01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!.

Tamanho: px
Começar a partir da página:

Download "01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!."

Transcrição

1 0. (UFRGS/00) Se n é um número natural qualquer maior que, então n! + n é divisível por n. n. n +. n! -. n!. 0. (UFRGS/00) Se num determinado período o dólar sofrer uma alta de 00% em relação ao real, no mesmo período o real, em relação ao dólar, sofrerá uma queda de %. 00 alta de %. 00 queda de 50%. queda de 00%. queda de 00%. 0. (UFRGS/00) Se x é um número real, então x nunca assume o valor x (UFRGS/00) Considere o gráfico de y = f(x) abaixo. Então o gráfico de y = x.f(x) é

2 05. (UFRGS/00) Se num paralelepípedo o comprimento é reduzido em 0%, a largura é reduzida em 5% e a altura é aumentada em 5%, então o volume não se altera. aumenta em 0,75%. se reduz em 0,75%. aumenta em,675%. se reduz em,675%. p > 0. p é um número real qualquer. 09. (UFRGS/00) A figura abaixo representa a estrutura de madeira que apóia o telhado de um pavilhão. A altura do pilar EE é de y metros. A distância entre dois pilares consecutivos quaisquer é de x metros, assim como a distância da base do pilar BB ao ponto A. 06. (UFRGS/00) Considere as proposições abaixo, onde a, b, c são números reais quaisquer. I. Se ac < bc, então a < b. II. Se ab <, então a < e b <. III. Se a < b, então a < b. Analisando-as, conclui-se que apenas I é falsa. apenas I e II são falsas. apenas II e III são falsas. apenas I e III são falsas. I, II e III são falsas. 07. (UFRGS/00) Os vértices de um triângulo são os pontos do plano que representam as raízes cúbicas complexas de 7. O perímetro desse triângulo é (UFRGS/00) Se p é um número real, a equação x + x + = p possui duas raízes reais distintas se, e somente se, p >. p <. Então, a seqüência das alturas dos pilares BB, CC e DD forma uma progressão aritmética de razão aritmética de razão y. aritmética de razão x. geométrica de razão geométrica de razão xy. 0. (UFRGS/00) Se f(x) = x e g(x) = x, então as seqüências f(), f(), f(),... e g(), g(), g(),... formam, respectivamente, uma progressão geométrica de razão e uma progressão aritmética de razão. p >.

3 respectivamente, uma progressão aritmética de razão e uma progressão geométrica de razão. respectivamente, uma progressão geométrica de razão e uma progressão aritmética de razão.. (UFRGS/00) O gráfico de uma função polinomial y = p(x) do terceiro grau com coeficientes reais está parcialmente representado na tela de uma computador, como indica a figura abaixo. ambas, progressões aritméticas de razão. ambas, progressões geométricas de razão. (UFRGS/00) Na figura abaixo está representado o gráfico da função f(x) = log b x. O número de soluções reais da equação p(x) = é A área da região sombreada é.,.,5.,8... (UFRGS/00) A solução da equação -x + = x pertence ao intervalo [-, 0]. [0, ]. [, ]. [, ]. [, ].. (UFRGS/00) Um polinômio y = p(x) do quinto grau com coeficientes reais é tal que p(-x) = -p(x), para todo número real x. Se e i são raízes desse polinômio, então a soma de seus coeficientes é (UFRGS/00) O número real cos está entre e. e.

4 e 0. 0 e e. 5 7,,,, (UFRGS/00) Na figura abaixo, DEFG é um retângulo inscrito no triângulo ABC, cuja área é a. 6. (UFRGS/00) Na figura abaixo, Se h é altura desse triângulo relativa ao lado Se AC = DB = e α é a medida do ângulo BAC, onde 0 < α < π, então a área do triângulo ABC, em função de α, é α sen α + sen. sen α + sen ( α ). cos α + cos α. sen α + sen ( α ). cos α + sen ( α ). 7. (UFRGS/00)O conjunto solução da equação cos ( π x ). log (x ) = 0 é ,,,,,, ,,,,,, ,,,, ,,,... AB e DG = h, a área do retângulo DEFG é a. a. a. 9 a. 9 5 a. 9. (UFRGS/00) Na figura abaixo, os três círculos têm o mesmo raio r, as retas são paralelas, os círculos são tangentes entre si e cada um deles é tangente a uma das duas retas.

5 Dentre as alternativas abaixo, a melhor aproximação para a distância entre as retas é r.,5r.,5r.,75r. r. 0. (UFRGS/00) Na figura abaixo, as semiretas AB e AC tangenciam o círculo de centro D, respectivamente, nos pontos B e C. Se a aresta do cubo mede, a área do quadrilátero AMGN é Se o ângulo BAC mede 70º, o ângulo BDC mede 0º. 5º. 5º. 5º. 0º.. (UFRGS/00) No cubo ABCDEFGH da figura abaixo, M é o ponto médio de BF e N é o ponto médio de DH.. (UFRGS/00) Considere uma esfera inscrita num cubo. Dentre as alternativas abaixo, a melhor aproximação para a razão entre o volume da esfera e o volume do cubo é (UFRGS/00) Sendo A = (0, 0) e B = (, 0), o gráfico que pode representar o conjunto dos pontos P do plano xy, tais que (PA) + (PB) =, é o da alternativa

6 . (UFRGS/00) Na figura abaixo, a região sombreada do plano xy é descrita pelas desigualdades da alternativa 0 < x < e 0 < y < 5 x. 0 < x < 5 e 0 < y < 5 + x. < x < e 0 < y < 5 - x. < x < e 0 < y < 5. < x < e 0 < y < 5 + x. 5. (UFRGS/00) Um círculo contido no º quadrante tangencia o eixo das ordenadas e a reta de equação y = x. O centro desse círculo pertence à reta de equação x y = 0. x y = 0. x + y = 0. x y = 0. x y = (UFRGS/00) Se A é uma matriz x e det A = 5, então o valor de det A é

7 (UFRGS/00) Se a terna ordenada (a, b, c) x + y = satisfaz o sistema de equações y + z =, x + z = 0 então a + b + c vale.. zero (UFRGS/00) Considere dois dados, cada um deles com seis faces, numeradas de a 6. Se os dados são lançados ao acaso, a probabilidade de que a soma dos números sorteados seja 5 é (UFRGS/00) Numa maternidade, aguardase o nascimento de três bebês. Se a probabilidade de que cada bebê seja menina, a probabilidade de que os três bebês sejam do mesmo sexo é (UFRGS/00) Na figura abaixo, A e B são vértices do quadrado inscrito no círculo. Se um ponto E do círculo, diferente de todos os vértices do quadrado, é tomado ao acaso, a probabilidade de que A, B e E sejam vértices de um triângulo obtusângulo é..

Prova de Matemática ( ) Questão 01 Gabarito A + = Portanto, a expressão é divisível por n 1. Questão 02 Gabarito C

Prova de Matemática ( ) Questão 01 Gabarito A + = Portanto, a expressão é divisível por n 1. Questão 02 Gabarito C Prova de Matemática Questão Gabarito A n! + n n( n )( n! ) ( n ) ( n ) n( n! ) + + Portanto, a epressão é divisível por n. Questão Gabarito C Consideremos uma situação inicial de paridade dólar-real, em

Leia mais

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.

NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo. R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante

Leia mais

(A) 1. (B) 2. (C) 3. (D) 6. (E) 7. Pode-se afirma que

(A) 1. (B) 2. (C) 3. (D) 6. (E) 7. Pode-se afirma que 01. (UFRGS/1999) O algarismo das unidades de (6 10 + 1) é (A) 1. (B). (C) 3. (D) 6. (E) 7. 0. (UFRGS/1999) Considere as densidades abaixo. I. 4 4 < 8 8 II. 0,5 < 0, 5 III. -3 < 3 - Pode-se afirma que (A)

Leia mais

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2} 1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

Questão 03 Sejam os conjuntos: A) No conjunto A B C, existem 5 elementos que são números inteiros.

Questão 03 Sejam os conjuntos: A) No conjunto A B C, existem 5 elementos que são números inteiros. Questão 0 Dada a proposição: Se um quadrilátero é um retângulo então suas diagonais cortam-se ao meio, podemos afirmar que: A) Se um quadrilátero tem as diagonais cortando-se ao meio então ele é um retângulo.

Leia mais

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B NOTAÇÕES R C : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = 1 det M : determinante da matriz M M 1 MN AB : inversa da matriz M : produto das matrizes M e N : segmento

Leia mais

1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura:

1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura: 7. Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MAN ˆ é igual a a) 5. b) 5.

Leia mais

(~ + 1) { ~ + 1) { : + 1)-... {I O~O + 1) é MATEMÁTICA. 2a é múltiplo de 6. CA) -6. cc) O. 28. O valor numérico da expressão CC) 500.

(~ + 1) { ~ + 1) { : + 1)-... {I O~O + 1) é MATEMÁTICA. 2a é múltiplo de 6. CA) -6. cc) O. 28. O valor numérico da expressão CC) 500. MATEMÁTICA NESTA PROVA" SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: N: Conjunto dos números naturais. R: Conjunto dos números reais. 6. Considere as afirmações sobre

Leia mais

UPE/VESTIBULAR/2002 MATEMÁTICA

UPE/VESTIBULAR/2002 MATEMÁTICA UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas

Leia mais

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar

MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então

Leia mais

04) 4 05) 2. ˆ B determinam o arco, portanto são congruentes, 200π 04)

04) 4 05) 2. ˆ B determinam o arco, portanto são congruentes, 200π 04) RESOLUÇÃO DA PROVA FINAL DE MATEMÁTICA - ANO 007 a SÉRIE DO E.M. _ COLÉGIO ANCHIETA BA ELABORAÇÃO: PROF. OCTAMAR MARQUES. PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0) Na figura, o raio do círculo é igual a

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, conforme o que consta na etiqueta

Leia mais

NOTAÇOES A ( ) 2. B ( ) 2^2. C ( ) 3. 7 D ( ) 2^ 3- E ( ) 2. Q uestão 2. Se x é um número real que satisfaz x3 = x + 2, então x10 é igual a

NOTAÇOES A ( ) 2. B ( ) 2^2. C ( ) 3. 7 D ( ) 2^ 3- E ( ) 2. Q uestão 2. Se x é um número real que satisfaz x3 = x + 2, então x10 é igual a NOTAÇOES R : conjunto dos números reais N : conjunto dos números naturais C : conjunto dos números complexos i : unidade imaginária: i2 = z : módulo do número z E C det A : determinante da matriz A d(a,

Leia mais

Observação: Os sistemas de coordenadas considerados são cartesianos ortogonais. n(a B) = 23, n(b A) = 12, n(c A) = 10, n(b C) = 6 e n(a B C) = 4,

Observação: Os sistemas de coordenadas considerados são cartesianos ortogonais. n(a B) = 23, n(b A) = 12, n(c A) = 10, n(b C) = 6 e n(a B C) = 4, NOTAÇÕES N = {0, 1, 2, 3,...} i: unidadeimaginária;i 2 = 1 Z: conjuntodosnúmerosinteiros z : módulodonúmeroz C Q: conjuntodosnúmerosracionais z: conjugadodonúmeroz C R: conjuntodosnúmerosreais Re z: parterealdez

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir.

MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir. MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x cos x : cosseno de x x : módulo de x log x : logaritmo de x na base 10 6. Um

Leia mais

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5 Simulado ITA 1. E m relação à teoria dos conjuntos, considere as seguintes afirmativas relacionadas aos conjuntos A, B e C: I. Se A B e B C então A C. II. Se A B e B C então A C. III. Se A B e B C então

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D Questão TIPO DE PROVA: A O algarismo das dezenas do número! é: a) 5 b) 0 c) d) 7 e) A quantidade de zeros com que termina o número n! é igual ao número de fatores 5 presentes em sua fatoração. Na fatoração

Leia mais

... n = 10, então n não é múlti- a = 2, então. log c = 2,7, então a, b, c, nesta ordem, formam

... n = 10, então n não é múlti- a = 2, então. log c = 2,7, então a, b, c, nesta ordem, formam 1. (UFRGS/000) As rodas traseiras de um veículo têm 4,5 metros de circunferência cada uma. Enquanto as rodas dianteiras dão 15 voltas, as traseiras dão somente 1 voltas. A circunferência de cada roda dianteira

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

Simulado AFA. 2. Sejam x e y números reais tais que: Então, o número complexo z = x + yi. é tal que z 3 e z valem, respectivamente: (D) i e 1.

Simulado AFA. 2. Sejam x e y números reais tais que: Então, o número complexo z = x + yi. é tal que z 3 e z valem, respectivamente: (D) i e 1. Simulado AFA 1. Uma amostra de estrangeiros, em que 18% são proficientes em inglês, realizou um exame para classificar a sua proficiência nesta língua. Dos estrangeiros que são proficientes em inglês,

Leia mais

PROGRESSÕES. 2) (UFRGS) Considere os triângulos I, II e III caracterizados abaixo através de seus lados.

PROGRESSÕES. 2) (UFRGS) Considere os triângulos I, II e III caracterizados abaixo através de seus lados. PROGRESSÕES 1) (UFPI) Numa PA, a 5 = 10 e a 15 = 40; então a é igual a (a) 3 (b) (c) 1 (d) 0 (e) -1 ) (UFRGS) Considere os triângulos I, II e III caracterizados abaixo através de seus lados. - triângulo

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. Questão 5. alternativa C. alternativa B. alternativa A.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. Questão 5. alternativa C. alternativa B. alternativa A. Questão TIPO DE PROVA: A Sabe-se que o quadrado de um número natural k é maior do que o seu triplo e que o quíntuplo desse número k é maior do que o seu quadrado. Dessa forma, k k vale: a) 0 b) c) 6 d)

Leia mais

TD GERAL DE MATEMÁTICA 2ª FASE UECE

TD GERAL DE MATEMÁTICA 2ª FASE UECE Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Vestibular - UECEVest Fones: 3101.9658 / E-mail: uecevest_itaperi@yahoo.com.br Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-903 Fone: 3101-9658/Site:

Leia mais

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 UFBA / UFRB 008 1a Fase Matemática Professora Maria Antônia Gouveia QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de

Leia mais

01. (UFRGS-98) Se P é o produto de todos os números primos menores que 1000, o dígito que ocupa a casa das unidades de P é

01. (UFRGS-98) Se P é o produto de todos os números primos menores que 1000, o dígito que ocupa a casa das unidades de P é 01. (UFRGS-98) Se P é o produto de todos os números primos menores que 1000, o dígito que ocupa a casa das unidades de P é (A) 0 (B) 1 (C) 2 (D) 5 (E) 9 02. (UFRGS-98) A soma de dois números reais A e

Leia mais

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.

2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado. MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador

Leia mais

No triângulo formado pelos ponteiros do relógio e pelo seguimento que liga suas extremidades apliquemos a lei dos cossenos: 3 2

No triângulo formado pelos ponteiros do relógio e pelo seguimento que liga suas extremidades apliquemos a lei dos cossenos: 3 2 COLÉGIO ANCHIETA-BA a AVALIAÇÃO de MATEMÁTICA _UNIDADE IV_ o ANO EM PROVA ELABORADA POR PROF OCTAMAR MARQUES. PROFA. MARIA ANTONIA CONCEIÇÃO GOUVEIA 0. Os ponteiros de um relógio têm comprimentos iguais

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

MATEMÁTICA UFRGS 2010 RESOLVIDA PELO PROF. REGIS CORTES

MATEMÁTICA UFRGS 2010 RESOLVIDA PELO PROF. REGIS CORTES MATEMÁTICA UFRGS 2010 RESOLVIDA PELO PROF. REGIS CORTES Nesta prova serão utilizados os seguintes símbolos e conceitos com os respectivos significados: l x l : módulo no número x i : unidade imaginária

Leia mais

ITA18 - Revisão. LMAT9A - ITA 2016 (objetivas) Questão 1. Considere as seguintes armações:

ITA18 - Revisão. LMAT9A - ITA 2016 (objetivas) Questão 1. Considere as seguintes armações: ITA18 - Revisão LMAT9A - ITA 2016 (objetivas) Questão 1 Considere as seguintes armações: I. A função f(x) = log 10 é estritamente crescente no intervalo ]1, + [. II. A equação 2 x+2 = 3 x 1 possui uma

Leia mais

a) 6% b) 7% c) 70% d) 600% e) 700%

a) 6% b) 7% c) 70% d) 600% e) 700% - MATEMÁTICA 01) Supondo-se que o número de vagas em um concurso vestibular aumentou 5% e que o número de candidatos aumentou 35%, o número de candidatos por vaga para esse curso aumentou: a) 8% b) 9%

Leia mais

3 de um dia correspondem a é

3 de um dia correspondem a é . (UFRGS/) Na promoção de venda de um produto cujo custo unitário é de R$ 5,75 se lê: Leve, pague. Usando as condições da promoção, a economia máima que poderá ser feita na compra de 88 itens deste produto

Leia mais

MATEMÁTICA UFRGS 2008

MATEMÁTICA UFRGS 2008 NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SíMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: log x : Ioga ritmo de x na base 10 Re(z) : eixo real do plano complexo Im(z) : eixo imaginário do plano complexo

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 3. Questão 4. alternativa A. alternativa B. alternativa D

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 3. Questão 4. alternativa A. alternativa B. alternativa D TIPO DE PROVA: A Questão Se o dobro de um número inteiro é igual ao seu triplo menos 4, então a raiz quadrada desse número a) b) c) d) 4 e) 5 Sendo o número inteiro em questão, temos: 4 4 Logo a raiz quadrada

Leia mais

Prova Vestibular ITA 1995

Prova Vestibular ITA 1995 Prova Vestibular ITA 1995 Versão 1.0 ITA - 1995 01) (ITA-95) Seja A = n ( 1) n!. π + sen ; n ℵ n! 6 a) (- 1) n n. b) n. c) (- 1) n n. d) (- 1) n+1 n. e) (- 1) n+1 n. Qual conjunto abaixo é tal que sua

Leia mais

Questão 1. Considere os conjuntos S = {0, 2, 4, 6}, T = {1, 3, 5} e U = {0, 1} e as. A ( ) apenas I. B ( ) apenas IV. C ( ) apenas I e IV.

Questão 1. Considere os conjuntos S = {0, 2, 4, 6}, T = {1, 3, 5} e U = {0, 1} e as. A ( ) apenas I. B ( ) apenas IV. C ( ) apenas I e IV. NOTAÇÕES C : conjunto dos números complexos. [a, b] = {x R ; a x b}. Q : conjunto dos números racionais. ]a, b[= {x R ; a < x < b}. R : conjunto dos números reais. i : unidade imaginária ; i = 1. Z : conjunto

Leia mais

TD GERAL DE MATEMÁTICA 2ª FASE UECE

TD GERAL DE MATEMÁTICA 2ª FASE UECE Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Vestibular - UECEVest Fones: 101.968 / E-mail: uecevest_itaperi@yahoo.com.br Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-90 Fone: 101-968/Site:

Leia mais

BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO

BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO BANCO DE QUESTÕES MATEMÁTICA A 11. O ANO DOMÍNIO: Trigonometria e funções trigonométricas 1. Considera o triângulo PQR e as medidas apresentadas na figura ao lado. O comprimento do lado QR é: (A) 4 (C)

Leia mais

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura

Leia mais

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2

{ } Questão 1. Considere as seguintes afirmações sobre o conjunto U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Questão 2. Seja o conjunto = { : 0 e 2 2 NOTAÇÕES : conjunto dos números complexos. : conjunto dos números racionais. : conjunto dos números reais. : conjunto dos números inteiros. = 0,,,,.... { } { } * =,,,.... i : unidade imaginária; i =. z=x+iy,

Leia mais

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001

Matemática 41 c Resolução 42 b Resolução 43 e OBJETIVO 2001 Matemática c Numa barraca de feira, uma pessoa comprou maçãs, bananas, laranjas e peras. Pelo preço normal da barraca, o valor pago pelas maçãs, bananas, laranjas e peras corresponderia a 5%, 0%, 5% e

Leia mais

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 ( Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

p a p. mdc(j,k): máximo divisor comum dos números inteiros j e k. n(x) : número de elementos de um conjunto finito X. (a,b) = {x : a < x < b}.

p a p. mdc(j,k): máximo divisor comum dos números inteiros j e k. n(x) : número de elementos de um conjunto finito X. (a,b) = {x : a < x < b}. MATEMÁTICA NOTAÇÕES = {0,,,,...} : conjunto dos números inteiros : conjunto dos números racionais : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária; i = Izl: módulo do

Leia mais

madematica.blogspot.com Página 1 de 35

madematica.blogspot.com Página 1 de 35 PROVA DE MATEMÁTICA EsPCEx 011/01 MODELO A (ENUNCIADOS) 1) Considere as funções reais f x x, de domínio f x máximo e mínimo que o quociente g y a) e 1 b) 1 e 1 4,8 e g y pode assumir são, respectivamente

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa D. alternativa D. alternativa D. alternativa B.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa D. alternativa D. alternativa D. alternativa B. Questão TIPO DE PROVA: A Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância

Leia mais

as raízes de gof, e V(x v ) o vértice da parábola que representa gof no plano cartesiano. Assim sendo, 1) x x 2 = = 10 ( 4) 2) x v x 2

as raízes de gof, e V(x v ) o vértice da parábola que representa gof no plano cartesiano. Assim sendo, 1) x x 2 = = 10 ( 4) 2) x v x 2 MATEMÁTICA 19 c Sejam as funções f e g, de em, definidas, respectivamente, por f(x) = x e g(x) = x 1. Com relação à função gof, definida por (gof) (x) = g(f(x)), é verdade que a) a soma dos quadrados de

Leia mais

ITA18 - Revisão. LMAT10A-1 - ITA 2017 (objetivas) Questão 1

ITA18 - Revisão. LMAT10A-1 - ITA 2017 (objetivas) Questão 1 ITA18 - Revisão LMAT10A-1 - ITA 2017 (objetivas) Questão 1 Sejam X e Y dois conjuntos finitos com X Y e X Y. Considere as seguintes afirmações: 1. Existe uma bijeção f : X Y. 2. Existe uma função injetora

Leia mais

P (A) n(a) AB tra. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

P (A) n(a) AB tra. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. NOTAÇÕES N = f; ; 3; : : :g i : unidade imaginária: i = R : conjunto dos números reais jzj : módulo do número z C C : conjunto dos números complexos Re z : parte real do número z C [a; b] = fx R; a x bg

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019

RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019 RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019 26. Resposta (D) I. Falsa II. Correta O número 2 é o único primo par. Se a é um número múltiplo de 3, e 2a sendo um número par, logo múltiplo de 2. Então 2a

Leia mais

MATEMÁTICA. log 2 x : logaritmo de base 2 de x. 28. Sendo a, b e c números reais, considere as seguintes afirmações.

MATEMÁTICA. log 2 x : logaritmo de base 2 de x. 28. Sendo a, b e c números reais, considere as seguintes afirmações. MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x log x : logaritmo de base de x 6 Considere que o corpo de uma determinada pessoa

Leia mais

)81'$d 2 *(7Ò/,2 9$5*$6 9(67,%8/$5 5(62/8d 2 ( &20(17È5, )$ 0$5,$ $1721,$ *289(,$

)81'$d 2 *(7Ò/,2 9$5*$6 9(67,%8/$5 5(62/8d 2 ( &20(17È5, )$ 0$5,$ $1721,$ *289(,$ )81'$d 2 *(7Ò/,2 9$*$6 9(67,%8/$ (62/8d 2 ( &20(17È,26 32 32)$ 0$,$ $1721,$ *289(,$ QUESTÃO 01. Os números inteiros x e y satisfazem a equação 2 x 3 2 x 1 y 3 3. y. Então x y é: a) 8 b) c) 9 d) 6 e) 7

Leia mais

( ) ( ) RASCUNHO. 1 do total previsto, os. Após terem percorrido, cada um, 5

( ) ( ) RASCUNHO. 1 do total previsto, os. Após terem percorrido, cada um, 5 EA CFOAV/CFOINT/CFOINF 0 PROVA DE MATEMÁTICA LÍNGUA INGLESA FÍSICA LÍNGUA PORTUGUESA VERSÃO A 0 - Três carros, a, b e c, com diferentes taxas de consumo de combustível, percorrerão, cada um, 600 km por

Leia mais

Assinale as proposições verdadeiras some os resultados e marque na Folha de Respostas.

Assinale as proposições verdadeiras some os resultados e marque na Folha de Respostas. PROVA DE MATEMÁTICA a AVALIAÇÃO UNIDADE 8 a SÉRIE E M _ COLÉGIO ANCHIETA-A ELAORAÇÃO DA PROVA: PROF OCTAMAR MARQUES PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÕES DE A 8 Assinale as proposições verdadeiras

Leia mais

Prova da UFRGS

Prova da UFRGS Prova da UFRGS - 2013 01. Um adulto humano saudável abriga cerca de 100 bilhões de bactérias, somente em seu trato digestivo. Esse número de bactérias pode ser escrito como a) 10 9. b) 10 10. c) 10 11.

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G MATEMÁTICA O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5,,,, 0 e. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados

Leia mais

. (d) 42. Cada uma das seis faces de um dado foi marcada com um único número inteiro de 1 a 4, respeitando-se as seguintes regras:

. (d) 42. Cada uma das seis faces de um dado foi marcada com um único número inteiro de 1 a 4, respeitando-se as seguintes regras: Vestibular Ibmec São Paulo 2009 4. O valor de (a) 2007 2008 2009 2 4 2009 2 + 2009 2 é igual a. (b) 2008 2009. (c) 2007 2009 2009 2009. (d) 2008. (e) 2007. 42. Cada uma das seis faces de um dado foi marcada

Leia mais

24x 4 50x x 2 10x + 1 = 0 admite 4 raízes racionais distintas. Não é uma dessas raízes. (a) 1. (b) 1 2. (c) 1 3. (d) 1 4. (e) 1 5.

24x 4 50x x 2 10x + 1 = 0 admite 4 raízes racionais distintas. Não é uma dessas raízes. (a) 1. (b) 1 2. (c) 1 3. (d) 1 4. (e) 1 5. Vestibular Ibmec São Paulo 2009 4. A equação algébrica 24x 4 50x 3 + 35x 2 0x + = 0 admite 4 raízes racionais distintas. Não é uma dessas raízes (a). (b) 2. (c) 3. (d) 4. (e) 5. 42. Considere que: A é

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. MATEMÁTICA NOTAÇÕES : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = det M : determinante da matriz M M : inversa da matriz M MN : produto das matrizes M e N AB

Leia mais

LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE

LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE 1) Na figura a seguir, o ponto O é o centro da circunferência, AB e AC são segmentos tangentes e o raio da circunferência mede o dobro de x. O perímetro

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Prova tarde Seu pé direito nas melhores faculdades IBMEC - 05/novembro/006 ANÁLISE QUANTITATIVA E LÓGICA DISCURSIVA a) 9 x, se x p 0. Considere a função f (x) =, em que p é x, se x > p uma constante real.

Leia mais

Soluções Comentadas Matemática Processo Seletivo da Escola de Formação de Oficiais da Marinha Mercante

Soluções Comentadas Matemática Processo Seletivo da Escola de Formação de Oficiais da Marinha Mercante CURSO MENTOR Soluções Comentadas Matemática Processo Seletivo da Escola de Formação de Oficiais da Marinha Mercante Versão.8 05/0/0 Este material contém soluções comentadas das questões de matemática do

Leia mais

Nome: E F. As dimensões da caçamba, dadas em metros, são AB = 2, CD = 3,2, BC = 1 e CG = 1,5. Calcule a capacidade dessa caçamba, em metros cúbicos.

Nome: E F. As dimensões da caçamba, dadas em metros, são AB = 2, CD = 3,2, BC = 1 e CG = 1,5. Calcule a capacidade dessa caçamba, em metros cúbicos. 1. Uma caçamba para recolher entulho, sem tampa, tem a forma de um prisma reto, conforme mostra a figura, em que o quadrilátero ABCD é um trapézio isósceles. H G D C E F A As dimensões da caçamba, dadas

Leia mais

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0 QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada

Leia mais

3 x + y y 17) V cilindro = πr 2 h

3 x + y y 17) V cilindro = πr 2 h MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen sec x =, cos x 0 cos x cos sen x tg x =, cos x 0 cos x tg cos x cotg x =, sen x 0 sen x ) a n = a + (n ). r 0) A = onde b h D = sen x +

Leia mais

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material. OPRM 07 Nível 3 (Ensino Médio) Primeira Fase 09/06/7 ou 0/06/7 Duração: 3 horas Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu nome, o nome da sua escola e nome do APLICADOR nos campos acima. Esta

Leia mais

UECEVEST - ESPECÍFICA Professor: Rikardo Rodrigues

UECEVEST - ESPECÍFICA Professor: Rikardo Rodrigues UECEVEST - ESPECÍFICA Professor: Rikardo Rodrigues 01) (UECE 2017.2) Seja YOZ um triângulo cuja medida da altura OH relativa ao lado YZ é igual a 6 m. Se as medidas dos segmentos YH e HZ determinados por

Leia mais

COMISSÃO DE EXAMES DE ADMISSÃO. Prova de Matemática

COMISSÃO DE EXAMES DE ADMISSÃO. Prova de Matemática COMISSÃO DE EXAMES DE ADMISSÃO Prova de Matemática Ano Acadêmico: 9 Duração : Minutos Curso: Engenharia de Minas. Sejam dados os pontos A ( ; ) e B ( m ; ). Sabendo que a distância entre eles é igual a

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

1º S I M U L A D O - ITA IME - M A T E M Á T I C A

1º S I M U L A D O - ITA IME - M A T E M Á T I C A Professor: Judson Santos / Luciano Santos Aluno(a): nº Data: / /0 º S I M U L A D O - ITA IME - M A T E M Á T I C A - 0 0) Seja N o conjunto dos inteiros positivos. Dados os conjuntos A = {p N; p é primo}

Leia mais

UNIVERSIDADE ESTADUAL DA PARAÍBA

UNIVERSIDADE ESTADUAL DA PARAÍBA UNIVERSIDADE ESTADUAL DA PARAÍBA Comissão Permanente do Vestibular Comvest Rua Baraúnas, 5 Bairro Universitário Campina Grande/PB CEP: 5849-500 Central Administrativa º Andar Fone: (8) 5-68 / E-mail: comvest@uep.edu.br

Leia mais

Concurso Vestibular 2005 PROVA DE MATEMÁTICA

Concurso Vestibular 2005 PROVA DE MATEMÁTICA Concurso Vestibular 2005 PROVA DE MATEMÁTICA 21. Considerando os números 8 e 3, é correto afirmar (01) que 4 é o máximo divisor comum de 3 e 8. (02) que 17 é o máximo divisor comum de 3 e 8. (04) que 4

Leia mais

NOTAÇÕES. + a a n. + a 1. , sendo n inteiro não negativo

NOTAÇÕES. + a a n. + a 1. , sendo n inteiro não negativo MATEMÁTICA NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos i : unidade imaginária: i = z: módulo do número z det A : determinante da matriz A d(a,

Leia mais

NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados

NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados ITA006 NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais i: unidade imaginária; i z = x+ iy, x, y = 1 : conjunto dos números reais : conjunto dos números inteiros = {0, 1,, 3,...

Leia mais

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n

a k. x a k. : conjunto dos números complexos i: unidade imaginária; i 2 = 1 z : módulo do número z z: conjugado do número z M m n ITA MATEMÁTICA NOTAÇÕES = {,,,...} : conjunto dos números reais [a, b] = {x ; a x b} [a, b[ = {x ; a x < b} ]a, b[ = {x ; a < x < b} A\B = {x; x A e x B} k a n = a + a +... + a k, k n = k a n x n = a 0

Leia mais

DIRETORIA DE ENSINO DA MARINHA

DIRETORIA DE ENSINO DA MARINHA MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA I i (PROCESSO SELETIVO DE ADMISSÃO À ESCOLA NA VAL /PSAEN005) MATEMÁTICA MATEMÁTICA 1) Um depósito de óleo diesel existente em uma das Organizações Militares

Leia mais

( ) ( ) ( ) 23 ( ) Se A, B, C forem conjuntos tais que

( ) ( ) ( ) 23 ( ) Se A, B, C forem conjuntos tais que Se A, B, C forem conjuntos tais que ( B) =, n( B A) n A =, nc ( A) =, ( C) = 6 e n( A B C) 4 n B =, então n( A ), n( A C), n( A B C) nesta ordem, a) formam uma progressão aritmética de razão 6. b) formam

Leia mais

UNIVERSIDADE ESTADUAL DA PARAÍBA

UNIVERSIDADE ESTADUAL DA PARAÍBA UNIVERSIDADE ESTADUAL DA PARAÍBA Comissão Permanente do Vestibular Comvest Av. das Baraúnas, 5 Campus Universitário Central Administrativa - Campina Grande/PB CEP: 5809-5 º Andar - Fone: (8) 5-68 / E-mail:

Leia mais

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 1998 PROVA DE MATEMÁTICA 998 Se a seqüência de inteiros positivos (,, y) é uma Progressão Geométrica e (+, y, ) uma Progressão Aritmética, então, o valor de + y é a) b) c) d) A soma das raízes da equação log

Leia mais

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE

LISTA DE REVISÃO PROVA MENSAL 2º ANO 1º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL º ANO 1º TRIMESTRE 1) O pêndulo de um relógio tem comprimento 0 cm e faz o movimento ilustrado na figura. Qual a medida do arco AB? A) 10 cm 0 cm 0π cm 0 D) cm E)

Leia mais

Universidade Federal dos Vales do Jequitinhonha e Mucuri.

Universidade Federal dos Vales do Jequitinhonha e Mucuri. INSTRUÇÕES Ministério da Educação Universidade Federal dos Vales do Jequitinhonha e Mucuri Pró-Reitoria de Pesquisa e Pós-Graduação Diretoria de Educação Aberta e a Distância Especialização em Matemática

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

MATEMÁTICA. < b. (B) 8, (D) 8, (E) 8,832 l 0 16

MATEMÁTICA. < b. (B) 8, (D) 8, (E) 8,832 l 0 16 MATEMÁTICA 6. Na última década do século XX, a perda de gelo de uma das maiores geleiras do hemisfério norte foi estimada em 96 km 3 Se cm 3 de gelo tem massa de 0,9 g, a massa de 96 km 3 de gelo, em quilogramas,

Leia mais

84 x a + b = 26. x + 2 x

84 x a + b = 26. x + 2 x Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$ 96,00, e unidades do produto B, pagando R$ 84,00. Sabendo-se que o total de unidades compradas foi de 6 e que o preço

Leia mais

VESTIBULAR 2002 Prova de Matemática

VESTIBULAR 2002 Prova de Matemática VESTIBULAR 00 Prova de Matemática Data: 8//00 Horário: 8 às horas Duração: 0 horas e 0 minutos Nº DE INSCRIÇÃO AGUARDE AUTORIZAÇÃO PARA ABRIR ESTE CADERNO DE QUESTÕES INSTRUÇÕES PARA REALIZAÇÃO DA PROVA

Leia mais

RASCUNHO. a) 1250 m d) 500 m b) 250 m e) 750 m c) 2500 m

RASCUNHO. a) 1250 m d) 500 m b) 250 m e) 750 m c) 2500 m ª QUESTÃO Numa figura, desenhada em escala, cada 0, cm equivale a m. A altura real de uma montanha que nesse desenho mede mm, é igual a: a) 0 m d) 00 m b) 0 m e) 70 m c) 00 m ª QUESTÃO Suponha que os ângulos

Leia mais

PROVA 3 conhecimentos específicos

PROVA 3 conhecimentos específicos PROVA conhecimentos específicos MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Central do Vestibular Unificado GABARITO

Leia mais

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)

Escola Secundária de Francisco Franco Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000) Mais exercícios de.º ano: www.prof000.pt/users/roliveira0/ano.htm Escola Secundária de Francisco Franco Matemática.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 000). Seja C o conjunto

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013

Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),

Leia mais

b Considerando os valores log 2 = 0,30 e log 3 = 0,48, o valor de x que satisfaz a equação 36 x = 24, é: 49

b Considerando os valores log 2 = 0,30 e log 3 = 0,48, o valor de x que satisfaz a equação 36 x = 24, é: 49 MATEMÁTICA 1 e O Sr. Paiva é proprietário de duas papelarias, A e B. Em 2002 o faturamento da unidade A foi 50% superior ao da unidade B. Em 2003, o faturamento de A aumentou 20% em relação ao seu faturamento

Leia mais

SIMULADO GERAL DAS LISTAS

SIMULADO GERAL DAS LISTAS SIMULADO GERAL DAS LISTAS 1- Sejam as funções f e g definidas em R por f ( x) x + αx g β, em que α e β são números reais. Considere que estas funções são tais que: = e ( x) = ( x x 50) f g Valor mínimo

Leia mais

Colégio Militar de Porto Alegre 2/11

Colégio Militar de Porto Alegre 2/11 DE ENSINO BÁSICO, TÉCNICO E TECNOLÓGICO 013 Escolha a única resposta certa, assinalando-a com um X nos parênteses à esquerda QUESTÃO 1 O valor de 74 + 43 + 31+ 1+ 13 + 7 + 3 + 1 é igual a (A) 13 (B) 13

Leia mais