO MÓDULO EXPERIMENTAL => BLOCO 1-4 EXPERIMENTOS => BLOCO 2-4 EXPERIMENTOS PRESENÇA (muito importate) NO MÍNIMO 75% AVALIAÇÃO 01 PROVA -BLOCO TEÓRICO

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS DTRMINANDO A SIGNIFIÂNIA STATÍSTIA PARA AS DIFRNÇAS NTR MÉDIAS Ferado Lag da Silveira Istituto de Física - UFRGS lag@if.ufrgs.br O objetivo desse texto é apresetar através de exemplos uméricos como se

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b, 0 y f x Isso sigifica que S, ilustrada

Leia mais

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) PROJETO FATORIAL 2 k COMPLETO E REPLICADO. Dr. Sivaldo Leite Correia

PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) PROJETO FATORIAL 2 k COMPLETO E REPLICADO. Dr. Sivaldo Leite Correia PROJETO E ANÁLISES DE EXPERIMENTOS (PAE) PROJETO FATORIAL 2 k COMPLETO E REPLICADO Dr. Sivaldo Leite Correia CONCEITOS, LIMITAÇÕES E APLICAÇÕES Nos tópicos ateriores vimos as estratégias geeralizadas para

Leia mais

ESCOLA BÁSICA DE ALFORNELOS

ESCOLA BÁSICA DE ALFORNELOS ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r

Leia mais

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra.

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra. Jaete Pereira Amador Itrodução A aálise de regressão tem por objetivo descrever através de um modelo matemático, a relação existete etre duas variáveis, a partir de observações dessas viráveis. A aálise

Leia mais

ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO

ESTATÍSTICA. PROF. RANILDO LOPES  U.E PROF EDGAR TITO ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO Medidas de tedêcia cetral Medidas cetrais são valores que resumem um cojuto de dados a um úico valor que, de alguma

Leia mais

CORRELAÇÃO Aqui me tens de regresso

CORRELAÇÃO Aqui me tens de regresso CORRELAÇÃO Aqui me tes de regresso O assuto Correlação fez parte, acompahado de Regressão, do programa de Auditor Fiscal, até 998, desaparecedo a partir do cocurso do ao 000 para agora retorar soziho.

Leia mais

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos

Leia mais

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências

3.4.2 Cálculo da moda para dados tabulados. 3.4 Moda Cálculo da moda para uma lista Cálculo da moda para distribuição de freqüências 14 Calcular a mediaa do cojuto descrito pela distribuição de freqüêcias a seguir. 8,0 10,0 10 Sabedo-se que é a somatória das, e, portato, = 15+25+16+34+10 = 100, pode-se determiar a posição cetral /2

Leia mais

EPR 007 Controle Estatístico de Qualidade

EPR 007 Controle Estatístico de Qualidade EP 7 Cotrole Estatístico de Qualidade Prof. Dr. Emerso José de Paiva Gráficos e tabelas origiadas de Costa, Epprecht e Carpietti (212) 1 Num julgameto, ifelizmete, um iocete pode ir pra cadeia, assim como

Leia mais

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central. Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal.

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal. biomial seria quase simétrica. Nestas codições será também melhor a aproximação pela distribuição ormal. Na prática, quado e p > 7, a distribuição ormal com parâmetros: µ p 99 σ p ( p) costitui uma boa

Leia mais

n ) uma amostra aleatória da variável aleatória X.

n ) uma amostra aleatória da variável aleatória X. - Distribuições amostrais Cosidere uma população de objetos dos quais estamos iteressados em estudar uma determiada característica. Quado dizemos que a população tem distribuição FX ( x ), queremos dizer

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Cálculo Numérico Lista 02

Cálculo Numérico Lista 02 Cálculo Numérico Lista 02 Professor: Daiel Herique Silva Essa lista abrage iterpolação poliomial e método dos míimos quadrados, e cobre a matéria da seguda prova. Istruções gerais para etrega Nem todos

Leia mais

TRABALHO1 MEDIÇÕES, ALGARISMOS SIGNIFICATIVOS E ERROS.

TRABALHO1 MEDIÇÕES, ALGARISMOS SIGNIFICATIVOS E ERROS. TRABALHO1 MEDIÇÕES, ALGARISMOS SIGNIFICATIVOS E ERROS. 1.1 Objectivos Medir gradezas físicas, utilizado os istrumetos adequados. Apresetar correctamete os resultados das medições, ao ível da utilização

Leia mais

Distribuições Amostrais

Distribuições Amostrais Distribuições Amostrais O problema da iferêcia estatística: fazer uma afirmação sobre os parâmetros da população θ (média, variâcia, etc) através da amostra. Usaremos uma AAS de elemetos sorteados dessa

Leia mais

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... Itrodução Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário para

Leia mais

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM 6 AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM Quado se pretede estudar uma determiada população, aalisam-se certas características ou variáveis dessa população. Essas variáveis poderão ser discretas

Leia mais

ESCUTANDO O COEFICIENTE DE RESTITUIÇÃO E A ACELERAÇÃO

ESCUTANDO O COEFICIENTE DE RESTITUIÇÃO E A ACELERAÇÃO ESCUANDO O COEFICIENE DE RESIUIÇÃO E A ACELERAÇÃO GRAVIACIONAL DE UMA BOLA Carlos Eduardo Aguiar [carlos@if.ufrj.br] Fracisco Laudares [f_laudares@hotmail.com] Istituto de Física, Uiversidade Federal do

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

O teste de McNemar. A tabela 2x2. Depois - Antes

O teste de McNemar. A tabela 2x2. Depois - Antes Prof. Lorí Viali, Dr. http://www.pucrs.br/famat/viali/ viali@pucrs.br O teste de McNemar O teste de McNemar para a sigificâcia de mudaças é particularmete aplicável aos experimetos do tipo "ates e depois"

Leia mais

ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA)

ESTIMAÇÃO POR INTERVALO (INTERVALOS DE CONFIANÇA) 06 ETIMÇÃO OR INTERVLO (INTERVLO DE CONINÇ) Cada um dos métodos de estimação potual permite associar a cada parâmetro populacioal um estimador. Ora a cada estimador estão associadas tatas estimativas diferetes

Leia mais

Teorema do limite central e es/mação da proporção populacional p

Teorema do limite central e es/mação da proporção populacional p Teorema do limite cetral e es/mação da proporção populacioal p 1 RESULTADO 1: Relembrado resultados importates Seja uma amostra aleatória de tamaho de uma variável aleatória X, com média µ e variâcia σ.temos

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico dessa

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

As principais propriedades geométricas de figuras planas são:

As principais propriedades geométricas de figuras planas são: Tema IV. CRCTERÍSTICS GEOMÉTRICS DE FIGURS PLNS 4.1. Itrodução O dimesioameto e a verificação da capacidade resistete de barras, como de qualquer elemeto estrutural depedem de gradezas chamadas tesões,

Leia mais

Prática I GRANDEZAS FÍSICAS E TEORIA DOS ERROS

Prática I GRANDEZAS FÍSICAS E TEORIA DOS ERROS Prática I GRANDEZAS FÍSICAS E TEORIA DOS ERROS INTRODUÇÃO O desevolvimeto do homem deve-se ao fato de que ele procurou observar os acotecimetos ao seu redor. Ao ver os resultados dos diversos evetos, ele

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se

Leia mais

3ª Lista de Exercícios de Programação I

3ª Lista de Exercícios de Programação I 3ª Lista de Exercícios de Programação I Istrução As questões devem ser implemetadas em C. 1. Desevolva um programa que leia dois valores a e b ( a b ) e mostre os seguites resultados: (1) a. Todos os úmeros

Leia mais

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1 CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1. Coceitos Básicos de Probabilidade Variável aleatória: é um úmero (ou vetor) determiado por uma resposta, isto é, uma fução defiida em potos do espaço

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 1 Mat-15/ Cálculo Numérico/ Departameto de Matemática/Prof. Dirceu Melo LISTA DE EXERCÍCIOS INTERPOLAÇÃO POLINOMIAL A aproximação de fuções por poliômios é uma das ideias mais atigas da aálise umérica,

Leia mais

10 - Medidas de Variabilidade ou de Dispersão

10 - Medidas de Variabilidade ou de Dispersão 10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.

Leia mais

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n.

Obtemos, então, uma amostra aleatória de tamanho n de X, que representamos por X 1, X 2,..., X n. Vamos observar elemetos, extraídos ao acaso e com reposição da população; Para cada elemeto selecioado, observamos o valor da variável X de iteresse. Obtemos, etão, uma amostra aleatória de tamaho de X,

Leia mais

Capítulo 5- Introdução à Inferência estatística. (Versão: para o manual a partir de 2016/17)

Capítulo 5- Introdução à Inferência estatística. (Versão: para o manual a partir de 2016/17) Capítulo 5- Itrodução à Iferêcia estatística. (Versão: para o maual a partir de 2016/17) 1.1) Itrodução.(222)(Vídeo 39) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar

Leia mais

Análise da Resposta Livre de Sistemas Dinâmicos de 2 a Ordem

Análise da Resposta Livre de Sistemas Dinâmicos de 2 a Ordem Aálise da Resposta Livre de Sistemas Diâmicos de Seguda Ordem 5 Aálise da Resposta Livre de Sistemas Diâmicos de a Ordem INTRODUÇÃO Estudaremos, agora, a resposta livre de sistemas diâmicos de a ordem

Leia mais

Instruções gerais sobre a Prova:

Instruções gerais sobre a Prova: DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2012/2013 Istruções gerais sobre a Prova: (a) Cada questão respodida corretamete vale 1 (um) poto. (b) Cada

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

Algoritmos de Iluminação Global

Algoritmos de Iluminação Global Sistemas Gráficos/ Computação Gráfica e Iterfaces Objectivo: calcular a cor de cada poto a partir da ilumiação directa de uma fote de luz, mais a soma de todas as reflexões das superfícies próximas. Nos

Leia mais

Regressão linear simples

Regressão linear simples Regressão liear simples Maria Virgiia P Dutra Eloae G Ramos Vaia Matos Foseca Pós Graduação em Saúde da Mulher e da Criaça IFF FIOCRUZ Baseado as aulas de M. Pagao e Gravreau e Geraldo Marcelo da Cuha

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 0: Medidas de Dispersão (webercampos@gmail.com) MÓDULO 0 - MEDIDAS DE DISPERSÃO 1. Coceito: Dispersão é a maior ou meor diversificação dos valores de uma variável, em toro

Leia mais

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio Material Teórico - Módulo de ESTATÍSTICA As Diferetes Médias Primeiro Ao do Esio Médio Autor: Prof Atoio Camiha Muiz Neto Revisor: Prof Fracisco Bruo Holada Nesta aula, pausamos a discussão de Estatística

Leia mais

Capítulo II Propagação de erros (cont.)

Capítulo II Propagação de erros (cont.) Técicas Laboratoriais de Física Lic. Física e Eg. Biomédica 007/08 Capítulo II Propagação de erros (cot.) Propagação de icertezas idepedetes e arbitrárias Fuções de uma variável Determiação da propagação

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

Distribuições Amostrais

Distribuições Amostrais 9/3/06 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/09/06 3:38 ESTATÍSTICA APLICADA I - Teoria

Leia mais

CAPÍTULO 8 - Noções de técnicas de amostragem

CAPÍTULO 8 - Noções de técnicas de amostragem INF 6 Estatística I J.I.Ribeiro Júior CAPÍTULO 8 - Noções de técicas de amostragem. Itrodução A Estatística costitui-se uma excelete ferrameta quado existem problemas de variabilidade a produção. É uma

Leia mais

Capítulo 5. CASO 5: EQUAÇÃO DE POISSON 5.1 MODELO MATEMÁTICO E SOLUÇÃO ANALÍTICA

Capítulo 5. CASO 5: EQUAÇÃO DE POISSON 5.1 MODELO MATEMÁTICO E SOLUÇÃO ANALÍTICA Capítulo 5. CASO 5: EQUAÇÃO DE POISSON No presete capítulo, é abordado um problema difusivo uidimesioal com absorção de calor (Icropera e DeWitt, 199, o que resulta uma equação de Poisso, que é uma equação

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

Distribuições de Estatísticas Amostrais e Teorema Central do Limite

Distribuições de Estatísticas Amostrais e Teorema Central do Limite Distribuições de Estatísticas Amostrais e Teorema Cetral do Limite Vamos começar com um exemplo: A mega-sea de 996 a N 894 úmeros de a 6: Média: m 588 Desvio padrão: 756 49 amostras de 6 elemetos Frequêcia

Leia mais

Distribuições Amostrais

Distribuições Amostrais 7/3/07 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/07/07 09:3 ESTATÍSTICA APLICADA I - Teoria

Leia mais

ESTATÍSTICA- II DISTRIBUIÇÃO DE FREQUÊNCIA. 1- CONCEITO É a série estatística que tem o tempo, o espaço e a espécie como variáveis dependentes.

ESTATÍSTICA- II DISTRIBUIÇÃO DE FREQUÊNCIA. 1- CONCEITO É a série estatística que tem o tempo, o espaço e a espécie como variáveis dependentes. ESTATÍSTICA- II DISTRIBUIÇÃO DE FREQUÊNCIA 1- CONCEITO É a série estatística que tem o tempo, o espaço e a espécie como variáveis depedetes. - DISTRIBUIÇÃO DE FREQUÊNCIA a) Dados Brutos É um cojuto resultate

Leia mais

A DESIGUALDADE DE CHEBYCHEV

A DESIGUALDADE DE CHEBYCHEV A DESIGUALDADE DE CHEBYCHEV Quado se pretede calcular a probabilidade de poder ocorrer determiado acotecimeto e se cohece a distribuição probabilística que está em causa o problema, ão se colocam dificuldades

Leia mais

SUCESSÕES DE NÚMEROS REAIS. Sucessões

SUCESSÕES DE NÚMEROS REAIS. Sucessões SUCESSÕES DE NÚMEROS REAIS Sucessões Chama-se sucessão de úmeros reais ou sucessão em IR a toda a aplicação f do cojuto IN dos úmeros aturais em IR, f : IN IR f ( ) = x IR Chamamos termos da sucessão aos

Leia mais

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação

Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir da informação ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p 1 Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma

Leia mais

Como a dimensão da amostra é , o número de inquiridos correspondente é

Como a dimensão da amostra é , o número de inquiridos correspondente é 41. p ˆ 0, 5 e z 1, 960 Se a amplitude é 0,, etão a margem de erro é 0,1. 0,5 0,48 1,960 0,1 0,496 96 0,0510 0,496 0,0510 0,496 0,0510 Tema 5 71) 1.1 4 11 6% Como a dimesão da amostra é 15 800, o úmero

Leia mais

UMA EXPERIÊNCIA COM MODELAGEM MATEMÁTICA NA LICENCIATURA EM MATEMÁTICA

UMA EXPERIÊNCIA COM MODELAGEM MATEMÁTICA NA LICENCIATURA EM MATEMÁTICA ISBN 978-85-7846-516-2 UMA EXPERIÊNCIA COM MODELAGEM MATEMÁTICA NA LICENCIATURA EM MATEMÁTICA Resumo Alisso Herique dos Satos UEL Email: alisso_hs612@hotmail.com Ferada Felix Silva UEL Email: ferada.f.matematica@gmail.com

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

Introdução ao Qui-Quadrado

Introdução ao Qui-Quadrado Técicas Laboratoriais de Física Lic. Física e g. Biomédica 007/08 Capítulo X Teste do Qui-quadrado, Itrodução ao qui-quadrado Defiição geral do qui-quadrado Graus de liberdade e reduzido abilidade do 66

Leia mais

Estatística Descritiva. 3. Estatísticas Medidas de posição Medidas de dispersão

Estatística Descritiva. 3. Estatísticas Medidas de posição Medidas de dispersão Estatística Descritiva 3. Estatísticas 3.1. Medidas de posição 3.. Medidas de dispersão 1 Exemplo 1: Compare as 4 colheitadeiras quato às porcetages de quebra de semetes de milho. Tabela 1. Porcetagem

Leia mais

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral

6.1 Estimativa de uma média populacional: grandes amostras. Definição: Um estimador é uma característica amostral (como a média amostral 6 ESTIMAÇÃO 6.1 Estimativa de uma média populacioal: grades amostras Defiição: Um estimador é uma característica amostral (como a média amostral x ) utilizada para obter uma aproximação de um parâmetro

Leia mais

Induzindo a um bom entendimento do Princípio da Indução Finita

Induzindo a um bom entendimento do Princípio da Indução Finita Iduzido a um bom etedimeto do Pricípio da Idução Fiita Jamil Ferreira (Apresetado a VI Ecotro Capixaba de Educação Matemática e utilizado como otas de aula para disciplias itrodutórias do curso de matemática)

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO Campus de Bauru

UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO Campus de Bauru EXPERIMENTO - MEDIDAS E ERROS ****************************************************************************. Objetivos: Propiciar ao estudate a compreesão dos coceitos básicos de medidas; Avaliação e propagação

Leia mais

Comparação entre duas populações

Comparação entre duas populações Comparação etre duas populações AMOSTRAS INDEPENDENTES Comparação etre duas médias 3 Itrodução Em aplicações práticas é comum que o iteresse seja comparar as médias de duas diferetes populações (ambas

Leia mais

EME 311 Mecânica dos Sólidos

EME 311 Mecânica dos Sólidos EE 311 ecâica dos Sólidos - CPÍTULO 4 - Profa. Patricia Email: patt_lauer@uifei.edu.br IE Istituto de Egeharia ecâica UNIFEI Uiversidade Federal de Itajubá 4 CENTRO DE GRIDDE E OENTO ESTÁTICO DE ÁRE 4.1

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Técnicas de Reamostragem

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Técnicas de Reamostragem Estatística: Aplicação ao Sesoriameto Remoto SER 202 - ANO 2016 Técicas de Reamostragem Camilo Daleles Reó camilo@dpi.ipe.br http://www.dpi.ipe.br/~camilo/estatistica/ Distribuição Amostral Testes paramétricos

Leia mais

x 1 + x x x = lim x x x 2 = lim x x = lim lim x x 2 limx x Exercício 3

x 1 + x x x = lim x x x 2 = lim x x = lim lim x x 2 limx x Exercício 3 Exercício Item p Esboço do algoritmo. É o seguite:. Fatorar a maior potêcia do umerador e do deomiador 2. Rearrajar a expressão. 3. Cocluir. Implemetação. Vejamos a implemetação. x + 3 x lim x x 2 + 3

Leia mais

Estimativa de Parâmetros

Estimativa de Parâmetros Estimativa de Parâmetros ENG09004 04/ Prof. Alexadre Pedott pedott@producao.ufrgs.br Trabalho em Grupo Primeira Etrega: 7/0/04. Plao de Amostragem - Cotexto - Tipo de dado, frequêcia de coleta, quatidade

Leia mais

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição;

CÁLCULO I. Exibir o cálculo de algumas integrais utilizando a denição; CÁLCULO I Prof Edilso Neri Júior Prof Adré Almeida Aula o 9: A Itegral de Riema Objetivos da Aula Deir a itegral de Riema; Exibir o cálculo de algumas itegrais utilizado a deição; Apresetar fuções que

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

Instituto de Física USP. Física V - Aula 22. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 22. Professora: Mazé Bechara Istituto de Física USP Física V - Aula Professora: Mazé Bechara Aula O Modelo Atômico de Bohr. Determiações das velocidades o movimeto de um elétro iteragido com o úcleo o modelo de Bohr.. Os estados atômicos

Leia mais

Novo Espaço Matemática A 12.º ano Proposta de Teste [outubro ]

Novo Espaço Matemática A 12.º ano Proposta de Teste [outubro ] Proposta de Teste [outubro - 017] Nome: Ao / Turma: N.º: Data: / / Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações

Leia mais

arxiv: v1 [math.ho] 3 Sep 2014

arxiv: v1 [math.ho] 3 Sep 2014 Álbum de figurihas da Copa do Mudo: uma abordagem via Cadeias de Markov Leadro Morgado IMECC, Uiversidade Estadual de Campias arxiv:409.260v [math.ho] 3 Sep 204 Cosiderações iiciais 6 de maio de 204 Com

Leia mais

MATEMÁTICA CADERNO 1 CURSO E FRENTE 1 ÁLGEBRA. Módulo 1 Equações do 1 ọ Grau e

MATEMÁTICA CADERNO 1 CURSO E FRENTE 1 ÁLGEBRA. Módulo 1 Equações do 1 ọ Grau e MATEMÁTICA CADERNO CURSO E FRENTE ÁLGEBRA Módulo Equações do ọ Grau e do ọ Grau ) [ ( )] = [ + ] = + = + = + = = Resposta: V = { } 9) Na equação 6 = 0, tem-se a = 6, b = e c =, etão: I) = b ac = + = b

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Govero do Estado do Rio Grade do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

Características dinâmicas

Características dinâmicas Características diâmicas As características diâmicas, descrevem o seu comportameto durate o itervalo de tempo em que a gradeza medida varia até o mometo em que o seu valor medido é apresetado. Resposta

Leia mais

MATEMÁTICA MÓDULO 6 ESTATÍSTICA. Professor Haroldo Filho

MATEMÁTICA MÓDULO 6 ESTATÍSTICA. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 6 ESTATÍSTICA 1.1 ESTATÍSTICA É a ciêcia que utiliza a coleta de dados, sua classificação, sua apresetação, sua aálise e sua iterpretação para se tomar algum tipo

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

Estimação da média populacional

Estimação da média populacional Estimação da média populacioal 1 MÉTODO ESTATÍSTICO Aálise Descritiva Teoria das Probabilidades Iferêcia Os dados efetivamete observados parecem mostrar que...? Se a distribuição dos dados seguir uma certa

Leia mais

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra

Uma amostra aleatória simples de n elementos é selecionada a partir da população. Calcula-se o valor da média a partir da amostra Distribuição amostral de Um dos procedimetos estatísticos mais comus é o uso de uma média da amostra ( ) para fazer iferêcias sobre uma população de média µ. Esse processo é apresetado a figura abaio.

Leia mais

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5.1 INTRODUÇÃO Um sistema é defiido como todo o cojuto de compoetes itercoectados, previamete determiados, de forma a realizar um cojuto

Leia mais

Ajuste de Curvas pelo Método dos Quadrados Mínimos

Ajuste de Curvas pelo Método dos Quadrados Mínimos Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias

Leia mais

UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ 4016 OPERAÇÕES UNITÁRIAS EXPERIMENTAL I

UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ 4016 OPERAÇÕES UNITÁRIAS EXPERIMENTAL I UNIVERSIAE E SÃO PAULO ENGENHARIA QUÍMICA LOQ 4016 OPERAÇÕES UNITÁRIAS EXPERIMENTAL I Profa. Lívia Chaguri E-mail: lchaguri@usp.br 1- Redução de Tamaho - Fudametos/Caracterização graulométrica - Equipametos:

Leia mais

Elevando ao quadrado (o que pode criar raízes estranhas),

Elevando ao quadrado (o que pode criar raízes estranhas), A MATEMÁTICA DO ENSINO MÉDIO, Vol. Soluções. Progressões Aritméticas ) O aumeto de um triâgulo causa o aumeto de dois palitos.logo, o úmero de palitos costitui uma progressão aritmética de razão. a a +(

Leia mais

República de Moçambique Ministério da Educação Conselho Nacional de Exames, Certificação e Equivalências

República de Moçambique Ministério da Educação Conselho Nacional de Exames, Certificação e Equivalências Abuso Seual as escolas Não dá para aceitar Por uma escola livre do SIDA República de Moçambique Miistério da Educação Coselho Nacioal de Eames, Certificação e Equivalêcias ESG / 04 Eame de Matemática Etraordiário

Leia mais

Como se decidir entre modelos

Como se decidir entre modelos Como se decidir etre modelos Juliaa M. Berbert Quado uma curva é lei de potecia? O procedimeto amplamete usado para testar movimetação biológica a fim de ecotrar padrões de busca como Voos de Levy tem

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros 1. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual

Leia mais

1 Distribuições Amostrais

1 Distribuições Amostrais 1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados

Leia mais

Estimadores de Momentos

Estimadores de Momentos Estimadores de Mometos A média populacioal é um caso particular daquilo que chamamos de mometo. Na realidade, ela é o primeiro mometo. Se X for uma v.a. cotíua, com desidade f(x; θ 1,..., θ r ), depededo

Leia mais