( ) 2. Álgebra Matemática Básica Sistema decimal, múltiplos e divisores e raciocínio

Tamanho: px
Começar a partir da página:

Download "( ) 2. Álgebra Matemática Básica Sistema decimal, múltiplos e divisores e raciocínio"

Transcrição

1 Álgebra Matemática Básica Sistema decimal, múltiplos e divisores e raciocínio. (Uerj 03) Em uma atividade escolar, qualquer número X, inteiro e positivo, é submetido aos procedimentos matemáticos descritos abaixo, quantas vezes forem necessárias, até que se obtenha como resultado final o número. TEXTO PARA A PRÓXIMA QUESTÃO: Se X é múltiplo de 3, deve-se dividi-lo por 3. Se X não é divisível por 3, deve-se calcular X -. A partir de X =, por exemplo, os procedimentos são aplicados quatro vezes. Veja a sequência dos resultados obtidos: Iniciando-se com X = 43, o número de vezes que os procedimentos são utilizados é igual a: a) 7 b) 8 c) 9 d) 0 3. (Pucrj 03) O valor de ( ) a) 3 b) 6 c) 9 d) 6 e) é: 3. (Uerj 03) O código de uma inscrição tem 4 algarismos; dois deles e suas respectivas posições estão indicados abaixo. 5 8 x 4. (Uel 03) O código de barras pode ser tomado como um dos símbolos da sociedade de consumo e é usado em diferentes tipos de identificação. Considere que um determinado serviço postal usa barras curtas e barras longas para representar seu Código de Endereçamento Postal (CEP) composto por oito algarismos, em que a barra curta corresponde ao 0 (zero) e a longa ao (um). A primeira e a última barra são desconsideradas, e a conversão do código é dada pela tabela a seguir Assinale a alternativa que corresponde ao CEP dado pelo código de barras a seguir. Considere que, nesse código, a soma de três algarismos consecutivos seja sempre igual a 0. O algarismo representado por x será divisor do seguinte número: a) 49 b) 64 c) 8 d) 5 a) b) c) d) e) Página de 7

2 5. (G - cftmg 0) Ao se dividir um número natural n por 33, obtém-se resto igual a 3. Então, o resto da divisão de (n+56) por 33, é a). b) 3. c). d) 3. A quantidade diária de cálcio, em mg, que teria que usar nas refeições desses alunos é: a) b) c) d) e) (Ufg 0) Considere que no primeiro dia do Rock in Rio 0, em um certo momento, o público presente era de cem mil pessoas e que a Cidade do Rock, local do evento, dispunha de quatro portões por onde podiam sair, no máximo, 50 pessoas por minuto, em cada portão. Nestas circunstâncias, o tempo mínimo, em minutos, para esvaziar a Cidade do Rock será de: a) 80 b) 60 c) 50 d) 40 e) 0 7. (Uepa 0) O cálcio é essencial para a transmissão nervosa, coagulação do sangue e contração muscular; atua também na respiração celular, além de garantir uma boa formação e manutenção de ossos e dentes. A tabela abaixo mostra que a ingestão diária recomendada de cálcio por pessoa varia com a idade. TABELA IDADE CÁLCIO (mg/dia) 4 a 8 anos a 3 anos a 8 anos a 50 anos 000 (Fonte: Foi por essa importância que o cálcio tem para o corpo humano que a diretora de uma escola resolveu calcular a quantidade de cálcio que teria de usar nas refeições diárias dos seus alunos para suprir a essa necessidade. A tabela abaixo mostra a quantidade de alunos por idade existente nessa escola. TABELA IDADE ALUNOS 4 a 8 anos 60 9 a 3 anos 00 4 a 8 anos 80 9 a 50 anos (Enem 0) A capacidade mínima, em BTU/h, de um aparelho de ar-condicionado, para ambientes sem exposição ao sol, pode ser determinada da seguinte forma: 600 BTU/h por m, considerando-se ate duas pessoas no ambiente; para cada pessoa adicional nesse ambiente, acrescentar 600 BTU/h; acrescentar mais 600 BTU/h para cada equipamento eletrônico em funcionamento no ambiente. Será instalado um aparelho de ar-condicionado em uma sala sem exposição ao sol, de dimensões 4 m x 5 m, em que permaneçam quatro pessoas e possua um aparelho de televisão em funcionamento. A capacidade mínima, em BTU/h, desse aparelho de arcondicionado deve ser a) 000. b) 600. c) d) e) (Ufrn 0) A potência de um condicionador de ar é medida em BTU (British Thermal Unit, ou Unidade Termal Britânica). BTU é definido como a quantidade necessária de energia para se elevar a temperatura de uma massa de uma libra de água em um grau Fahrenheit. O cálculo de quantos BTUs serão necessários para cada ambiente leva em consideração a seguinte regra: 600 BTUs por metro quadrado para até duas pessoas, e mais 600 BTUs por pessoa ou equipamento que emita calor no ambiente. De acordo com essa regra, em um escritório de metros quadrados em que trabalhem duas pessoas e que haja um notebook e um frigobar, a potência do condicionador de ar deve ser a) BTUs. b) BTUs. Página de 7

3 c) 7.00 BTUs. d).400 BTUs. 0. (Unisinos 0) Uma confeitaria vende salgados a R$0,80 a unidade e doces a R$,0 a unidade. Para uma festa, foram encomenda dos 00 salgados e 00 doces. Na hora do pagamento da compra, o caixa se enganou e inverteu as quantidades, registrando 00 salgados e 00 doces. Esse engano fez com que o valor cobrado fosse a) R$30,00 a mais do que o valor correto. b) R$30,00 a menos do que o valor correto. c) R$0,00 a mais do que o valor correto. d) R$0,00 a menos do que o valor correto. e) igual ao valor correto. página, foi descartado, uma vez que sobraram 50 fotos. Com a adoção do segundo critério, a de uma única foto em algumas páginas e de três fotos nas demais, não sobraram fotos nem páginas, e o objetivo da família foi alcançado. O número total de páginas em que foram colocadas três fotos é igual a: a) 5 b) 5 c) 50 d) (Ufrgs 0) Sendo a, b e c números reais, considere as seguintes afirmações.. (Ufrgs 0) O dispensador de dinheiro do caixa eletrônico de um banco foi abastecido apenas com cédulas de R$ 5,00 e de R$ 0,00. Um cliente, ao realizar um saque, constatou que o dispensador liberou 6 cédulas. Entre elas, havia pelo menos uma de cada valor. Com base nesses dados, é correto afirmar que a única alternativa que apresenta uma quantia que poderia ter sido sacada pelo cliente é a) R$ 90,00. b) R$ 95,00. c) R$ 00,00. d) R$ 0,00. e) R$ 0,00.. (G - ifpe 0) O SBT, em parceria com a Nestlé, criou um novo programa de perguntas e respostas chamado UM MILHÃO NA MESA. Nele o apresentador Silvio Santos faz perguntas sobre temas escolhidos pelos participantes. O prêmio máximo é de R$ ,00 que fica, inicialmente, sobre uma mesa, distribuídos em pacotes com notas de R$ 0,00. Cada pacote é formado por mil notas. Em quantos pacotes está dividido o prêmio do programa? a) 50 b) 5 c) 00 d) 75 e) 50 I. Se a 0, b 0 e a < b, então <. a b a + b a b II. Se c 0, então = +. c c c III. Se b 0 e c 0, então (a b) c = a (b c). Quais estão corretas? a) Apenas I. b) Apenas II. c) Apenas I e II. d) Apenas II e III. e) I, II e lii. 5. (Uerj 0) Em uma viagem ao exterior, o carro de um turista brasileiro consumiu, em uma semana, 50 galões de gasolina, a um custo total de 5 dólares. Considere que um dólar, durante a semana da viagem, valia,60 reais e que a capacidade do galão é de 3,8 L. Durante essa semana, o valor, em reais, de L de gasolina era de: a),8 b),40 c),75 d),90 6. (Unesp 0) Segundo nutricionistas, uma refeição equilibrada, para uma pessoa adulta e saudável, não deve conter mais que 800 kcal. A tabela traz algumas opções de pedido, variedades dentro destas opções e o valor energético de cada uma delas. 3. (Uerj 0) Uma família deseja organizar todas as fotos de uma viagem em um álbum com determinado número de páginas, sem sobra de fotos ou de páginas. Para isso, foram testados dois critérios de organização. O primeiro critério, que consistia na colocação de uma única foto em cada Página 3 de 7

4 OPÇÕES DE PEDIDO sanduíches acompanhamentos bebidas sobremesas VARIEDADES completo de peixe light porção de fritas salada refrigerante 300 ml refrigerante diet 300 ml suco de laranja 300 ml torta de maçã porção de frutas VALOR ENERGÉTICO 49 kcal 36 kcal 95 kcal 06 kcal 8 kcal 0 kcal 0 kcal 6 kcal 98 kcal 5 kcal c) é necessário que Q > 8. d) é suficiente que Q = 00. e) é suficiente que Q < (Enem 0) Os hidrômetros são marcadores de consumo de água em residências e estabelecimentos comerciais. Existem vários modelos de mostradores de hidrômetros, sendo que alguns deles possuem uma combinação de um mostrador e dois relógios de ponteiro. O número formado pelos quatro primeiros algarismos do mostrador fornece o consumo em m 3, e os dois últimos algarismos representam, respectivamente, as centenas e dezenas de litros de água consumidos. Um dos relógios de ponteiros indica a quantidade em litros, e o outro em décimos de litros, conforme ilustrados na figura a seguir. Escolhendo-se um item de cada opção de pedido, a refeição de maior valor energético, que não exceda o limite de 800 kcal, será a composta de: a) sanduíche completo, porção de fritas, refrigerante diet 300 ml e porção de frutas. b) sanduíche light, porção de fritas, refrigerante 300 ml e porção de frutas. c) sanduíche light, porção de fritas, suco de laranja 300 ml e porção de frutas. d) sanduíche de peixe, porção de fritas, suco de laranja 300 ml e porção de frutas. e) sanduíche de peixe, porção de fritas, refrigerante diet 300 ml e torta de maçã. 7. (Fgv 0) Chamaremos de S(n) a soma dos algarismos do número inteiro positivo n, e de P(n) o produto dos algarismos de n. Por exemplo, se n = 47, então S(47) = e P(47) = 8. Se n é um número inteiro positivo de dois algarismos tal que n = S(n) + P(n), então, o algarismo das unidades de n é a). b). c) 3. d) 6. e) (Insper 0) Uma das normas de um aeroporto X determina que o intervalo de tempo mínimo entre duas decolagens realizadas em sua única pista deve ser de 45 segundos. Seja Q a quantidade de decolagens realizadas no aeroporto X das 9h00min às 0h00min de um certo dia. Para que a referida norma não tenha sido respeitada nesse período de uma hora a) é necessário e suficiente que Q = 80. b) é necessário que Q = 8. Considerando as informações indicadas na figura, o consumo total de água registrado nesse hidrômetro, em litros, é igual a: a) 3 534,85. b) 3 544,0. c) ,00. d) ,35. e) , (Ufsj 0) O produto da multiplicação de um número inteiro positivo de três algarismos por 7 é um número terminado em 368. A soma dos algarismos desse número é igual a a) b) c) 3 d) 4. (Enem 0) João decidiu contratar os serviços de uma empresa por telefone através do SAC (Serviço de Atendimento ao Consumidor). O atendente ditou para João o número de protocolo de atendimento da ligação e pediu que ele anotasse. Entretanto, João não entendeu um dos Página 4 de 7

5 algarismos ditados pelo atendente e anotou o número , sendo que o espaço vazio é o do algarismo que João não entendeu. De acordo com essas informações, a posição ocupada pelo algarismo que falta no número de protocolo é a de a) centena. b) dezena de milhar. c) centena de milhar. d) milhão. e) centena de milhão. 5. (Unisinos 0) Uma fração unitária é uma fração da forma, onde n é um número natural. n Uma fração escrita como soma de frações unitárias é denominada fração egípcia. Por exemplo: = e 5 = A soma + + é a representação egípcia de qual fração?. (Pucrj 0) Uma máquina demora 7 segundos para produzir uma peça. O tempo necessário para produzir 50 peças é: a) hora, 7 minutos e 3 segundos. b) hora, 7 minutos e 30 segundos. c) hora, 57 minutos e 30 segundos. d) hora, 30 minutos e 7 segundos. e) hora, 34 minutos e 3 segundos. 3. (Upe 0) Considere a representação dos números reais numa reta. Na parte positiva, estão representados geometricamente dois números A e B entre os números 0 e. Nessas condições, é correto afirmar que a) A. B < 0 b) 0 < A. B < A c) A < A. B < B d) B < A. B < e) A. B > 4. (Ufrgs 0) Considere que o corpo de uma determinada pessoa contém 5,5 litros de sangue e 5 milhões de glóbulos vermelhos por milímetro cúbico de sangue. Com base nesses dados, é correto afirmar que o número de glóbulos vermelhos no corpo dessa pessoa é a), b) 5, c) 5 0. d) 5,5 0. e), a) 7. 0 b) 3. 7 c) d) e) (Espm 0) Considerando-se que x = 973, y = 3907 e z = xy, o valor da expressão x + y z é: a) 679 b) 584 c) 73 d) 4938 e) (Pucrj 0) O valor da expressão 500 x x 0 4 é igual a: a) 0,053 b) 5,3 c) 0,503 d) 3,5 e) (G- cftmg 0) O valor numérico da expressão 3 4 ( ) + ( ) x 3 é a) 7. b) 54. c) d). Página 5 de 7

6 9. (G- utfpr 0) O valor numérico da expressão ( ) ( 0,5 ) representa um número: a) racional positivo. b) racional negativo. c) inteiro positivo. d) irracional negativo. e) irracional positivo. 30. (G - utfpr 0) Simplificando a expressão algébrica 5 x y 4 x y xy, temos: a) x. b) y. c). d) 0. e) x. 3. (Ita 0) Deseja-se trocar uma moeda de 5 centavos, usando-se apenas moedas de, 5 e 0 centavos. Então, o número de diferentes maneiras em que a moeda de 5 centavos pode ser trocada é igual a a) 6. b) 8. c) 0. d). e) (Ifsp 0) Um prédio comercial instalou, em cada um dos seus 4 andares, 8 vasos sanitários com sistema de esgoto a vácuo. Esse sistema, além de produzir menos esgoto, consome cerca de, litros de água a cada acionamento da descarga, gerando uma economia de 40% no volume de água gasto. Se a descarga de cada vaso for acionada 0 vezes em um horário de um certo dia, o volume economizado naquele horário será, em litros, igual a a) 53,6. b) 30,4. c) 56,0. d) 367,. e) 576,0. TEXTO PARA A PRÓXIMA QUESTÃO: Um carpinteiro foi contratado para construir uma cerca formada por ripas de madeira. As figuras abaixo apresentam uma vista parcial da cerca, bem como os detalhes das ligações entre as ripas, nos quais os parafusos são representados por círculos brancos. Note que cada ripa está presa à cerca por dois parafusos em cada extremidade. 34. (G - cftmg 0) Numa divisão de números naturais, o divisor excede de 5 o quociente que, por sua vez, excede o resto também em 5. Sabendo-se que o dividendo é.075, pode-se afirmar que esse divisor é a) 0 b) 5 c) 5 d) (Ufrgs 0) Uma torneira com vazamento pinga, de maneira constante, 5 gotas de água por minuto. Se cada gota contém 0, ml de água, então, em 4 horas o vazamento será de 3. (Unicamp 0) Os parafusos usados na cerca são vendidos em caixas com 60 unidades. O número mínimo de caixas necessárias para construir uma cerca com 00 m de comprimento é a) 0,07 L. b) 0,7 L. c),44 L d) 7, L. e) 4,4 L a) 3. b). c) 5. d) 4. Página 6 de 7

7 36. (G - utfpr 0) A expressão a: a) 3 b) -3 c) 6 d) -6 + é equivalente (G - ifsc 0) Considere as sentenças abaixo: I. A metade de II = =. III. ax + ay = x + ay. a IV. + 0º =. x + 8x + 6 V. = x + 4 x + 4 e) 37. (Uel 0) Assinale a alternativa que indica corretamente entre quais números inteiros consecutivos está o valor da expressão a seguir. 6, 30 0, ,7 É correto afirmar que o número de sentença(s) verdadeira(s) corresponde a: a) 5 b) c) d) 4 e) 3 a) e b) 3 e 4 c) 5 e 6 d) 7 e 8 e) 9 e 38. (Upe 0) A expressão a, ,... 0, é igual a),5 b) 0 c) 8,75 d) 5 e),5 39. (G- epcar (Cpcar) 0) Considere os números m positivos q, m e n, tais que n + q = m e n q = 3. Ordenando-os, tem-se a sequência correta em: a) m > n > q b) m > q > n c) n > m > q d) q > n > m Página 7 de 7

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 2 o ano Disciplina: Física - Calorimetria. Pré Universitário Uni-Anhanguera

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 2 o ano Disciplina: Física - Calorimetria. Pré Universitário Uni-Anhanguera Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 2 o ano Disciplina: Física - Calorimetria 01 - (MACK SP) Um estudante no laboratório de física, por

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota (wykrota@uol.com.br) Curitiba

Leia mais

Princípio Fundamental da Contagem

Princípio Fundamental da Contagem Princípio Fundamental da Contagem 1. (Uem 2013) Seja A o seguinte conjunto de números naturais: A {1, 2, 4, 6, 8}. Assinale o que for correto. 01) Podem ser formados exatamente 24 números ímpares com 4

Leia mais

PRIMEIRA LISTA DE EXERCÍCIOS DE ALGORITMOS

PRIMEIRA LISTA DE EXERCÍCIOS DE ALGORITMOS PRIMEIRA LISTA DE EXERCÍCIOS DE ALGORITMOS CENTENA = x DEZENA = x UNIDADE = x 1. A imobiliária Imóbilis vende apenas terrenos retangulares. Faça um algoritmo para ler as dimensões de um terreno e depois

Leia mais

c) 90. d) 105. e) 180. a 2 da capacidade do reservatório, então

c) 90. d) 105. e) 180. a 2 da capacidade do reservatório, então 1. (Uerj 2015) Na imagem da etiqueta, informa-se o valor a ser pago por 0,256 kg de peito de peru. O SUS oferece 1,0 médico para cada grupo de x habitantes. Na região Norte, o valor de x é aproximadamente

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente C

Gabarito Extensivo MATEMÁTICA volume 1 Frente C Gabarito Extensivo MATEMÁTICA volume 1 Frente C 01) B Helô Bicicleta São João Regina Ônibus São Pedro Ana Moto Santo Antonio Corretas I e II 0) Basta calcular o MMC entre 1, 34 e 84.3.5.7 = 40 Após 40

Leia mais

Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016

Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016 Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016 1.º Período Conteúdos Programados Previstas Dadas Números e Operações Utilizar corretamente os numerais ordinais até vigésimo. Ler e representar

Leia mais

QUESTÃO ÚNICA MÚLTIPLA ESCOLHA

QUESTÃO ÚNICA MÚLTIPLA ESCOLHA PAG - 1 QUESTÃO ÚNICA MÚLTIPLA ESCOLHA 10,00 (dez) pontos distribuídos em 20 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item: MATEMÁTICA 01.

Leia mais

Equação do Segundo Grau

Equação do Segundo Grau Equação do Segundo Grau 1. (G1 - ifsp 014) A soma das soluções inteiras da equação x 1 x 5 x 5x 6 0 é a) 1. b). c) 5. d) 7. e) 11.. (G1 - utfpr 014) O valor da maior das raízes da equação x + x + 1 = 0,

Leia mais

Matemática. Aula: 02/10. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.

Matemática. Aula: 02/10. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM. Matemática Aula: 02/10 Prof. Pedro UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA ALUNOS

Leia mais

Matemática. Apostila. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.

Matemática. Apostila. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM. Matemática Apostila Prof. Pedro UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA ALUNOS

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

SITE_INEP_PROVA BRASIL - SAEB_MT_9ºANO (OK)

SITE_INEP_PROVA BRASIL - SAEB_MT_9ºANO (OK) 000 IT_005267 A figura a seguir é uma representação da localização das principais cidades ao longo de uma estrada, onde está indicada por letras a posição dessas cidades e por números as temperaturas registradas

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

Módulo de Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios. 6 ano E.F.

Módulo de Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios. 6 ano E.F. Módulo de Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios. 6 ano E.F. Sistemas de Medidas e Medidas de Tempo. Unidades de Medida de Tempo e Primeiros Exercícios.

Leia mais

Exercícios de Matemática para Concurso Público. Média Aritmética (simples) Média Ponderada

Exercícios de Matemática para Concurso Público. Média Aritmética (simples) Média Ponderada Exercícios de Matemática para Concurso Público Média Aritmética (simples) Média Ponderada 1. (Uema 201) Em um seletivo para contratação de estagiários, foram aplicadas duas provas: uma de Conhecimentos

Leia mais

2º ANO 4º. Sabe-se que a soma dos elementos de uma coluna do triângulo de Pascal pode ser calculada pela

2º ANO 4º. Sabe-se que a soma dos elementos de uma coluna do triângulo de Pascal pode ser calculada pela DISCIPLINA PROFESSOR DATA TURMA/TURNO MATEMÁTICA THIAGO PINHEIRO / 11 / 2013 SÉRIE NÍVEL TOTAL ESC. ESC. OBT. NOTA BIM. MÉDIO 2º ANO 4º ALUNO 1. (Uerj 2014) Em um escritório, há dois porta-lápis: o porta-lápis

Leia mais

I.INTRODUÇÃO A MATEMÁTICA.

I.INTRODUÇÃO A MATEMÁTICA. I.INTRODUÇÃO A MATEMÁTICA. 1. HISTÓRIA DA MATEMÁTICA Matemática é uma ciência que foi criada a fim de contar e resolver problemas com uma razão de existirem, foi criada a partir dos primeiros seres racionais

Leia mais

Sistema de Numeração e Aritmética Básica

Sistema de Numeração e Aritmética Básica 1 Sistema de Numeração e Aritmética Básica O Sistema de Numeração Decimal possui duas características importantes: ele possui base 10 e é um sistema posicional. Na base 10, dispomos de 10 algarismos para

Leia mais

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.

Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40. Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção

Leia mais

LISTA DE EXERCÍCIOS SISTEMAS LINEARES 2º EM 2015 Prof. MARCO POLO

LISTA DE EXERCÍCIOS SISTEMAS LINEARES 2º EM 2015 Prof. MARCO POLO LISTA DE EXERCÍCIOS SISTEMAS LINEARES 2º EM 2015 Prof. MARCO POLO 01.(GV) Como se sabe, no jogo de basquete existe uma linha chamada linha dos três pontos. Cada arremesso convertido de dentro dessa linha

Leia mais

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática

ENEM 2014 - Caderno Cinza. Resolução da Prova de Matemática ENEM 014 - Caderno Cinza Resolução da Prova de Matemática 136. Alternativa (C) Basta contar os nós que ocupam em cada casa. 3 nós na casa dos milhares. 0 nós na casa das centenas. 6 nós na casa das dezenas

Leia mais

Simulado OBM Nível 1. Gabarito Comentado

Simulado OBM Nível 1. Gabarito Comentado Simulado OBM Nível 1 Gabarito Comentado Questão 1. Renata digitou um número em sua calculadora, multiplicou-o por 3, somou 12, dividiu o resultado por 7 e obteve o número 15. O número digitado foi: a)

Leia mais

Exercícios de Matemática para Concurso Público. Equação do primeiro grau Equação do segundo grau Sistema de equação do primeiro grau

Exercícios de Matemática para Concurso Público. Equação do primeiro grau Equação do segundo grau Sistema de equação do primeiro grau Exercícios de Matemática para Concurso Público Equação do primeiro grau Equação do segundo grau Sistema de equação do primeiro grau. (G - utfpr 05) A soma de dois números é 64, se um é o triplo do outro

Leia mais

Exercícios de Matemática Potenciação e Radiciação b) x

Exercícios de Matemática Potenciação e Radiciação b) x Exercícios de Matemática Potenciação e Radiciação b) x 6 ) (Cesgranrio-994) O número de algarismos do produto y x 5 5 7 4 9 é igual a: c) x a) 7 xy b) 8 c) 6 y d) d) 4 e) 5 6) (ENEM-00) Dados divulgados

Leia mais

Universidade Federal de Goiás Instituto de Informática

Universidade Federal de Goiás Instituto de Informática Universidade Federal de Goiás Instituto de Informática EXERCÍCIOS DE ESTRUTURAS SEQUÊNCIAIS 1. O coração humano bate em média uma vez por segundo. Desenvolver um algoritmo para calcular e escrever quantas

Leia mais

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13 Cilindro 1. (Ueg 01) Uma coluna de sustentação de determinada ponte é um cilindro circular reto. Sabendo-se que na maquete que representa essa ponte, construída na escala 1:100, a base da coluna possui

Leia mais

Aula 8. Acesse: http://fuvestibular.com.br/

Aula 8. Acesse: http://fuvestibular.com.br/ Acesse: http://fuvestibular.com.br/ Aula 8 A multiplicação nada mais é que uma soma de parcelas iguais. E a divisão, sua inversa, "desfaz o que a multiplicação faz". Quer ver? Vamos pensar nas questões

Leia mais

01. A parte interior de uma taça foi gerada pela rotação de uma parábola em torno de um eixo z, conforme mostra a figura.

01. A parte interior de uma taça foi gerada pela rotação de uma parábola em torno de um eixo z, conforme mostra a figura. TD-ENEM-ANO 0. A parte interior de uma taça foi gerada pela rotação de uma parábola em torno de um eixo z, conforme mostra a figura. A função real que expressa a parábola, no plano cartesiano da figura,

Leia mais

Denominando o preço das caixas tipo 2B de C e as caixas flex por F, pode-se escrever um sistema:

Denominando o preço das caixas tipo 2B de C e as caixas flex por F, pode-se escrever um sistema: 1. Considere que, em uma empresa, 50% dos empregados possuam nível médio de escolaridade e 5%, nível superior. Guardadas essas proporções, se 80 empregados dessa empresa possuem nível médio de escolaridade,

Leia mais

Assunto: Conjuntos Numéricos Professor: Daniel Ferretto

Assunto: Conjuntos Numéricos Professor: Daniel Ferretto Todas as questões encontram-se comentadas na videoaula do canal maismatemática, disponível para visualização gratuita no seguinte link: https://www.youtube.com/watch?v=tlsqgpe7td8 NÍVEL BÁSICO 1. (G1 -

Leia mais

Sistemas de Numeração

Sistemas de Numeração Professor Menezes SISTEMA DE NUMERAÇÃO 1-1 Sistemas de Numeração Observe que alguns números decimais a possuem uma representação muito curiosa no sistema binário: 1 decimal = 1 binário; 2 decimal = 10

Leia mais

Frações. Números Racionais

Frações. Números Racionais Frações Números Racionais Consideremos a operação 4:5 =? onde o dividendo não é múltiplo do divisor. Vemos que não é possível determinar o quociente dessa divisão no conjunto dos números porque não há

Leia mais

Aula 3 - Sistemas de Numeração

Aula 3 - Sistemas de Numeração UEM Universidade Estadual de Maringá DIN - Departamento de Informática Disciplina: Fundamentos da Computação Profª Thelma Elita Colanzi Lopes thelma@din.uem.br Aula 3 - Sistemas de Numeração O ser humano,

Leia mais

Algarismos Significativos

Algarismos Significativos Algarismos Significativos Neste texto você conhecerá melhor os algarismos significativos, bem como as Regras gerais para realização de operações com algarismos significativos e as regras para Conversão

Leia mais

07. (PUC-MG) Uma função do 1 o grau é tal que f(-1) = 5 e f(3)=-3. Então f(0) é igual a : a) 0 b) 2 c) 3 d) 4 e) -1

07. (PUC-MG) Uma função do 1 o grau é tal que f(-1) = 5 e f(3)=-3. Então f(0) é igual a : a) 0 b) 2 c) 3 d) 4 e) -1 01. (PUC-PR) Dos gráficos abaixo, os que representam uma única função são: 06. (FGV-SP) O gráfico da função f(x) = mx + n passa pelos pontos ( 4, 2 ) e ( -1, 6 ). Assim o valor de m + n é: a) - 13/5 b)

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

Exercícios de Matemática Potenciação e Radiciação

Exercícios de Matemática Potenciação e Radiciação Exercícios de Matemática Potenciação e Radiciação ) (Cesgranrio-994) O número de algarismos do produto 4 9 é igual a: b) 8 c) 6 d) 4 e) ) (CPCAR-00) Escolha a alternativa FALSA. b) 4. 0,.... 0 4 9 0,0

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Energia Elétrica e Conta de Luz

Energia Elétrica e Conta de Luz Energia Elétrica e Conta de Luz 1. (Unifesp 2013) Observe a charge. Em uma única tomada de tensão nominal de 110V, estão ligados, por meio de um adaptador, dois abajures (com lâmpadas incandescentes com

Leia mais

Progressão Aritmética

Progressão Aritmética Progressão Aritmética 1. (G1 - cftrj 14) Disponha os números 1,,, 4,, 6, 7, 8 e 9 nas casas do tabuleiro abaixo de modo que: o número 9 ocupe a casa central, os números da primeira linha sejam todos ímpares

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

SIMULADO TERCEIRÃO e PRÉ-ENEM OUTUBRO - MATEMÁTICA PROFJUNIOR BARRETO

SIMULADO TERCEIRÃO e PRÉ-ENEM OUTUBRO - MATEMÁTICA PROFJUNIOR BARRETO SIMULADO TERCEIRÃO e PRÉ-ENEM OUTUBRO - MATEMÁTICA PROFJUNIOR BARRETO 01) (Enem 2014 Adaptada) Um cliente de uma videolocadora tem o hábito de alugar dois filmes por vez. Quando os devolve, sempre pega

Leia mais

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido.

FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR 2 TRAÇO DE FRAÇÃO DENOMINADOR. DENOMINADOR Indica em quantas partes o todo foi dividido. FRAÇÕES TERMOS DE UMA FRAÇÃO NUMERADOR TRAÇO DE FRAÇÃO DENOMINADOR DENOMINADOR Indica em quantas partes o todo foi dividido. NUMERADOR - Indica quantas partes foram consideradas. TRAÇO DE FRAÇÃO Indica

Leia mais

Exercícios de Matemática para Concurso Público. Razão e proporção Porcentagem

Exercícios de Matemática para Concurso Público. Razão e proporção Porcentagem Exercícios de Matemática para Concurso Público Razão e proporção Porcentagem 1. (Unicamp 014) A figura abaixo exibe, em porcentagem, a previsão da oferta de energia no Brasil em 030, segundo o Plano Nacional

Leia mais

Múltiplos e Divisores- MMC e MDC

Múltiplos e Divisores- MMC e MDC Múltiplos e Divisores- MMC e MDC Múltiplo de um número inteiro é o resultado desse número multiplicado por qualquer número inteiro. Definição: Para qualquer número a є Z, b є Z*, e c є Z, c é múltiplo

Leia mais

Capítulo UM Bases Numéricas

Capítulo UM Bases Numéricas Capítulo UM Bases Numéricas 1.1 Introdução Quando o homem aprendeu a contar, ele foi obrigado a desenvolver símbolos que representassem as quantidades e grandezas que ele queria utilizar. Estes símbolos,

Leia mais

Roteiro da aula. MA091 Matemática básica. Cálculo do mmc usando o mdc. Mínimo múltiplo comum. Aula 5 MMC e frações. Horas.

Roteiro da aula. MA091 Matemática básica. Cálculo do mmc usando o mdc. Mínimo múltiplo comum. Aula 5 MMC e frações. Horas. Roteiro da aula MA091 Matemática básica Aula 5 MMC e frações. Horas. Francisco A. M. Gomes UNICAMP - IMECC Março de 2015 1 2 3 4 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março de

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida. 7 ENSINO FUNDAMENTAL 7- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 7 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

PESQUISA DE ORÇAMENTO FAMILIAR - POF. Prof. Dra. Aline Mota de Barros Marcellini

PESQUISA DE ORÇAMENTO FAMILIAR - POF. Prof. Dra. Aline Mota de Barros Marcellini PESQUISA DE ORÇAMENTO FAMILIAR - POF Prof. Dra. Aline Mota de Barros Marcellini As maiores médias de consumo diário per capita ocorreram para Feijão (182,9 g/ dia), arroz (160,3 g/ dia), carne bovina

Leia mais

(A) 25 (B) 35 (C) 55 (D) 85

(A) 25 (B) 35 (C) 55 (D) 85 D9 Estabelecer relações entre o horário de inicio e termino e ou intervalo da duração de um evento ou acontecimento. D10 Num problema estabelecer trocas entre cédulas e moedas do sistema monetário brasileiro,

Leia mais

CADERNO DE EXERCÍCIOS 1E

CADERNO DE EXERCÍCIOS 1E CADERNO DE EXERCÍCIOS 1E Ensino Fundamental Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Porcentagem H15 H8 2 Subtração e divisão com números decimais 3 Multiplicação e adição

Leia mais

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,

Leia mais

Valores eternos. MATÉRIA. PROFESSOR(A) Hermann ---- ---- 1. Para a associação da figura, a resistência equivalente entre os terminais A e B é igual a:

Valores eternos. MATÉRIA. PROFESSOR(A) Hermann ---- ---- 1. Para a associação da figura, a resistência equivalente entre os terminais A e B é igual a: Valores eternos. TD Recuperação ALUNO(A) MATÉRIA Física III PROFESSOR(A) Hermann ANO SEMESTRE DATA 3º 1º Julho/2013 TOTAL DE ESCORES ESCORES OBTIDOS ---- ---- 1. Para a associação da figura, a resistência

Leia mais

Resolução . R$ 93,00 = R$ 62,00 3. Resposta: D

Resolução . R$ 93,00 = R$ 62,00 3. Resposta: D Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 7 Ọ ANO EM 01 Disciplina: matemática Prova: desafio nota: QUESTÃO 16 Numa divisão, o divisor é 107, o resto é 0 e o quociente é 106.

Leia mais

Poliedros, Prismas e Cilindros

Poliedros, Prismas e Cilindros 1. (G1 - ifsp 2013) A figura mostra uma peça feita em 1587 por Stefano Buonsignori, e está exposta no Museu Galileo, em Florença, na Itália. Esse instrumento tem a forma de um dodecaedro regular e, em

Leia mais

Modelos de Mostradores de Hidrômetros

Modelos de Mostradores de Hidrômetros O hidrômetro é um aparelho utilizado para medir o consumo de água. Assim toda vez que você abrir a torneira, o chuveiro ou der descarga, o hidrômetro entra em ação. É ele que indica a quantidade de água

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida. 7 ENSINO FUNDAMENTAL 7- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 7 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

Disciplina: Matemática. Período: I. Professor (a): Liliane Cristina de Oliveira Vieira e Maria Aparecida Holanda Veloso

Disciplina: Matemática. Período: I. Professor (a): Liliane Cristina de Oliveira Vieira e Maria Aparecida Holanda Veloso COLÉGIO LA SALLE BRASILIA Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: Matemática Período:

Leia mais

Energia Elétrica. P = E t (1) Para determinarmos a energia, realizamos uma simples transposição de termos na expressão acima, onde obtemos :

Energia Elétrica. P = E t (1) Para determinarmos a energia, realizamos uma simples transposição de termos na expressão acima, onde obtemos : Energia Elétrica Objetivo - Estudar a energia e suas transformações, particularizar para o caso da energia elétrica; aprender a medir a energia consumida e calcular o seu custo. Informação Técnica - Energia

Leia mais

É possível que cada pacote tenha: ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 9 ( ) 10. 02- Circule as frações equivalentes: 03- Escreva:

É possível que cada pacote tenha: ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 9 ( ) 10. 02- Circule as frações equivalentes: 03- Escreva: PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 0- Leia e resolva: a) No início do

Leia mais

Trabalho Final. Data da Submissão: das 8h do dia 16/06 às 24h do dia 17/06. Data da Entrega do Relatório: das 15h às 18h no dia 18/06.

Trabalho Final. Data da Submissão: das 8h do dia 16/06 às 24h do dia 17/06. Data da Entrega do Relatório: das 15h às 18h no dia 18/06. ICMC-USP ICC - SCC-0 Turmas B e D - º. Semestre de 00 - Prof. João Luís. PAE: Jefferson F. Silva. Trabalho Final Submissão Automática da implementação pelo sistema Boca (http://blacklabel.intermidia.icmc.usp.br/boca/scc00/.)

Leia mais

BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. jl.matematica@outlook.com

BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. jl.matematica@outlook.com BOM DIA!! ÁLGEBRA COM JENNYFFER LANDIM Aula 3 jl.matematica@outlook.com Números inteiros: operações e propriedades Adição Os termos da adição são chamadas parcelas e o resultado da operação de adição é

Leia mais

CADERNO DE ATIVIDADES DE RECUPERAÇÃO

CADERNO DE ATIVIDADES DE RECUPERAÇÃO COLÉGIO ARNALDO 2015 CADERNO DE ATIVIDADES DE RECUPERAÇÃO Matemática Aluno (a): 2º ano: Turma: Professora: Valor: 20 pontos Nota: Conteúdos Números - Comparação entre os números. Adição e subtração. Fatos

Leia mais

Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42

Probabilidades Duds. A probabilidade de que este último lápis retirado não tenha ponta é igual a: a) 0,64 b) 0,57 c) 0,52 d) 0,42 Probabilidades Duds 1. (Upe 2013) Em uma turma de um curso de espanhol, três pessoas pretendem fazer intercâmbio no Chile, e sete na Espanha. Dentre essas dez pessoas, foram escolhidas duas para uma entrevista

Leia mais

O que você pode fazer...

O que você pode fazer... O que você pode fazer... Colaborar é muito simples Não é preciso sacrificar o organismo ou o conforto individual e familiar com medidas drásticas de economia de água. O equilíbrio das condições ambientais

Leia mais

Associação de Geradores

Associação de Geradores Associação de Geradores 1. (Epcar (Afa) 2012) Um estudante dispõe de 40 pilhas, sendo que cada uma delas possui fem igual a 1,5 V e resistência interna de 0,25. Elas serão associadas e, posteriormente,

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web . (Pucrj 015) Sejam as funções f(x) = x 6x e g(x) = x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) < g(x) é: a) 8 b) 1 c) 60 d) 7 e) 10 4. (Acafe 014) O vazamento ocorrido

Leia mais

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z:

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z: Sistemas Lineares 1. (Unesp 2013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares

Leia mais

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E.

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M050280A8) A professora Clotilde pediu que seus alunos escrevessem um número que representasse

Leia mais

CONCURSO DE ADMISSÃO 2013/2014 6º ANO/ENS. FUND. MATEMÁTICA PÁG. 1

CONCURSO DE ADMISSÃO 2013/2014 6º ANO/ENS. FUND. MATEMÁTICA PÁG. 1 CONCURSO DE ADMISSÃO 203/204 6º ANO/ENS FUND MATEMÁTICA PÁG PROVA DE MATEMÁTICA Marque no cartão-resposta anexo a única opção correta correspondente a cada questão A direção de um escritório decidiu promover,

Leia mais

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3 POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz

Leia mais

VESTIBULAR 2011 1ª Fase RACIOCÍNIO LÓGICO-MATEMÁTICO GRADE DE CORREÇÃO

VESTIBULAR 2011 1ª Fase RACIOCÍNIO LÓGICO-MATEMÁTICO GRADE DE CORREÇÃO VESTIBULAR 011 1ª Fase RACIOCÍNIO LÓGICO-MATEMÁTICO GRADE DE CORREÇÃO A prova de Raciocínio Lógico-Matemático é composta por três questões e vale 10 pontos no total, assim distribuídos: Questão 1 3 pontos

Leia mais

COMPLEMENTO MATEMÁTICO

COMPLEMENTO MATEMÁTICO COMPLEMENTO MATEMÁTICO Caro aluno, A seguir serão trabalhados os conceitos de razão e proporção que são conteúdos matemáticos que devem auxiliar o entendimento e compreensão dos conteúdos de Química. Os

Leia mais

MÓDULO 1. Números. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 1. Números. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 1 Números As questões destas aulas foram retiradas ou adaptadas de provas das Olimpíadas Brasileiras de Matemática (OBM), fonte considerável

Leia mais

SITE_INEP_PROVA BRASIL - SAEB_MT_5ºANO (OK)

SITE_INEP_PROVA BRASIL - SAEB_MT_5ºANO (OK) 000 IT_023672 As balanças podem ser utilizadas para medir a massa dos alimentos nos supermercados. A reta numérica na figura seguinte representa os valores, em quilograma, de uma balança. 0 1 2 3 A partir

Leia mais

Agrupamento de Escolas António Rodrigues Sampaio Planificação Anual das Atividades Letivas

Agrupamento de Escolas António Rodrigues Sampaio Planificação Anual das Atividades Letivas Departamento Curricular: 1º ciclo Ano de escolaridade: 3º ano Área Curricular: MATEMÁTICA Ano letivo:2015/2016 Perfil do aluno à saída do 1º ciclo: Participar na vida sala de aula, da escola e da comunidade

Leia mais

Colégio Militar de Curitiba

Colégio Militar de Curitiba Colégio Militar de Curitiba Caro aluno Este Caderno de Apoio à Aprendizagem em Matemática foi produzido para você com o objetivo de colaborar com seus estudos. Ele apresenta uma série de atividades a serem

Leia mais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais

I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA TAXAS DE JUROS. Taxas Proporcionais 1º BLOCO...2 I. Matemática Financeira - André Arruda...2 2º BLOCO...6 I. Matemática - Daniel Lustosa...6 3º BLOCO... 10 I. Tabela de Acumulação de Capital... 10 I. MATEMÁTICA FINANCEIRA - ANDRÉ ARRUDA

Leia mais

PLANIFICAÇÃO ANUAL MATEMÁTICA 3 DOMÍNIOS OBJETIVOS ATIVIDADES

PLANIFICAÇÃO ANUAL MATEMÁTICA 3 DOMÍNIOS OBJETIVOS ATIVIDADES PLANIFICAÇÃO ANUAL MATEMÁTICA 3 DOMÍNIOS OBJETIVOS ATIVIDADES Números naturais Conhecer os numerais ordinais Utilizar corretamente os numerais ordinais até centésimo. Contar até um milhão Estender as regras

Leia mais

5 a Série (6 o Ano) Avaliação Diagnóstica Matemática (Entrada) Ensino Fundamental. Gestão da Aprendizagem Escolar. Nome da Escola.

5 a Série (6 o Ano) Avaliação Diagnóstica Matemática (Entrada) Ensino Fundamental. Gestão da Aprendizagem Escolar. Nome da Escola. Gestão da Aprendizagem Escolar Avaliação Diagnóstica Matemática (Entrada) 5 a Série (6 o Ano) Ensino Fundamental Nome da Escola Cidade Estado Nome do Aluno Idade Sexo feminino masculino Classe Nº 1. Durante

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: Ano: 6º Data: / 07 / 2014 EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA 1) Numa divisão, qual é o dividendo, se o divisor for 12,

Leia mais

Prova do Nível 1 (resolvida)

Prova do Nível 1 (resolvida) Prova do Nível (resolvida) ª fase 0 de novembro de 0 Instruções para realização da prova. Verifique se este caderno contém 0 questões e/ou qualquer tipo de defeito. Se houver algum problema, avise imediatamente

Leia mais

1. Sistemas de numeração

1. Sistemas de numeração 1. Sistemas de numeração Quando mencionamos sistemas de numeração estamos nos referindo à utilização de um sistema para representar uma numeração, ou seja, uma quantidade. Sistematizar algo seria organizar,

Leia mais

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática

Nome: N.º: endereço: data: telefone: E-mail: PARA QUEM CURSA O 8 Ọ ANO EM 2014. Disciplina: matemática Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 04 Disciplina: matemática Prova: desafio nota: QUESTÃO 6 (OBEMEP- ADAPTADO) Laura e sua avó Ana acabaram de descobrir que,

Leia mais

Projeto Pré-Requisitos 6º Ano

Projeto Pré-Requisitos 6º Ano Caro aluno Colégio Militar de Curitiba Este Caderno de Apoio à Aprendizagem em Matemática foi produzido para você com o objetivo de colaborar com seus estudos. Ele apresenta uma série de atividades a serem

Leia mais

Módulo 6 Porcentagem

Módulo 6 Porcentagem Professor: Rômulo Garcia machadogarcia@gmail.com Conteúdo Programático: Razões e proporções, divisão proporcional, regras de três simples e compostas, porcentagens Site: matematicaconcursos.blogspot.com

Leia mais

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação matemática álgebra equações de o e o graus Exercícios de potenciação. (FUVEST ª Fase) Qual desses números é igual a 0,064? a) ( 80 ) b) ( 8 ) c) ( ) d) ( 800 ) e) ( 0 8 ). (GV) O quociente da divisão (

Leia mais

Quando você receber a nova edição do Caderno do Aluno, veja o que mudou e analise as diferenças, para estar sempre bem preparado para suas aulas.

Quando você receber a nova edição do Caderno do Aluno, veja o que mudou e analise as diferenças, para estar sempre bem preparado para suas aulas. Caro Professor, Em 009 os Cadernos do Aluno foram editados e distribuídos a todos os estudantes da rede estadual de ensino. Eles serviram de apoio ao trabalho dos professores ao longo de todo o ano e foram

Leia mais

No microfone, sua saída pode assumir qualquer valor dentro de uma faixa de 0 à 10mV. 1 - Sistemas de numeração

No microfone, sua saída pode assumir qualquer valor dentro de uma faixa de 0 à 10mV. 1 - Sistemas de numeração 1 - Sistemas de numeração Lidamos constantemente com quantidades. Quantidades são medidas monitoradas, gravadas, manipuladas aritmeticamente e observadas. Quando lidamos com quantidades, é de suma importância

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio 36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 Ensino Médio Esta prova também corresponde à prova da Primeira Fase da Olimpíada Regional nos Estados de: AL BA ES MG PA RS RN SC Terça-feira,

Leia mais

Prova da segunda fase - Nível 1

Prova da segunda fase - Nível 1 Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões

Leia mais

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo:

QUESTÃO 16 (UNICAMP) Três planos de telefonia celular são apresentados na tabela abaixo: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 (UNICAMP) Três planos de telefonia celular

Leia mais

MATEMÁTICA PRINCÍPIOS

MATEMÁTICA PRINCÍPIOS MTEMÁTI PRINÍPIOS PÍTULO NÚMEROS oneões Podemos imaginar um campo de futebol no qual desejamos ir de uma trave à outra. Pode-se seguir este raciocínio: Na caminhada, em determinado momento, estaremos na

Leia mais

Resoluções Prova Anglo

Resoluções Prova Anglo Resoluções Prova Anglo F- TIPO D-6 Matemática (P-2) Ensino Fundamental 6º ano DESCRITORES, RESOLUÇÕES E COMENTÁRIOS A Prova Anglo é um dos instrumentos para avali ar o desempenho dos alunos do 6 o ano

Leia mais

Exercícios Estudo da eletricidade (PARTE 1)

Exercícios Estudo da eletricidade (PARTE 1) CIÊNCIAS º Ano do Ensino Fundamental Professora: Ana Paula Souto Nome: n o : Turma: ) Observe a conta da CEMIG abaixo. Exercícios Estudo da eletricidade (PARTE ) A partir das informações dessa figura,

Leia mais

Agrupamento de Escolas Eugénio de Castro 1º Ciclo. Critérios de Avaliação. Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano

Agrupamento de Escolas Eugénio de Castro 1º Ciclo. Critérios de Avaliação. Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano Agrupamento de Escolas Eugénio de Castro 1º Ciclo Critérios de Avaliação Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano Números e Operações Números naturais Utilizar corretamente os numerais ordinais

Leia mais

Exercícios Aula 02. 2) (UFSC) Seja. . O valor de B para a = - 10, b = -5 e c = 0 é: o valor do inverso de A para x = 1,25; y = 0,4 e z = 0,1

Exercícios Aula 02. 2) (UFSC) Seja. . O valor de B para a = - 10, b = -5 e c = 0 é: o valor do inverso de A para x = 1,25; y = 0,4 e z = 0,1 Exercícios Aula 0 1) Você foi ao mercado e comprou kg de arroz, cujo preço por quilo é R$ 1,65; kg de feijão, cujo preço por quilo é R$ 3,10; e comprou, ainda, 50g de café moído, cujo preço foi R$,50.

Leia mais