DIMENSIONAMENTO À TORÇÃO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "DIMENSIONAMENTO À TORÇÃO"

Transcrição

1 Volume 4 Capítulo 1 DIMENSIONMENTO À TORÇÃO Prof. José Milton de raújo - FURG INTRODUÇÃO Torção de Saint' Venant: não há nenhuma restrição ao empenamento; só surgem tensões tangenciais. Torção com empenamento impedido: surgem tensões normais de tração e de compressão ao longo da barra, além das tensões tangenciais. lgumas formas de seção, como a circular, por exemplo, não tendem a empenar, de modo que as tensões normais serão sempre nulas. T h x h Dissipação das tensões normais nas proximidades de um engaste σ x No caso do concreto armado, as tensões normais são dissipadas pela fissuração. Prof. José Milton de raújo - FURG

2 Torção de compatibilidade: surge em consequência do impedimento à deformação (em vigas de borda, por exemplo). viga de borda laje X momentos fletores na laje no estádio I X torção na viga No estádio I, surge o momento de engastamento X da laje, o qual é um momento torçor por unidade de comprimento para a viga. pós a fissuração, esse momento torçor diminui muito e não necessita ser considerado no dimensionamento da viga. Prof. José Milton de raújo - FURG 3 Torção de equilíbrio: os momentos torçores são necessários para satisfazer as condições de equilíbrio. momentos fletores na marquise X - T T X torção na viga - Prof. José Milton de raújo - FURG 4

3 1.- TORÇÃO EM VIGS DE CONCRETO RMDO O dimensionamento à torção das estruturas de concreto armado é feito com base no modelo de treliça de Mörsch. treliça é espacial, formada por barras longitudinais, estribos verticais e bielas de compressão. De acordo com a NBR-6118, pode-se escolher uma inclinação arbitrária para as bielas de compressão, no intervalo o o 30 θ 45. Entretanto, na combinação da torção com o esforço cortante, os ângulos de inclinação das bielas de concreto devem ser coincidentes para os dois esforços. ssim, empregando-se o modelo para esforço cortante apresentado no capítulo 6 do o Volume 1, deve-se considerar θ = 45 para o dimensionamento à torção. Prof. José Milton de raújo - FURG 5 Os ensaios mostram que, após o surgimento das fissuras de torção, somente uma pequena casca de concreto, junto à face externa da seção transversal da barra, colabora na resistência à torção: a resistência à torção de uma seção cheia é equivalente à resistência de uma seção vazada com as mesmas armaduras. O dimensionamento à torção de uma seção cheia é feito para uma seção vazada equivalente. t Seção vazada equivalente para uma seção poligonal convexa maciça C 1 t linha média CEB/90: seção vazada possui o mesmo contorno externo da seção maciça e uma parede de espessura t. Prof. José Milton de raújo - FURG 6

4 t = μ (Espessura da parede da seção vazada equivalente) = área da seção cheia μ = perímetro da seção cheia. Nos casos em que a seção real já é vazada, deve-se considerar o menor dos seguintes valores para a espessura da parede: a espessura real da parede da seção vazada; a espessura equivalente calculada supondo uma seção cheia de mesmo contorno externo da seção vazada. Prof. José Milton de raújo - FURG 7 Critérios da NBR-6118: t e = ( b t)( h t) bh = ( b + h) u = ( b + h t) Prof. José Milton de raújo - FURG 8

5 bh t = b C 1 ( b + h) e = ( b C )( h C ) 1 ( b + h 4 ) u = C 1 1 Prof. José Milton de raújo - FURG NLOGI D TRELIÇ DE MÖRSCH biela de compressão I 45 o 45 o I Treliça espacial de Mörsch barra longitudinal b m T d I estribo Fazemos o equilíbrio do nó e da seção transversal I-I b m Prof. José Milton de raújo - FURG 10

6 Equilíbrio do nó : F te 45 o F c F ts 45 o F te Forças em um nó da treliça F ts F c Força de tração nos estribos: o F = F cos 45 F = F (1.3.1) te c Força nas barras longitudinais: o F = F cos 45 F = F (1.3.) ts c ts te c c Prof. José Milton de raújo - FURG 11 Equilíbrio da seção transversal: F c / F c / b m b m F c / Equilíbrio da seção transversal: Fc T d = bm (1.3.3) F c / Projeção das forças de compressão na seção transversal Força de compressão na biela de concreto: Td F c = (1.3.4) b m Prof. José Milton de raújo - FURG 1

7 Substituindo (1.3.4) nas equações (1.3.1) e (1.3.): Td Fte = Fts = (1.3.5) b Dimensionamento dos estribos: m s1= área da seção transversal de um estribo. s = espaçamento dos estribos ao longo do eixo da peça. área total de aço em um comprimento b m é bm s = s1 (1.3.6) s Força de tração resistente: s1 Fter = s f yd = bm f yd (1.3.7) s Iguais para garantir equilíbrio Prof. José Milton de raújo - FURG 13 Fazendo F = F, chega-se a ter te s T s 1 d =, cm /cm (1.3.8) e f yd onde e = b m é a área limitada pela linha média da parede fictícia. sw 100Td =, cm /m (1.3.9) f e yd Área de estribos por metro de comprimento da viga Prof. José Milton de raújo - FURG 14

8 Observações: No caso da torção, só se pode contar com um ramo dos estribos, pois todos os ramos estão submetidos à força de tração F te, inclusive aqueles situados nas faces superior e inferior da viga. Desse modo, os estribos para torção devem ser fechados, obrigatoriamente. ntes de empregar as tabelas para estribos de ramos constantes no pêndice 3 do Volume, deve-se multiplicar a área por. sw Prof. José Milton de raújo - FURG 15 Dimensionamento da armadura longitudinal: b m F ts sl Modelo e disposição real das barras longitudinais na seção F b m modelo T disposição real d te = Fts = (equação (1.3.5)) bm F ts = força de tração solicitante concentrada em cada quina da seção Força f ts por unidade de comprimento da linha média da parede Fts Td fictícia: fts = = (1.3.10) b m e Prof. José Milton de raújo - FURG 16

9 Força de tração resistente por unidade de comprimento da linha sl f yd média: ftsr = (1.3.11) u onde sl é a área da seção das barras longitudinais distribuídas ao longo da linha média da parede fictícia e u é o perímetro da linha média da parede. Igualando (1.3.11) a (1.3.10), resulta sl Td u =, cm (1.3.1) f e yd Área total da armadura longitudinal, distribuída ao longo da linha média Prof. José Milton de raújo - FURG 17 Verificação das bielas de compressão: F c vista lateral h o t Solicitação na biela inclinada 45 o b m seção vazada força F c atua em uma área c = tho, onde t é a espessura da parede fictícia e h o é a dimensão normal à força, dada por Td F c = (1.3.4) b m o h = b sen 45 h = b (1.3.13) o Visto anteriormente m o m Fazendo σ c = Fc c, resulta: σ Td c = t (1.3.14) e Prof. José Milton de raújo - FURG 18

10 Considerando a distribuição das tensões tangenciais na seção transversal vazada, pode-se demonstrar (ver cap.1, Volume 4) que σ c = τ td, onde T τ d td = Tensão et convencional de cisalhamento (1.3.) Segundo a NBR-6118, deve-se limitar haver esmagamento das bielas. σ 0, 50α c v f cd, para não Fazendo isto, resulta onde tu τ td τ tu (1.3.4) τ = 0, 5α f (1.3.5) v cd sendo α v = 1 fck 50, com f ck em MPa. Prof. José Milton de raújo - FURG CRITÉRIO DE PROJETO D NBR-6118 Verificação da segurança das bielas: Td τ td = τ tu ; τ tu = 0, 5α v fcd ; t e α v = 1 fck 50 com f ck em MPa Nos casos correntes, onde há torção com flexão, deve-se garantir τ td τ wd que + 1 τ τ tu wu onde τ wd e τ wu são as tensões tangenciais obtidas no dimensionamento ao esforço cortante. Prof. José Milton de raújo - FURG 0

11 Estribos verticais para torção: rmadura longitudinal: sw sl 100Td =, cm /m f e e yd Td u =, cm f yd Para o cálculo das armaduras, deve-se limitar a tensão de escoamento do aço em 435 MPa. Observações: 1) Os estribos para torção devem ser fechados e com extremidades ancoradas por meio de ganchos em ângulo de 45 o. O diâmetro da barra do estribo deve ser maior ou igual a 5 mm e não deve exceder 1/10 da largura da alma da viga. Prof. José Milton de raújo - FURG 1 ) s armaduras obtidas nos dimensionamentos à torção e à flexão são superpostas. Na soma das seções necessárias dos estribos, deve-se lembrar que para a torção só se pode contar com um ramo dos mesmos. Área total de estribos: sw, tot = sw, V + sw, T sw, V = área dos estribos para o esforço cortante, = área de estribos para torção. sw T 3) área total dos estribos, sw, tot, deve respeitar a área mínima, sw, min = ρw,min100bw, cm /m, onde b w é a largura média da seção da peça. fctm ρ w, min = 0, f yk Prof. José Milton de raújo - FURG

12 Tabela Valores de ρ w, min (%) para o aço C-50 f ck (MPa) ρ 0,09 0,10 0,1 0,13 0,14 0,15 0,16 w,min f ck (MPa) ρ 0,17 0,17 0,18 0,19 0,0 w,min 4) O espaçamento máximo dos estribos é dado por s = 0,6d 30 cm, se τ τ τ τ 0, 67 ; max td tu + wd wu tu + τ wd τ wu smax = 0,3d 0 cm, se τ td τ > 0, 67 ; onde d é a altura útil da seção da viga. 5) área mínima da armadura longitudinal, sl, min, é dada por sl, min wmin, = ρ ub w, cm, onde u é o perímetro da linha média da parede da seção vazada equivalente e ρ wmin, é dado na tabela. Prof. José Milton de raújo - FURG 3 6) Em cada canto da armadura transversal, devem-se colocar barras longitudinais de bitola pelo menos igual à da armadura transversal e não inferior a 10. 7) Em seções retangulares com dimensões não superiores a 40cm, a armadura longitudinal para torção pode ser concentrada nos cantos. Em seções maiores, a armadura longitudinal deve ser distribuída ao longo do perímetro da seção, para limitar a abertura das fissuras. Recomenda-se que o espaçamento dessas barras não seja superior a 0 cm. Em qualquer caso, as barras longitudinais devem ser distribuídas de forma a manter constante a relação sl u. Prof. José Milton de raújo - FURG 4

13 1.5- EXEMPLO DE DIMENSIONMENTO P1-5x5 lv=3,m marquise P-5x5 0,5 1,5m 40 5 parede: h=1m, e=15cm 10cm - 6 Viga suportando uma marquise Prof. José Milton de raújo - FURG 5 f Concreto: fck = 0 MPa; fcd = ck = 14, 3 MPa 1,4 α v = ck 1 f 50 = = 0,9 τ wu = 0,7α v fcd τ wu = 3,5 MPa τ tu = 0,5α v fcd τ tu = 3, MPa ) Cálculo da marquise Cargas de serviço na marquise: 0,10 + 0,06 - peso próprio: 5 = kn/m - revestimento: 0,8 kn/m - carga acidental: 0,5 kn/m - carga acidental na extremidade do balanço: 1 kn/m Prof. José Milton de raújo - FURG 6

14 3,3 kn/m 1 kn/m Rk = 6,4 kn/m X k l m =1,63 m X k = 6 knm/m R k Modelo de cálculo da marquise B) Esforços na viga Momento torçor por unidade de comprimento X = 6 knm/m. X klv 6x3, Tk = = Tk = 9,6 knm (momento torçor) k Prof. José Milton de raújo - FURG 7 Cargas verticais aplicadas na viga: - ação da marquise: Rk = 6, 4 kn/m - peso próprio: 5 x0,5x0,4 =, 5 kn/m - parede de tijolo furado: 13 x 0,15x1 = 1, 95 kn/m Carga total de serviço: p = 10, 85 kn/m. k Esforço cortante de serviço: V k p l 10,85x3, = V k v = k = 17,36 kn Prof. José Milton de raújo - FURG 8

15 M 1 = M eng 4I p 4I l p p l p + I v l v Momento negativo na viga M = p l 1 = momento de engastamento perfeito eng k v I v = momento de inércia da seção da viga I = momento de inércia das seções dos pilares. p lv = 3, m ; l p = 3, 5 m ; pk = 10, 85 kn/m M1 =, 86 knm. Prof. José Milton de raújo - FURG 9 Momento positivo no vão: pklv 10,85x3, M = + M1 =,86 = ,03 knm Diagramas de esforços solicitantes de serviço na viga Prof. José Milton de raújo - FURG 30

16 Seções para dimensionamento da viga: engaste e seção central Seção central: apenas o momento fletor M k = 11, 03 knm. Seção do engaste: M1k =,86 knm (momento fletor) = 17,36 kn (esforço cortante) Vk T k = 9,6 knm (momento torçor) C) Dimensionamento à flexão Resulta armadura mínima para os dois momentos fletores. 015, smin, = ρminbh = x5x40 = 1, 5cm 100 Deve-se dispor uma armadura longitudinal com área s = 15, cm na face inferior e na face superior da viga. Prof. José Milton de raújo - FURG 31 D) Dimensionamento ao esforço cortante V d = 1,4x17,36 = 4,30 kn resulta sw V Dimensionando para o esforço cortante V = 4, 30 kn,, = 0, pois d = 1,11( τ wd τ c ) = 0 τ. d E) Dimensionamento à torção Momento torçor de cálculo: = 1,4x9,6 = 13, 44 knm T d Prof. José Milton de raújo - FURG 3

17 C 1 =4 Dados da seção vazada equivalente 4 h=40 d=36 t = bh ( b + h) = 7,69 cm C 1 = x4 = 8 cm b=5cm Como t < C1 : seção vazada do caso t max = b C 1 = 5 8 = 17 Como t < tmax t = 7, 69 cm e = ( b C )( h C ) 544 cm u = ( b + h 4 C 1 ) = = cm cm Prof. José Milton de raújo - FURG 33 Verificação das tensões no concreto: Td 1344 τ td = = τ td = 0,161kN/cm ( τ td = 1, 61MPa) t x544x7,69 e Vd 4,3 τ wd = = τ wd = 0,07 kn/cm ( τ wd = 0, 7 MPa) b d 5x36 w τ τ td tu τ + τ wd wu = 0,58 < 1 OK! Prof. José Milton de raújo - FURG 34

18 Cálculo das armaduras ( f = 43, 48 kn/cm ): yd sw 100Td 100x1344 = = sw, T = 84, cm /m f x544x43, 48 e yd Td u 1344x98 sl = = sl =,78 cm f x544x43,48 e yd rmadura longitudinal mínima: = 009%é dado na tabela ρ wmin,, ( ) sl, min = ρw, min ubw = 110cm, Logo, prevalece o valor calculado sl = 78, cm. Prof. José Milton de raújo - FURG 35 F) Superposição das armaduras Área total dos estribos:, =, +, = 0+ x84, = 568, cm /m sw tot sw V sw T Área mínima de estribos: ρ b, 5 cm /m. sw, min = w,min 100 w = Logo, deve-se adotar sw, tot = 568cm, /m. Como resultou τ τ τ τ 0, 67 : td tu + wd wu s 0,6d = 1,6cm = = 1cm 30cm max s max Da Tabela 3.3 (pêndice 3 do Volume ): para sw, tot = 568cm, /m, obtém-se a solução φ 6,3c. 10. OK! Prof. José Milton de raújo - FURG 36

19 rmadura longitudinal: alternativa 1 Como a seção possui dimensão máxima de 40 cm, a armadura longitudinal para torção pode ser concentrada nos cantos. Em cada canto da seção: 4 =,78 4 0, 70 cm. sl Nas faces superior e inferior: = 1, 5 cm (da flexão). s s sl /4 sl /4 φ1,5 para M d s =1,5cm + para T d = sl /4 sl /4=0,70cm 1φ8 1φ8 φ1,5 (,95cm ) (,95cm ) Engastar as armaduras longitudinais nos pilares Observar que as barras dos cantos possuem φ 10 mm. Prof. José Milton de raújo - FURG 37 rmadura longitudinal: alternativa rmadura para torção distribuída uniformemente ao longo da linha média da seção vazada equivalente (solução exigida para vigas de seções grandes). rmadura para torção Prof. José Milton de raújo - FURG 38

20 s sl /3 φ1,5 para M d s =1,5cm + para T d = φ8 sl /3=0,9cm φ8 φ1,5 (,45cm ) (,45cm ) Solução alternativa para a armadura longitudinal Prof. José Milton de raújo - FURG 39 Cálculo alternativo como viga biapoiada pvlv 10,85x3, Momento positivo no vão: M = = = 13, 89 knm 8 8 Momento negativo nos apoios: M = 0,5x13,89 = 3, 47 knm 1 Essa solução fornece momentos fletores maiores que os obtidos como pórtico (nesse exemplo em particular). Entretanto, o dimensionamento para esses momentos também resulta em armadura mínima, não havendo alteração na solução final. Prof. José Milton de raújo - FURG 40

AULA: TORÇÃO EM VIGAS DE CONCRETO ARMADO

AULA: TORÇÃO EM VIGAS DE CONCRETO ARMADO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI INSTITUTO DE CIÊNCIA, ENGENHARIA E TECNOLOGIA ENGENHARIA CIVIL ECV 313 ESTRUTURAS DE CONCRETO AULA: TORÇÃO EM VIGAS DE CONCRETO ARMADO ana.paula.moura@live.com

Leia mais

Torção em Vigas de Concreto Armado

Torção em Vigas de Concreto Armado Torção em Vigas de Concreto Armado Prof. Henrique Innecco Longo e-mail longohenrique@gmail.com T Sd Departamento de Estruturas Escola Politécnica da Universidade Federal do Rio de Janeiro 2017 Torção em

Leia mais

CÁLCULO DE VIGAS. - alvenaria de tijolos cerâmicos furados: γ a = 13 kn/m 3 ; - alvenaria de tijolos cerâmicos maciços: γ a = 18 kn/m 3.

CÁLCULO DE VIGAS. - alvenaria de tijolos cerâmicos furados: γ a = 13 kn/m 3 ; - alvenaria de tijolos cerâmicos maciços: γ a = 18 kn/m 3. CAPÍTULO 5 Volume 2 CÁLCULO DE VIGAS Prof. José Milton de Araújo - FURG 1 1- Cargas nas vigas dos edifícios peso próprio : p p = 25A c, kn/m ( c A = área da seção transversal da viga em m 2 ) Exemplo:

Leia mais

ESCADAS USUAIS DOS EDIFÍCIOS

ESCADAS USUAIS DOS EDIFÍCIOS Volume 4 Capítulo 3 ESCDS USUIS DOS EDIFÍCIOS Prof. José Milton de raújo - FURG 1 3.1- INTRODUÇÃO patamar lance a b c d e Formas usuais das escadas dos edifícios Prof. José Milton de raújo - FURG armada

Leia mais

ESTRUTURAS DE CONCRETO ARMADO Lista para a primeira prova. 2m 3m. Carga de serviço sobre todas as vigas: 15kN/m (uniformemente distribuída)

ESTRUTURAS DE CONCRETO ARMADO Lista para a primeira prova. 2m 3m. Carga de serviço sobre todas as vigas: 15kN/m (uniformemente distribuída) ESTRUTURS DE CONCRETO RMDO Lista para a primeira prova Questão 1) P1 V1 P2 V4 P3 V2 V3 4m 2m 3m V5 P4 h ' s s b d Seção das vigas: b=20cm ; h=40cm ; d=36cm Carga de serviço sobre todas as vigas: 15kN/m

Leia mais

3. Dimensionamento ao cisalhamento.

3. Dimensionamento ao cisalhamento. cisalhamento ELU - 1 3. Dimensionamento ao cisalhamento. No capítulo anterior foi estudado o dimensionamento das seções transversais das vigas à flexão pura ou uniforme. Entretanto, nas vigas usuais, os

Leia mais

Figura 1: Corte e planta da estrutura, seção transversal da viga e da laje da marquise

Figura 1: Corte e planta da estrutura, seção transversal da viga e da laje da marquise Exemplo 4: Viga de apoio de marquise 1. Geometria e resistências ELU: Torção Combinada, Dimensionamento 1,50 m h=0,50 m 0,10 m 0,20 m Espessura mínima da laje em balanço cf. item 13.2.4.1 e = 1, cf. Tabela

Leia mais

Estruturas Especiais de Concreto Armado I. Aula 2 Sapatas - Dimensionamento

Estruturas Especiais de Concreto Armado I. Aula 2 Sapatas - Dimensionamento Estruturas Especiais de Concreto Armado I Aula 2 Sapatas - Dimensionamento Fonte / Material de Apoio: Apostila Sapatas de Fundação Prof. Dr. Paulo Sérgio dos Santos Bastos UNESP - Bauru/SP Livro Exercícios

Leia mais

ECC 1008 ESTRUTURAS DE CONCRETO. (Continuação) Prof. Gerson Moacyr Sisniegas Alva

ECC 1008 ESTRUTURAS DE CONCRETO. (Continuação) Prof. Gerson Moacyr Sisniegas Alva ECC 1008 ESTRUTURAS DE CONCRETO BLOCOS SOBRE ESTACAS (Continuação) Prof. Gerson Moacyr Sisniegas Alva DETALHAMENTO DAS ARMADURAS PRINCIPAIS 0,85. φ φ estaca Faixa 1,. estaca Faixa pode definir o diâmetro

Leia mais

RESERVATÓRIOS DOS EDIFÍCIOS

RESERVATÓRIOS DOS EDIFÍCIOS Volume 4 Capítulo 5 RESERVATÓRIOS DOS EDIFÍCIOS Prof. José Milton de Araújo - FURG 1 5.1- INTRODUÇÃO P1 Par.1 h 3 P2 h 3 >10cm Espessuras mínimas: A Par.3 Par.4 Par.5 A h1 = 7 cm P3 Par.2 P4 (mísulas)

Leia mais

CAPÍTULO 4: CISALHAMENTO

CAPÍTULO 4: CISALHAMENTO Universidade Federal de Ouro Preto - Escola de Minas Departamento de Engenharia Civil CIV620-Construções de Concreto Armado Curso: Arquitetura e Urbanismo CAPÍTULO 4: CISALHAMENTO Profa. Rovadávia Aline

Leia mais

10 - DISPOSIÇÃO DA ARMADURA

10 - DISPOSIÇÃO DA ARMADURA 10 - DISPOSIÇÃO DA ARMADURA Fernando Musso Juniormusso@npd.ufes.br Estruturas de Concreto Armado 189 10.1 - VIGA - DISPOSIÇÃO DA ARMADURA PARA MOMENTO FLETOR Fernando Musso Juniormusso@npd.ufes.br Estruturas

Leia mais

DIMENSIONAMENTO 7 DA ARMADURA TRANSVERSAL

DIMENSIONAMENTO 7 DA ARMADURA TRANSVERSAL DIMENSIONAMENTO 7 DA ARMADURA TRANSERSAL 7 1/45 235 7.1 TRAJETÓRIAS DAS TENSÕES PRINCIPAIS P σ 2 σ σ 2 1 σ 1 σ 1 σ 1 σ 2 σ 2 σ 1 σ 1 Tensões exclusivas de flexão Concomitância de tensões normais (flexão)

Leia mais

CÁLCULO E DETALHAMENTO DE LAJES E VIGAS EM CONCRETO ARMADO DO ANDAR TIPO DE UM EDIFÍCIO RESIDENCIAL

CÁLCULO E DETALHAMENTO DE LAJES E VIGAS EM CONCRETO ARMADO DO ANDAR TIPO DE UM EDIFÍCIO RESIDENCIAL UNIVERSIDADE FEDERAL DE MINAS GERIAIS ESCOLA DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA DE ESTRUTURAS CURSO DE ESPECIALIZAÇÃO EM ESTRUTURAS CÁLCULO E DETALHAMENTO DE LAJES E VIGAS EM CONCRETO ARMADO DO ANDAR

Leia mais

Fig Módulos sobre vigas. Conforme se observa, o programa possui os seguintes módulos:

Fig Módulos sobre vigas. Conforme se observa, o programa possui os seguintes módulos: Capítulo 3 VIGAS 3.1 Módulos para cálculo de vigas Na fig. 3.1.1, apresenta-se uma parte da janela principal do PACON 2006, mostrando os submenus correspondentes aos módulos para cálculo e dimensionamento

Leia mais

CÁLCULO DE VIGAS. - alvenaria de tijolos cerâmicos furados: γ a = 13 kn/m 3 ; - alvenaria de tijolos cerâmicos maciços: γ a = 18 kn/m 3.

CÁLCULO DE VIGAS. - alvenaria de tijolos cerâmicos furados: γ a = 13 kn/m 3 ; - alvenaria de tijolos cerâmicos maciços: γ a = 18 kn/m 3. CAPÍTULO 5 Volume 2 CÁLCULO DE VIGAS 1 1- Cargas nas vigas dos edifícios peso próprio : p p = 25A c, kn/m ( c A = área da seção transversal da viga em m 2 ) Exemplo: Seção retangular: 20x40cm: pp = 25x0,20x0,40

Leia mais

Universidade de São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento de Engenharia de Estruturas e Fundações

Universidade de São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento de Engenharia de Estruturas e Fundações Universiae e São Paulo Escola Politécnica - Engenharia Civil PEF - Departamento e Engenharia e Estruturas e Funações - Conceitos Funamentais e Dimensionamento e Estruturas e Concreto: Vigas, Lajes e Pilares

Leia mais

Dimensionamento ao Cortante

Dimensionamento ao Cortante Dimensionamento ao Cortante Pk a b Compressão Tração Vk,esq = Pk. b /(a+b) Pk Modelo de treliça Vk,dir= Pk. a /(a+b) Dimensionamento ao Cortante Pk a b Pk Modelo de treliça Compressão Tração Vk,esq Armadura

Leia mais

LAJES COGUMELO e LAJES LISAS

LAJES COGUMELO e LAJES LISAS LAJES COGUMELO e LAJES LISAS Segundo Montoja são consideradas lajes cogumelo as lajes contínuas apoiadas em pilares ou suportes de concreto, ou seja, sem vigas. Podem ser apoiadas diretamente nos pilares

Leia mais

Concreto Armado. Expressões para pré-dimensionamento. Francisco Paulo Graziano e Jose Antonio Lerosa Siqueira

Concreto Armado. Expressões para pré-dimensionamento. Francisco Paulo Graziano e Jose Antonio Lerosa Siqueira Concreto Armado PEF2604 FAU-USP Expressões para pré-dimensionamento Francisco Paulo Graziano e Jose Antonio Lerosa Siqueira Concreto como material Alta resistência à compressão f ck (resistência característica)

Leia mais

SUMÁRio ,. PARTE - CONCEITOS BÁSICOS SOBRE CISALHAMENTO. CAPíTULO 1 TENSÕES DE CISAlHAMENTO NA FlEXÃO EM REGIME ELÁSTICO 12

SUMÁRio ,. PARTE - CONCEITOS BÁSICOS SOBRE CISALHAMENTO. CAPíTULO 1 TENSÕES DE CISAlHAMENTO NA FlEXÃO EM REGIME ELÁSTICO 12 SUMÁRio,. PARTE - CONCEITOS BÁSICOS SOBRE CISALHAMENTO CAPíTULO 1 TENSÕES DE CISAlHAMENTO NA FlEXÃO EM REGIME ELÁSTICO 12 1.1 Condições de equilíbrio na flexão simples 12 1.2 Cisalhamento nas vigas de

Leia mais

Estruturas de concreto Armado II. Aula IV Flexão Simples Equações de Equilíbrio da Seção

Estruturas de concreto Armado II. Aula IV Flexão Simples Equações de Equilíbrio da Seção Estruturas de concreto Armado II Aula IV Flexão Simples Equações de Equilíbrio da Seção Fonte / Material de Apoio: Apostila Fundamentos do Concreto e Projeto de Edifícios Prof. Libânio M. Pinheiro UFSCAR

Leia mais

LAJES MACIÇAS DE CONCRETO ARMADO

LAJES MACIÇAS DE CONCRETO ARMADO CAPÍTULOS 1 A 4 Volume LAJES MACIÇAS DE CONCRETO ARMADO Prof. José Milton de Araújo - FURG 1 1- Tipos usuais de lajes dos edifícios Laje h Laje maciça apoiada em vigas Vigas h Lajes nervuradas nervuras

Leia mais

A AÇÃO DO VENTO NOS EDIFÍCIOS

A AÇÃO DO VENTO NOS EDIFÍCIOS 160x210 A AÇÃO DO VENTO NOS EDIFÍCIOS ARAÚJO, J. M. Projeto Estrutural de Edifícios de Concreto Armado. 3. ed., Rio Grande: Dunas, 2014. Prof. José Milton de Araújo FURG 1 1 O PROJETO ESTRUTURAL E A DEFINIÇÃO

Leia mais

TORÇÃO EM VIGAS DE CONCRETO ARMADO

TORÇÃO EM VIGAS DE CONCRETO ARMADO UNIVERSIDADE ESTADUAL PAULISTA UNESP - Campus de Bauru/SP FACULDADE DE ENGENHARIA Departamento de Engenharia Civil Disciplina: 33 - ESTRUTURAS DE CONCRETO II Notas de Aula TORÇÃO EM VIGAS DE CONCRETO ARMADO

Leia mais

QUESTÕES DE PROVAS QUESTÕES APROFUNDADAS

QUESTÕES DE PROVAS QUESTÕES APROFUNDADAS UNIVERSIDDE FEDERL DO RIO GRNDE DO SUL ESOL DE ENGENHRI DEPRTMENTO DE ENGENHRI IVIL ENG 01201 MEÂNI ESTRUTURL I QUESTÕES DE PROVS QUESTÕES PROFUNDDS ISLHMENTO ONVENIONL TEORI TÉNI DO ISLHMENTO TORÇÃO SIMPLES

Leia mais

DIMENSIONAMENTO DE LAJES MACIÇAS RETANGULARES A FLEXÃO SIMPLES DIMENSIONAMENTO ATRAVÉS DA TABELA DE CZERNY APLICAÇÃO DE ESTRUTURAS DE CONCRETO ARMADO

DIMENSIONAMENTO DE LAJES MACIÇAS RETANGULARES A FLEXÃO SIMPLES DIMENSIONAMENTO ATRAVÉS DA TABELA DE CZERNY APLICAÇÃO DE ESTRUTURAS DE CONCRETO ARMADO 1 DIMENSIONAMENTO DE LAJES MACIÇAS RETANGULARES A FLEXÃO SIMPLES DIMENSIONAMENTO ATRAVÉS DA TABELA DE CZERNY APLICAÇÃO DE ESTRUTURAS DE CONCRETO ARMADO Professor: Cleverson Arenhart 2 1) Tipos de lajes.

Leia mais

SOLICITAÇÕES TANGENCIAIS

SOLICITAÇÕES TANGENCIAIS Universidade Federal de Santa Maria ECC 1006 Concreto Armado A SOLICITAÇÕES TANGENCIAIS (por força cortante) Prof. Gerson Moacyr Sisniegas Alva Comportamento de vigas sob cargas verticais P P DMF DFC Evolução

Leia mais

Exercícios de Resistência dos Materiais A - Área 3

Exercícios de Resistência dos Materiais A - Área 3 1) Os suportes apóiam a vigota uniformemente; supõe-se que os quatro pregos em cada suporte transmitem uma intensidade igual de carga. Determine o menor diâmetro dos pregos em A e B se a tensão de cisalhamento

Leia mais

ESTRUTURAS DE CONCRETO ARMADO Prof. José Milton de Araújo FORMULÁRIO E TABELAS

ESTRUTURAS DE CONCRETO ARMADO Prof. José Milton de Araújo FORMULÁRIO E TABELAS Grampo ESTRUTURS DE CONCRETO RMDO Prof. Joé Milton de raújo FORMULÁRIO E TBELS OBSERVÇÕES IMPORTNTES: 1. Ete formulário deverá er impreo pelo próprio aluno da diciplina.. O formulário deverá er grampeado

Leia mais

CÁLCULOS DE VIGAS COM SEÇÃO T

CÁLCULOS DE VIGAS COM SEÇÃO T CÁLCULOS DE VIGAS COM SEÇÃO T Introdução Nas estruturas de concreto armado, com o concreto moldado no local, na maioria dos casos as lajes e as vigas que as suportam estão fisicamente interligadas, isto

Leia mais

Estruturas de Betão Armado II 5 Lajes Vigadas Estados Limites

Estruturas de Betão Armado II 5 Lajes Vigadas Estados Limites Estruturas de Betão Armado II 1 ESTADO LIMITE ÚLTIMO DE RESISTÊNCIA À FLEXÃO Nas lajes vigadas, em geral, os momentos são baixos, pelo que se pode utilizar expressões aproximadas para o dimensionamento

Leia mais

PROJETO DE RESERVATÓRIOS

PROJETO DE RESERVATÓRIOS UNIVERSIDADE FEDERAL DE RORAIMA CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL CONCRETO ARMADO II ADRIEL CARLOS BATISTA DOS SANTOS Boa Vista RR 2010 ADRIEL CARLOS BATISTA DOS SANTOS Projeto

Leia mais

ESCADAS USUAIS DOS EDIFÍCIOS

ESCADAS USUAIS DOS EDIFÍCIOS Volume 4 Capítulo 3 ESCDS USUIS DOS EDIFÍCIOS 1 3.1- INTRODUÇÃO patamar lance a b c d e Formas usuais das escadas dos edifícios armada transversalmente armada longitudinalmente armada em cruz V3 V4 Classificação

Leia mais

Várias formas da seção transversal

Várias formas da seção transversal Várias formas da seção transversal Seções simétricas ou assimétricas em relação à LN Com o objetivo de obter maior eficiência (na avaliação) ou maior economia (no dimensionamento) devemos projetar com

Leia mais

ESTRUTURAS DE CONCRETO I

ESTRUTURAS DE CONCRETO I Unisalesiano Centro Universitário Católico Salesiano Auilium Curso de Engenharia Civil ESTRUTURAS DE CONCRETO I Lajes Retangulares Maciças Prof. André L. Gamino Definição Os elementos estruturais planos

Leia mais

ÍNDICE 1.- DESCRIÇÃO... 2

ÍNDICE 1.- DESCRIÇÃO... 2 ÍNDICE 1.- DESCRIÇÃO... 2 2.- VERIFICAÇÕES... 2 2.1.- Perímetro do pilar (P5)... 2 2.1.1.- Zona adjacente ao pilar ou carga (combinações não sísmicas)... 2 2.2.- Perímetro de controlo (P5)... 4 2.2.1.-

Leia mais

ESTRUTURAS DE CONCRETO ARMADO EXERCÍCIOS PARA A TERCEIRA PROVA PARCIAL

ESTRUTURAS DE CONCRETO ARMADO EXERCÍCIOS PARA A TERCEIRA PROVA PARCIAL ESTRUTURAS DE CONCRETO ARMADO EXERCÍCIOS PARA A TERCEIRA PROVA PARCIAL Questão 1 Dimensionar as armaduras das seções transversais abaixo (flexo-compressão normal). Comparar as áreas de aço obtidas para

Leia mais

2 Treliça de Mörsch 2.1. Histórico

2 Treliça de Mörsch 2.1. Histórico 2 Treliça de Mörsch 2.1. Histórico Quando é aplicado um carregamento a uma viga de concreto armado, desenvolvem-se campos de tensões de tração, os tirantes, e campos de tensões de compressão, as bielas.

Leia mais

Curso de Dimensionamento de Estruturas de Aço Ligações em Aço EAD - CBCA. Módulo

Curso de Dimensionamento de Estruturas de Aço Ligações em Aço EAD - CBCA. Módulo Curso de Dimensionamento de Estruturas de Aço Ligações em Aço EAD - CBCA Módulo 3 Sumário Módulo 3 Dimensionamento das vigas a flexão 3.1 Dimensionamento de vigas de Perfil I isolado página 3 3.2 Dimensionamento

Leia mais

Professora: Engª Civil Silvia Romfim

Professora: Engª Civil Silvia Romfim Professora: Engª Civil Silvia Romfim CRITÉRIOS DE DIMENSIONAMENTO Flexão simples reta Flexão oblíqua Flexão composta Flexo-tração Flexo-compressão Estabilidade lateral de vigas de seção retangular Flexão

Leia mais

DIMENSIONAMENTO DAS ARMADURAS LONGITUDINAIS DE VIGAS T

DIMENSIONAMENTO DAS ARMADURAS LONGITUDINAIS DE VIGAS T DIMENSIONAMENTO DAS ARMADURAS LONGITUDINAIS DE VIGAS T Prof. Henrique Innecco Longo e-mail longohenrique@gmail.com b f h f h d d Departamento de Estruturas Escola Politécnica da Universidade Federal do

Leia mais

FLEXÃO COMPOSTA RETA E OBLÍQUA

FLEXÃO COMPOSTA RETA E OBLÍQUA Universidade Federal de Ouro Preto - Escola de Minas Departamento de Engenharia Civil CIV620-Construções de Concreto Armado FLEXÃO COMPOSTA RETA E OBLÍQUA Profa. Rovadávia Aline Jesus Ribas Ouro Preto,

Leia mais

Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras.

Flexão. Tensões na Flexão. e seu sentido é anti-horário. Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. Flexão Estudar a flexão em barras é estudar o efeito dos momentos fletores nestas barras. O estudo da flexão que se inicia, será dividido, para fim de entendimento, em duas partes: Tensões na flexão; Deformações

Leia mais

UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03

UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 UFJF - Professores Elson Toledo e Alexandre Cury MAC003 - Resistência dos Materiais II LISTA DE EXERCÍCIOS 03 1. Em um ponto crítico de uma peça de aço de uma máquina, as componentes de tensão encontradas

Leia mais

Viga Parede Notas de aula Parte 4

Viga Parede Notas de aula Parte 4 Prof. Eduardo Thomaz 1 VIGA PAREDE Armaduras adicionais Caso 1 : Cargas aplicadas na parte superior da viga parede : Em cada face da viga parede deve ser colocada uma malha ortogonal de barras horizontais

Leia mais

ES013. Exemplo de de um Projeto Completo de de um de deconcreto Armado

ES013. Exemplo de de um Projeto Completo de de um de deconcreto Armado Escola Politécnica da Universidade de São Paulo Deartamento de Engenharia de Estruturas e Fundações ES013 Eemlo de de um Projeto Comleto de de um Edifício de deconcreto Armado Prof. Túlio Nogueira Bittencourt

Leia mais

Dimensionamento estrutural de blocos e de sapatas rígidas

Dimensionamento estrutural de blocos e de sapatas rígidas Dimensionamento estrutural de blocos e de sapatas rígidas Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com FUNDAÇÕES SLIDES 13 / AULA 17 Blocos de Fundação Elemento de fundação de concreto

Leia mais

EXEMPLO DE PONTE DE CONCRETO ARMADO, COM DUAS VIGAS PRINCIPAIS (adaptado TAGUTI 2002)

EXEMPLO DE PONTE DE CONCRETO ARMADO, COM DUAS VIGAS PRINCIPAIS (adaptado TAGUTI 2002) EXEMPLO DE PONTE DE CONCRETO ARMADO, COM DUAS VIGAS PRINCIPAIS (adaptado TAGUTI 2002) ROTEIRO DE CÁLCULO I - DADOS Ponte rodoviária. classe TB 450 (NBR-7188) Planta, corte e vista longitudinal (Anexo)

Leia mais

Libânio M. Pinheiro, Cassiane D. Muzardo, Sandro P. Santos, Marcos V. N. Moreira, Thiago Catoia, Bruna Catoia

Libânio M. Pinheiro, Cassiane D. Muzardo, Sandro P. Santos, Marcos V. N. Moreira, Thiago Catoia, Bruna Catoia PROJETO DE LAJES MACIÇAS CAPÍTULO 1 Libânio M. Pinheiro, Cassiane D. Muzardo, Sandro P. Santos, Marcos V. N. Moreira, Thiago Catoia, Bruna Catoia Março de 010 PROJETO DE LAJES MACIÇAS 1.1 DADOS INICIAIS

Leia mais

TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS

TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS DIRETORIA ACADÊMICA DE CONSTRUÇÃO CIVIL Tecnologia em Construção de Edifícios Disciplina: Construções em Concreto Armado TENSÕES DE FLEXÃO e de CISALHAMENTO EM VIGAS Notas de Aula: Edilberto Vitorino de

Leia mais

Introdução vigas mesas. comportamento laje maciça grelha.

Introdução vigas mesas. comportamento laje maciça grelha. Introdução - Uma laje nervurada é constituida de por um conjunto de vigas que se cruzam, solidarizadas pelas mesas. - Esse elemento estrutural terá comportamento intermediário entre o de laje maciça e

Leia mais

3.6.1. Carga concentrada indireta (Apoio indireto de viga secundária)

3.6.1. Carga concentrada indireta (Apoio indireto de viga secundária) cisalhamento - ELU 22 3.6. rmadura de suspensão para cargas indiretas 3.6.1. Carga concentrada indireta (poio indireto de viga secundária) ( b w2 x h 2 ) V 1 ( b w1 x h 1 ) V d1 - viga com apoio ndireto

Leia mais

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica

RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Centro Federal de Educação Tecnológica de Santa Catarina CEFET/SC Unidade Araranguá RESISTÊNCIA DOS MATERIAIS I Curso de Eletromecânica Prof. Fernando H. Milanese, Dr. Eng. milanese@cefetsc.edu.br Conteúdo

Leia mais

Revisão UNIVERSIDADE DO ESTADO DE MATO GROSSO CURSO DE ENGENHARIA CIVIL. SNP38D48 Estruturas de Concreto Armado II

Revisão UNIVERSIDADE DO ESTADO DE MATO GROSSO CURSO DE ENGENHARIA CIVIL. SNP38D48 Estruturas de Concreto Armado II UNIVERSIDADE DO ESTADO DE MATO GROSSO CURSO DE ENGENHARIA CIVIL SNP38D48 Estruturas de Concreto Armado II Prof.: Flavio A. Crispim (FACET/SNP-UNEMAT) SINOP - MT 2015 Compressão simples Flexão composta

Leia mais

4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES

4ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO ANÁLISE DE TENSÕES Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Disciplina: ENG285 - Resistência dos Materiais I-A Professor: Armando Sá Ribeiro Jr. www.resmat.ufba.br 4ª LISTA

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco. Lista de Exercícios - Sapatas

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco. Lista de Exercícios - Sapatas Lista de Exercícios - Sapatas 1 Dimensione uma sapata rígida para um pilar de dimensões 30 x 40, sendo dados: N k = 1020 kn; M k = 80 kn.m (em torno do eixo de maior inércia); A s,pilar = 10φ12,5 σ adm

Leia mais

CAPÍTULO III CARACTERIZAÇÃO DO COMPORTAMENTO DOS MATERIAIS

CAPÍTULO III CARACTERIZAÇÃO DO COMPORTAMENTO DOS MATERIAIS CAPÍTULO III CARACTERIZAÇÃO DO COMPORTAMENTO DOS MATERIAIS 3. Caracterização do Comportamento dos Materiais 3.1. Comportamento geral do concreto É largamente conhecido que, após atingir a resistência última,

Leia mais

Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte

Dimensionamento de Estruturas em Aço. Parte 1. Módulo. 2ª parte Dimensionamento de Estruturas em Aço Parte 1 Módulo 2 2ª parte Sumário Módulo 2 : 2ª Parte Dimensionamento de um Mezanino Estruturado em Aço 1º Estudo de Caso Mezanino página 3 1. Cálculo da Viga V2 =

Leia mais

Fig Módulos sobre pilares e pórticos de contraventamento. Conforme se observa, o programa possui os seguintes módulos:

Fig Módulos sobre pilares e pórticos de contraventamento. Conforme se observa, o programa possui os seguintes módulos: Capítulo 4 PILARES 4.1 Módulos para cálculo de pilares Na fig. 4.1.1, apresenta-se uma parte da janela principal do PACON 2006, mostrando os submenus correspondentes aos módulos para cálculo e dimensionamento

Leia mais

4. DIMENSIONAMENTO DE ESCADAS EM CONCRETO ARMADO

4. DIMENSIONAMENTO DE ESCADAS EM CONCRETO ARMADO 4. DIMENSIONAMENTO DE ESCADAS EM CONCRETO ARMADO 4.1 Escada com vãos paralelos O tipo mais usual de escada em concreto armado tem como elemento resistente uma laje armada em uma só direção (longitudinalmente),

Leia mais

elementos estruturais

elementos estruturais conteúdo 1 elementos estruturais 1.1 Definição As estruturas podem ser idealizadas como a composição de elementos estruturais básicos, classificados e definidos de acordo com a sua forma geométrica e a

Leia mais

6.) Dimensionamento no ELU - Flexão

6.) Dimensionamento no ELU - Flexão 6.) Dimensionamento no ELU - Flexão Para optar pelo dimensionamento a flexão - ELU - pela NB1/03, fornecemos no arquivo de critérios: Embora este item quase não tenha sofrido alteração de Norma, vamos

Leia mais

Pontifícia Universidade Católica de Goiás

Pontifícia Universidade Católica de Goiás Pontifícia Universidade Católica de Goiás Escola de Engenharia Curso: Engenharia Civil Disciplina: ENG2004 - Estruturas de Concreto Armado I Semestre: 2015.2 Painel de Lajes Maciças apoiadas em vigas apoiadas

Leia mais

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO COMPOSTA

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO COMPOSTA U C R S ONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO COMOSTA rof. Almir Schäffer ORTO ALEGRE MAIO DE 2006 1 FLEXÃO COMOSTA

Leia mais

Faculdade Integrada Metropolitana de Campinas METROCAMP

Faculdade Integrada Metropolitana de Campinas METROCAMP Faculdade Integrada Metropolitana de Campinas METROCAMP PUNÇÃO EM LAJES LISAS PROTENDIDAS: ESTUDO DE ABERTURAS ADJACENTES A PILARES Alexandre Souza Silva 1, Fábio Albino de Souza 2 1 Eng. Civil, Mestre

Leia mais

Pré-dimensionamento das fôrmas dos elementos de concreto

Pré-dimensionamento das fôrmas dos elementos de concreto Pré-dimensionamento das fôrmas dos elementos de concreto China International Trust&Investment Plaza CITIC - Sky Central Plaza - 1997 Guangzhou/China (391m/322m) Referência: Introdução à concepção estrutural

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.1 Lauro de Freitas, Março, 2016. 3 Torção Conteúdo Introdução Cargas de Torção em Eixos Circulares Torque Puro Devido a Tensões Internas Componentes

Leia mais

Estruturas de concreto Armado II. Aula IV Flexão Simples Seção T

Estruturas de concreto Armado II. Aula IV Flexão Simples Seção T Estruturas de concreto Armado II Aula IV Flexão Simples Seção T Fonte / Material de Apoio: Apostila Fundamentos do Concreto e Projeto de Edifícios Prof. Libânio M. Pinheiro UFSCAR Apostila Projeto de Estruturas

Leia mais

Resistência dos Materiais Eng. Mecânica, Produção UNIME Prof. Corey Lauro de Freitas, Fevereiro, 2016.

Resistência dos Materiais Eng. Mecânica, Produção UNIME Prof. Corey Lauro de Freitas, Fevereiro, 2016. Resistência dos Materiais Eng. Mecânica, Produção UNIME 2016.2 Prof. Corey Lauro de Freitas, Fevereiro, 2016. 1 Introdução: O conceito de tensão Conteúdo Conceito de Tensão Revisão de Estática Diagrama

Leia mais

ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais.

ENG285 4ª Unidade 1. Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. ENG285 4ª Unidade 1 Fonte: Arquivo da resolução da lista 1 (Adriano Alberto), Slides do Prof. Alberto B. Vieira Jr., RILEY - Mecânica dos Materiais. Momento de Inércia (I) Para seção retangular: I =. Para

Leia mais

ESTRUTURAS DE FUNDAÇÕES RASAS

ESTRUTURAS DE FUNDAÇÕES RASAS Universidade Federal de Ouro Preto - Escola de Minas Departamento de Engenharia Civil CIV620-Construções de Concreto Armado ESTRUTURAS DE FUNDAÇÕES RASAS Profa. Rovadávia Aline Jesus Ribas Ouro Preto,

Leia mais

SUBSTITUIÇÃO TOTAL DO AÇO, USANDO BAMBU COMO ARMADURA DE COMBATE A FLEXÃO EM VIGAS DE CONCRETO.

SUBSTITUIÇÃO TOTAL DO AÇO, USANDO BAMBU COMO ARMADURA DE COMBATE A FLEXÃO EM VIGAS DE CONCRETO. SUBSTITUIÇÃO TOTAL DO AÇO, USANDO BAMBU COMO ARMADURA DE COMBATE A FLEXÃO EM VIGAS DE CONCRETO. RESUMO Claiton Sommariva de Oliveira (1), Márcio Vito (2). UNESC Universidade do Extremo Sul Catarinense

Leia mais

As escadas são elementos estruturais que servem para unir, através degraus sucessivos, os diferentes níveis de uma construção.

As escadas são elementos estruturais que servem para unir, através degraus sucessivos, os diferentes níveis de uma construção. 6 Escadas 6.1 Introdução As escadas são elementos estruturais que servem para unir, através degraus sucessivos, os diferentes níveis de uma construção. 6. Terminologia dos Elementos Constituintes A linha

Leia mais

ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO

ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO ESTRUTURAS METÁLICAS E DE MADEIRAS PROF.: VICTOR MACHADO UNIDADE II - ESTRUTURAS METÁLICAS VIGAS DE ALMA CHEIA INTRODUÇÃO No projeto no estado limite último de vigas sujeitas à flexão simples calculam-se,

Leia mais

APÊNDICE 2 TABELAS PARA O CÁLCULO DE LAJES

APÊNDICE 2 TABELAS PARA O CÁLCULO DE LAJES APÊNDICE 2 TABELAS PARA O CÁLCULO DE LAJES 338 Curso de Concreto Armado 1. Lajes retangulares apoiadas no contorno As tabelas A2.1 a A2.6 correspondem a lajes retangulares apoiadas ao longo de todo o contorno

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS RESISTÊNCIA DOS MATERIAIS LISTA DE EXERCÍCIOS Torção 1º SEM./2001 1) O eixo circular BC é vazado e tem diâmetros interno e externo de 90 mm e 120 mm, respectivamente. Os eixo AB e CD são maciços, com diâmetro

Leia mais

MEMORIAL DE CÁLCULO / 1-0. PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 3,00 m MODELO RG PFM 3.1

MEMORIAL DE CÁLCULO / 1-0. PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 3,00 m MODELO RG PFM 3.1 MEMORIAL DE CÁLCULO 071211 / 1-0 PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 3,00 m MODELO RG PFM 3.1 FABRICANTE: Metalúrgica Rodolfo Glaus Ltda ENDEREÇO: Av. Torquato Severo, 262 Bairro Anchieta 90200 210

Leia mais

MADEIRA Vigas de madeira laminada e colada submetidas à flexão simples

MADEIRA Vigas de madeira laminada e colada submetidas à flexão simples MATERIAIS TÉCNICAS E ESTRUTURASII MADEIRA Vigas de madeira laminada e colada submetidas à flexão simples Critérios de dimensionamento para peças submetidas à flexão simples reta Vigas de madeira laminada

Leia mais

Instabilidade e Efeitos de 2.ª Ordem em Edifícios

Instabilidade e Efeitos de 2.ª Ordem em Edifícios Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil Capítulo Prof. Romel Dias Vanderlei Instabilidade e Efeitos de 2.ª Ordem em Edifícios Curso: Engenharia Civil Disciplina:

Leia mais

Universidade Federal de Ouro Preto Escola de Minas DECIV. Superestrutura de Ferrovias. Aula 10 DIMENSIONAMENTO DE DORMENTES

Universidade Federal de Ouro Preto Escola de Minas DECIV. Superestrutura de Ferrovias. Aula 10 DIMENSIONAMENTO DE DORMENTES Universidade Federal de Ouro Preto Escola de Minas DECIV CIV 259 Aula 10 DIMENSIONAMENTO DE DORMENTES Universidade Federal de Ouro Preto Escola de Minas DECIV CIV 259 Universidade Federal de Ouro Preto

Leia mais

Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada

Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada Estruturas de Aço e Madeira Aula 14 Peças de Madeira em Compressão Simples Centrada - Limites de Esbeltez; - Peças Curtas e Medianamente Esbeltas; - Peças Esbeltas; - Compressão Normal e Inclinada em Relação

Leia mais

PAREDES. Prof. Amison de Santana Silva

PAREDES. Prof. Amison de Santana Silva PAREDES Prof. Amison de Santana Silva Tijolo maciço ou burro - Conforme a carga a que resistem, são classificados em 1 a e 2 a categoria: As tolerâncias são de 5 mm para as medidas de comprimento e de

Leia mais

CAPÍTULO 3: DIMENSIONAMENTO DE VIGAS

CAPÍTULO 3: DIMENSIONAMENTO DE VIGAS Curso de Engenharia Civil Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CPÍTULO 3: DIMENSIONMENTO DE VIGS 3.1 - Introdução Escolher o material e as dimensões da

Leia mais

CAPÍTULO 3 ESFORÇO CORTANTE

CAPÍTULO 3 ESFORÇO CORTANTE CAPÍTULO 3 ESFORÇO CORTANTE 1 o caso: O esforço cortante atuando em conjunto com o momento fletor ao longo do comprimento de uma barra (viga) com cargas transversais. É o cisalhamento na flexão ou cisalhamento

Leia mais

Figura 6.22 Perímetros de controlo para pilares interiores

Figura 6.22 Perímetros de controlo para pilares interiores EC2 A 2d kd B > 2d kd d d A Contorno u out B Contorno u out,ef Figura 6.22 Perímetros de controlo para pilares interiores NOTA: O valor de k a utilizar num determinado país poderá ser dado no respectivo

Leia mais

ESTUDO DO ESFORÇO CORTANTE

ESTUDO DO ESFORÇO CORTANTE UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA DEPARTAMENTO DE ENGENHARIA CIVIL ESTUDO DO ESFORÇO CORTANTE Prof. Jefferson S. Camacho Ilha Solteira-SP

Leia mais

REPARAÇÃO e REFORÇO de ESTRUTURAS Aula 5: VERIFICAÇÃO ESTRUTURAL e REFORÇOS : CAPACIDADE de CARGA e DIMENSIONAMENTO THOMAZ RIPPER

REPARAÇÃO e REFORÇO de ESTRUTURAS Aula 5: VERIFICAÇÃO ESTRUTURAL e REFORÇOS : CAPACIDADE de CARGA e DIMENSIONAMENTO THOMAZ RIPPER REPARAÇÃO e REFORÇO de ESTRUTURAS Aula 5: VERIFICAÇÃO ESTRUTURAL e REFORÇOS : CAPACIDADE de CARGA e DIMENSIONAMENTO THOMAZ RIPPER FLEXÃO VERIFICAÇÃO ESTRUTURAL RESISTÊNCIA RESIDUAL ANÁLISE ELÁSTICA com

Leia mais

VIII - DISPOSIÇÕES CONSTRUTIVAS GERAIS DAS ARMADURAS

VIII - DISPOSIÇÕES CONSTRUTIVAS GERAIS DAS ARMADURAS VIII - DISPOSIÇÕES CONSTRUTIVAS GERAIS DAS ARMADURAS 1- ARMADURA DE PELE (item 18.3.5) Quando a altura útil da viga ultrapassar 60cm e o aço da armadura de tração for CA-50 ou CA-60, deve dispor-se longitudinalmente

Leia mais

Dimensionamento de Pilares

Dimensionamento de Pilares Dimensionamento de Pilares N Pilares são elementos predominantemente comprimidos (N). Sua função primeira é conduzir as cargas gravitacionais aos elementos de fundação Em geral, são solicitados também

Leia mais

FICHA TÉCNICA DE PRODUTO LAJE ALVEOLADA LA 12 -R ARMADURAS LA12-2-R

FICHA TÉCNICA DE PRODUTO LAJE ALVEOLADA LA 12 -R ARMADURAS LA12-2-R Página 1/5 LAJE ALVEOLADA LA 12 -R DESCRIÇÃO Painel pré-fabricado em betão pré-esforçado, com armadura constituída por fios de aço aderentes, de secção vazada, com as faces prontas a pintar. As lajes apresentam-se

Leia mais

AULA J EXEMPLO VIGA-BALCÃO

AULA J EXEMPLO VIGA-BALCÃO AULA J INTRODUÇÃO O Projeto de Revisão da Norma NBR-6118 sugere que a descrição do comportamento estrutural seja feita de maneira mais rigorosa possível, utilizando-se programas computacionais baseados

Leia mais

Figura 1. As fissuras de flexão são as mais estudadas e mais medidas em laboratórios de estruturas.

Figura 1. As fissuras de flexão são as mais estudadas e mais medidas em laboratórios de estruturas. 1 / FISSURAÇÃO - FISSURAS DE FLEXÃO Figura 1 As fissuras de flexão são as mais estudadas e mais medidas em laboratórios de estruturas. Todas as normas de concreto armado apresentam formulações para calcular

Leia mais

Figura 1: Diagramas de Esforços solicitantes no ELU: *+,)-,. *+,-

Figura 1: Diagramas de Esforços solicitantes no ELU: *+,)-,. *+,- xemplo 2: Dimensionamento LU-Força ortante Dados: 1. Introdução Resistências: 20, 0,85 12,143, 0,71 0,85 7,82, 0,721 9,5, 0,3 2,21, ços -50 e -60,!!" 435. Geometria: #;h;&;& ' ;& '' ;120;500;440;60;50

Leia mais

1.1 Conceitos fundamentais... 19 1.2 Vantagens e desvantagens do concreto armado... 21. 1.6.1 Concreto fresco...30

1.1 Conceitos fundamentais... 19 1.2 Vantagens e desvantagens do concreto armado... 21. 1.6.1 Concreto fresco...30 Sumário Prefácio à quarta edição... 13 Prefácio à segunda edição... 15 Prefácio à primeira edição... 17 Capítulo 1 Introdução ao estudo das estruturas de concreto armado... 19 1.1 Conceitos fundamentais...

Leia mais

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 3: FLEXÃO

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 3: FLEXÃO Curso de Engenharia Civil Universidade Estadual de aringá Centro de Tecnologia Departamento de Engenharia Civil CÍTULO 3: FLEXÃO 3. Revisão de Esforços nternos étodo das Seção: 3. Revisão de Esforços nternos

Leia mais

Universidade Católica de Goiás - Departamento de Engenharia Estruturas de Concreto Armado I - Notas de Aula

Universidade Católica de Goiás - Departamento de Engenharia Estruturas de Concreto Armado I - Notas de Aula conteúdo 2 lajes 2.1 Classificação das lajes Como o cálculo das lajes tem por base a Teoria das Grelhas, para melhor entender sua classificação, vamos analisar primeiro como se realiza a transferência

Leia mais

ATUALIZAÇÃO EM SISTEMAS ESTRUTURAIS

ATUALIZAÇÃO EM SISTEMAS ESTRUTURAIS AULAS 03 ATUALIZAÇÃO EM SISTEMAS ESTRUTURAIS Prof. Felipe Brasil Viegas Prof. Eduardo Giugliani http://www.feng.pucrs.br/professores/giugliani/?subdiretorio=giugliani 0 AULA 03 ELEMENTOS ESTRUTURAIS ESPECIAIS

Leia mais

Módulo 5 Lajes: Estados Limites Últimos Estados Limites de Serviço Detalhamento Exemplo. Dimensionamento de Lajes à Punção

Módulo 5 Lajes: Estados Limites Últimos Estados Limites de Serviço Detalhamento Exemplo. Dimensionamento de Lajes à Punção NBR 6118 : Estados Limites Últimos Estados Limites de Serviço Detalhamento P R O M O Ç Ã O Conteúdo ELU e ELS Força Cortante em Dimensionamento de à Punção - Detalhamento - - Conclusões Estado Limite Último

Leia mais

Introdução cargas externas cargas internas deformações estabilidade

Introdução cargas externas cargas internas deformações estabilidade TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também

Leia mais