setor 1214 Aulas 35 e 36

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "setor 1214 Aulas 35 e 36"

Transcrição

1 seto SP Aulas 35 e 36 LANÇAMENTO HORIZONTAL E OBLÍQUO O oviento de u copo lançado hoizontalente no vácuo (ou e cicunstâncias tais que a esistência do a possa se despezada) é a coposição de ua queda live co u MRU na hoizontal. O oviento de u copo lançado obliquaente no vácuo (ou e cicunstâncias tais que a esistência do a possa se despezada) é a coposição de u lançaento vetical co u MRU na hoizontal.. (FUVEST) E decoência de fotes chuvas, ua cidade do inteio paulista ficou isolada. U avião sobevoou a cidade, co velocidade hoizontal constante, laando 4 pacotes de alientos, e intevalos de tepos iuais. No caso ideal, e que a esistência do a pode se despezada, a fiua que elho podeia epesenta as posições apoxiadas do avião e dos pacotes e u eso instante é: a) d) Execícios 1. Duas bolinhas idênticas A e B pate ao eso tepo de ua ceta altua h acia do solo, sendo que A cai e queda live e B te ua velocidade v 0 hoizontal. b) e) c) Assinala a altenativa coeta. a) As duas chea juntas ao solo. b) A chea pieio ao solo. c) A chea loo depois de B. d) A ou B chea pieio, dependendo da velocidade inicial v 0 de B. e) A ou B chea pieio, dependendo da altua do lançaento. Coentáio: E elação à Tea, o oviento de u pacote é u lançaento hoizontal, que pode se consideado a coposição de u MRU hoizontal co ua queda live. No caso e questão, a velocidade de lançaento é iual à do avião, e, e conseqüência, na dieção hoizontal os ovientos dos pacotes e do avião são idênticos. Potanto e elação ao avião o oviento dos pacotes é ua queda live, que é u MRUA. Coo o esquea indica as posições dos pacotes e intevalos de tepo iuais, a distância ente dois pacotes consecutivos é cescente. ALFA ANGLO VESTIBULARES

2 3. (FUVEST-adaptada) Duante u joo de futebol, u chute fote, a pati do chão, lança a bola conta ua paede póxia. Co auxílio de ua câaa diital, foi possível econstui a tajetóia da bola desde o instante e que ela atiniu a altua áxia (ponto A) até o ponto que bateu na paede (ponto B). Os pontos A e B estão epesentados na fiua se escala. Despeza a esistência do a e considea = 10/s. Deteina: a) O tepo asto pela bola paa se desloca do ponto A ao ponto B. b) A velocidade da bola no instante e que passa po A. c) A intensidade da velocidade da bola no instante e que passa po B. A v A x 4. U copo de assa é lançado obliquaente no vácuo co velocidade inicial 100/s, que foa u ânulo de 60º co a hoizontal. Co elação ao oviento desse copo, são feitas 3 afiações. Indica as que estão coetas, despezando-se a esistência do a. I No ponto ais alto do lançaento, a velocidade é ínia e vale 50/s. II As velocidades do copo ao passa pelos pontos A e B de esa altua apesenta a esa intensidade. III Se o copo é lançado de ua supefície hoizontal, o tepo de subida é iual ao de descida. I) Ceta. v x = v 0 cos θ = 100 cos 60 1 v x = 100 = 50 /s 5,0 II) Ceta. E ponto de esa altitude apesenta a esa eneia potencial e, e conseqüência, a eneia cinética tabé é. III) Ceta. O lançaento oblíquo apesenta sietia 6 B 4, y 1 a) y = t 0,8 = 5 t t = 0,4 s b) x = v A t 6 = v x 0,4 v A = v x = 15 /s c) v B = v x + v y v x = v A = constante = 15 /s v y = t = 10 0,4 = 4 /s v B 15,5 /s Livo 1 Unidade I Cadeno de Execícios Unidade I AULA 35 Taefa Mínia Leia o ite 3 (só até Velocidade nu Instante t qualque), cap. 5. Resolva os execícios 1 e, séie 6. AULA 36 Leia o ite Decoposição do Lançaento Oblíquo, cap. 5. Resolva os execícios 3 e 4, séie 6. Resolva os execícios 1, e 3, séie 7. AULA 36 Taefa Copleenta Resolva os execícios 5, 6 e 7, séie 6. Resolva os execícios 4, 5 e 6, séie 7. ALFA ANGLO VESTIBULARES

3 Aulas 37 e 38 GRAVITAÇÃO: HISTÓRICO E LEI DE NEWTON LEI DA ATRAÇÃO GRAVITACIONAL DE NEWTON Matéia atai atéia na azão dieta do poduto das assas e na azão invesa do quadado da distância. Execícios 1. Qual é a foça de atação avitacional ente duas esfeas, de assas de 100k cada ua, sabendo-se que a distância ente o cento de ua e o cento da outa é 1. (Considee G iual a 6, N /k ) F = a) 10 4 N b) 10 N c) 6,7N d) 6, N e) 6, N G 1 = 6, = 6, N 1 M F F G M = F. (CESGRANRIO) A foça de atação avitacional ente dois copos celestes é popocional ao inveso do quadado da distância ente os dois copos. Assi é que, quando a distância ente u coeta e o Sol diinui da etade, a foça de atação execida pelo Sol sobe o coeta: a) diinui da etade. b) é ultiplicada po. c) é dividida po 4. d) é ultiplicada po 4. e) peanece constante. F = G F = G M F = 4G F = 4F M M Livo 1 Unidade III Cadeno de Execícios Unidade III Taefa Mínia AULA 37 Leia os itens 1 a 8, cap. 6. Leia os execícios esolvidos 1 e, cap. 6. Resolva os execícios 1, e 3, séie 6. AULA 38 Resolva os execícios 7, 8 e 9, séie 6. AULA 38 Taefa Copleenta Resolva os execícios 4 a 6 e 10 a 1, séie 6. ALFA ANGLO VESTIBULARES

4 Aula 39 CAMPO GRAVITACIONAL Definição P = sup (intensidade do capo avitacional) Intensidade: Dieção: vetical Sentido: paa baixo P G M M = = = G ( R + h) ( x ) h h 1 sup 4 ( x ) sup R 1 sup 9 (x) R R 3R 4R (distância do cento) ALFA ANGLO VESTIBULARES

5 Execícios 1. (Santa Casa-SP) U planeta te o dobo do aio e o dobo da assa da Tea. Se a aceleação da avidade na supefície da Tea é, na supefície do planeta consideado seá: a) b) c) d) e) n.d.a. Sendo () T a intensidade do capo avitacional na supefície da Tea, () X a intensidade do capo avitacional na supefície do planeta X. () T = R () X = Então: R (M) GM (R) () T = /R ()X = GM/(R) R (M). O capo avitacional na supefície da Tea te intensidade 10/s. Qual a intensidade do capo avitacional a ua altua 0,1R, sendo R o aio da Tea? Sendo: () sup = a intensidade do capo avitacional na supefície da Tea, R = a intensidade do capo avitacional a ua (R + h) altua h da supefície da Tea. = (R + 0,1R) = (1,1R) = 1 1,1 h = 0,1R = /(R + h) R 0,83 () sup 8,3 /s R (M) () sup = /R () X = GM (R) () X = 4 () X = R 1 () T Livo 1 Unidade III Cadeno de Execícios Unidade III Taefa Mínia Leia os itens 9 e 10, cap. 6. Leia os execícios esolvidos 3 e 4, cap. 6. Resolva o execício 16, séie 6. Taefa Copleenta Resolva os execícios 18 e 19, séie 6. ALFA ANGLO VESTIBULARES

6 Aula 40 ÓRBITA CIRCULAR Se u copo de assa está e óbita cicula e tono de u copo de assa M, sendo M >>, então: a c = sendo a c a aceleação centípeta do copo e óbita; a intensidade do capo avitacional ciado pelo copo de assa M e u ponto qualque da óbita. a c = M Execícios 1. (FFP) Supondo a Tea pefeitaente esféica e despovida de atosfea, qual deveá se a velocidade de u copo paa que, lançado, hoizontalente, ente e óbita cicula asante? (Dados: aio da Tea = R = 6400k. póxio à supefície: 10/s ) v = = = 10 6, v = = /s v = 8 k/s 1º- veloc. astonáutica.. Co os dados da questão anteio, considee u ponto B a ua altua h = 3R. Deteina: a) o capo avitacional no ponto B; b) a velocidade co que o copo deve se lançado do ponto B paa enta e óbita cicula a) h = = sup = = 0,65 /s (R + 3R) b) v h = = (R + 3R) h v h = 4R h = 4000 /s ALFA ANGLO VESTIBULARES

7 3. (FUVEST) Satélites utilizados paa telecounicações são colocados e óbitas eoestacionáias ao edo da Tea, ou seja, de tal foa que peaneça sepe acia de u eso ponto da supefície da Tea. Considee aluas condições que podeia coesponde a esses satélites: I. te o eso peíodo, de ceca de 4 hoas; II. te apoxiadaente a esa assa; III. esta apoxiadaente à esa altitude; IV. ante-se nu plano que contenha o cículo do equado teeste. O conjunto de todas as condições, que satélites e óbita eoestacionáia deve necessaiaente obedece, coesponde a a) I e III. b) I, II, III. c) I, III e IV. d) II e III. e) II e IV. 4. (FUVEST) Dento de u satélite e óbita e tono da Tea, a tão falada ausência de peso, esponsável pela flutuação de u objeto dento do satélite, é devida ao fato de que: a) a óbita do satélite se enconta no vácuo e a avidade não se popaa no vácuo. b) a óbita do satélite se enconta foa da atosfea, não sofendo assi os efeitos da pessão atosféica. c) a atação luna equiliba a atação teeste e, conseqüenteente, o peso de qualque objeto é nulo. d) a foça de atação teeste, centípeta, é uito eno que a foça centífua dento do satélite. e) o satélite e o objeto que flutua tê a esa aceleação, poduzida unicaente po foças avitacionais. Paa que u satélite seja eoestacionáio, o plano de seu oviento deve conte o cículo do Equado (IV) e sua velocidade anula deve se iual à do oviento de otação da Tea. Potanto seu peíodo é de 4 hoas (I). De acodo co o Pincípio Fundaental da Dinâica: Rc = a C = a C = a C G M G M R = H = T R 3 T 3 T ω T ω T Assi, as altitudes de todos os satélites eoestacionáios são iuais (III) e independentes de suas assas. a c = a c = P Pólo Note Tea R T H Livo 1 Unidade III Cadeno de Execícios Unidade III Taefa Mínia Leia os itens 11 e 1, cap. 6. Leia os execícios esolvidos 5 e 6, cap. 6. Resolva os execícios 3 a 6, séie 6. Taefa Copleenta Resolva os execícios 7 a 31 e 34, séie 6. ALFA ANGLO VESTIBULARES

LEIS DE NEWTON APLICADAS AO MOVIMENTO DE FOGUETES

LEIS DE NEWTON APLICADAS AO MOVIMENTO DE FOGUETES LEIS DE NEWTON APLICADAS AO OVIENTO DE OGUETES 1ª Lei de Newton U copo e oviento continuaá e oviento, co velocidade constante, a não se que actue ua foça, ou u sistea de foças, de esultante não-nula, que

Leia mais

IMPULSO E QUANTIDADE DE MOVIMENTO

IMPULSO E QUANTIDADE DE MOVIMENTO AULA 10 IMPULSO E QUANTIDADE DE MOVIMENTO 1- INTRODUÇÃO Nesta aula estudaemos Impulso de uma foça e a Quantidade de Movimento de uma patícula. Veemos que estas gandezas são vetoiais e que possuem a mesma

Leia mais

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11 Mecânica Gavitação 2ª Pate Pof. Luís Pena 2010/11 Conceito de campo O conceito de campo foi intoduzido, pela pimeia vez po Faaday no estudo das inteacções elécticas e magnéticas. Michael Faaday (1791-1867)

Leia mais

Figura 14.0(inicio do capítulo)

Figura 14.0(inicio do capítulo) NOTA DE AULA 05 UNIVESIDADE CATÓLICA DE GOIÁS DEPATAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GEAL E EXPEIMENTAL II (MAF 0) Coodenação: Pof. D. Elias Calixto Caijo CAPÍTULO 14 GAVITAÇÃO 1. O MUNDO

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

a) Qual é a energia potencial gravitacional, em relação à superfície da água, de um piloto de 60kg, quando elevado a 10 metros de altura?

a) Qual é a energia potencial gravitacional, em relação à superfície da água, de um piloto de 60kg, quando elevado a 10 metros de altura? 1. (Espcex (Aan) 17) U cubo de assa 4 kg está inicialente e epouso sobe u plano hoizontal se atito. Duante 3 s, aplica-se sobe o cubo ua foça constante, hoizontal e pependicula no cento de ua de suas faces,

Leia mais

TRABALHO E POTÊNCIA. O trabalho pode ser positivo ou motor, quando o corpo está recebendo energia através da ação da força.

TRABALHO E POTÊNCIA. O trabalho pode ser positivo ou motor, quando o corpo está recebendo energia através da ação da força. AULA 08 TRABALHO E POTÊNCIA 1- INTRODUÇÃO Uma foça ealiza tabalho quando ela tansfee enegia de um copo paa outo e quando tansfoma uma modalidade de enegia em outa. 2- TRABALHO DE UMA FORÇA CONSTANTE. Um

Leia mais

Cap.2 - Mecanica do Sistema Solar II: Leis de Kepler do movimento planetário

Cap.2 - Mecanica do Sistema Solar II: Leis de Kepler do movimento planetário Cap. - Mecanica do Sistea Sola II: Leis de Keple do oviento planetáio Johannes Keple Tycho Bahe Mateático e Astônoo Aleão 57-630 Astônoo Dinaaquês 546-60 = Cicunfeência achatada = Elipse Lei das Elipses

Leia mais

1. Mecanica do Sistema Solar (II): Leis de Kepler do movimento planetário

1. Mecanica do Sistema Solar (II): Leis de Kepler do movimento planetário . Mecanica do Sistea Sola (II): Leis de Keple do oviento planetáio Astonoy: A Beginne s Guide to the Univese, E. Chaisson & S. McMillan (Caps. 0 e ) Intoductoy Astonoy & Astophysics, M. Zeilek, S. A. Gegoy

Leia mais

Prof. Dr. Oscar Rodrigues dos Santos

Prof. Dr. Oscar Rodrigues dos Santos FÍSICA 017-1º. Semeste Pof. D. Osca Rodigues dos Santos oscasantos@utfp.edu.b ou pofoscafisica@gmail.com EMENTA Gavitação. Mecânica dos Fluidos. Oscilações. Ondas Mecânicas. Óptica Geomética. Tempeatua.

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática UNIVERSIDDE PRESITERIN MKENZIE Escola de Engenhaia 1 inemática 2 Dinâmica 3 Estática 1ºs/2006 1) Uma patícula movimenta-se, pecoendo uma tajetóia etilínea, duante 30 min com uma velocidade de 80 km/h.

Leia mais

FÍSICA GERAL E EXPERIMENTAL I RESOLUÇÃO DA LISTA I

FÍSICA GERAL E EXPERIMENTAL I RESOLUÇÃO DA LISTA I FÍSICA GERAL E EPERIMENTAL I RESOLUÇÃO DA LISTA I UNIERSIDADE CATÓLICA DE GOIÁS Depataento de Mateática e Física Disciplina: Física Geal e Epeiental I (MAF ) RESOLUÇÃO DA LISTA II ) Consideando os deslocaentos,

Leia mais

20 Exercícios Revisão

20 Exercícios Revisão 0 Execícios Revisão Nome Nº 1ª séie Física Beth/Reinaldo Data / / T cte. G. M. m F v a cp v G. M T.. v R Tea = 6,4 x 10 6 m M Tea = 6,0 x 10 4 kg G = 6,7 x 10 11 N.m /kg g = 10 m/s P = m.g M = F. d m d

Leia mais

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos.

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos. DA TEA À LUA INTEAÇÃO ENTE COPOS Uma inteação ente dois copos significa uma ação ecípoca ente os mesmos. As inteações, em Física, são taduzidas pelas foças que atuam ente os copos. Estas foças podem se

Leia mais

MOVIMENTO DE QUEDA LIVRE

MOVIMENTO DE QUEDA LIVRE I-MOVIMENTO DE QUEDA LIVRE II-MOVIMENTO DE QUEDA COM RESISTÊNCIA DO AR MOVIMENTO DE QUEDA LIVRE 1 1 QUEDA LIVRE A queda live é um movimento de um copo que, patindo do epouso, apenas está sujeito à inteacção

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

1ª Ficha Global de Física 12º ano

1ª Ficha Global de Física 12º ano 1ª Ficha Global de Física 1º ano Duação: 10 minutos Toleância: não há. Todos os cálculos devem se apesentados de modo clao e sucinto Note: 1º - as figuas não estão desenhadas a escala; º - o enunciado

Leia mais

Mecânica. Teoria geocêntrica Gravitação 1ª Parte Prof. Luís Perna 2010/11

Mecânica. Teoria geocêntrica Gravitação 1ª Parte Prof. Luís Perna 2010/11 1-0-011 Mecânica Gavitação 1ª Pate Pof. Luís Pena 010/11 Teoia geocêntica Foi com Ptolomeu de Alexandia que sugiu, po volta de 150 d.c. no seu livo Almagest, uma descição pomenoizada do sistema sola. Cláudio

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

MOVIMENTOS CURVILÍNEOS LANÇAMENTO HORIZONTAL COM RESISTÊNCIA DO AR DESPREZÁVEL

MOVIMENTOS CURVILÍNEOS LANÇAMENTO HORIZONTAL COM RESISTÊNCIA DO AR DESPREZÁVEL MOVIMENOS CURVILÍNEOS LANÇAMENO HORIZONAL COM RESISÊNCIA DO AR DESPREZÁVEL ata-se de um moimento composto po dois moimentos. Um deles obsea-se no plano hoizontal (componente hoizontal) e o outo no plano

Leia mais

Física e Química 11.º Ano Proposta de Resolução da Ficha N.º 3 Forças e Movimentos

Física e Química 11.º Ano Proposta de Resolução da Ficha N.º 3 Forças e Movimentos ísica e Química 11.º Ano Poposta de Resolução da icha N.º 3 oças e ovimentos 1. Dados: v = const a = 15,0 N R N = 6,0 N Gupo I Estando o copo em equilíbio R = 0 N ou seja: a = sen e R N = cos explicitando

Leia mais

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm) INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício

Leia mais

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO seto 10 100508 ulas 39 e 40 ESTUDO DO CMPO ELÉTRICO CMPO DE UM CRG PUNTIFORME P E p = f (, P) Intensidade: E K = Dieção: eta (, P) Sentido: 0 (afastamento) 0 (apoximação). (FUVEST) O campo elético de uma

Leia mais

Componente de Física

Componente de Física Disciplina de Física e Química A 11º ano de escolaidade Componente de Física Componente de Física 1..8 Movimento de queda, na vetical, com efeito da esistência do a apeciável É um facto que nem sempe se

Leia mais

Movimentos dos Satélites Geostacionários

Movimentos dos Satélites Geostacionários Movimentos dos Satélites Geostaionáios Os satélites geostaionáios são satélites que se enontam paados elativamente a um ponto fixo sobe a Tea, gealmente sobe a linha do equado. 6 hoas mais tade Movimentos

Leia mais

Dinâmica do Movimento Circular

Dinâmica do Movimento Circular Dinâmica do Movimento Cicula Gabaito: Resposta da questão 1: [E] A fita F 1 impede que a gaota da cicunfeência extena saia pela tangente, enquanto que a fita F impede que as duas gaotas saiam pela tangente.

Leia mais

do sistema. A aceleração do centro de massa é dada pela razão entre a resultante das forças externas ao sistema e a massa total do sistema:

do sistema. A aceleração do centro de massa é dada pela razão entre a resultante das forças externas ao sistema e a massa total do sistema: Colisões.F.B, 004 Física 004/ tua IFA AULA 3 Objetio: discuti a obseação de colisões no efeencial do cento de assa Assuntos:a passage da descição no efeencial do laboatóio paa o efeencial do cento de assa;

Leia mais

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia Física Aistotélica of. Roseli Constantino Schwez constantino@utfp.edu.b Aistóteles: Um copo só enta em movimento ou pemanece em movimento se houve alguma foça atuando sobe ele. Aistóteles (384 a.c. - 3

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

DINÂMICA ATRITO E PLANO INCLINADO

DINÂMICA ATRITO E PLANO INCLINADO AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes

Leia mais

, (eq.1) Gravitação Universal Com Gabarito. 1. Lei da Gravitação Universal de Newton (1642-1727): Turma ITA IME Professor Herbert Aquino

, (eq.1) Gravitação Universal Com Gabarito. 1. Lei da Gravitação Universal de Newton (1642-1727): Turma ITA IME Professor Herbert Aquino Gavitação Univesal Co Gabaito 1. Lei da Gavitação Univesal de Newton (1642-1727): Apoiado nos estudos de Copénico, Galileu e Keple, Isaac Newton apesentou sua lei da Gavitação Univesal. Ente dois copos

Leia mais

Aplicac~oes Pouco Discutidas nos Cursos de Mec^anica. Rodrigo Dias Tarsia. Observatorio Astron^omico. Trabalho recebido em 29 de marco de 1997

Aplicac~oes Pouco Discutidas nos Cursos de Mec^anica. Rodrigo Dias Tarsia. Observatorio Astron^omico. Trabalho recebido em 29 de marco de 1997 Revista Basileia de Ensino de Fsica, vol. 20, n ọ 2, junho, 1998 117 O Poblea de Dois Copos: Aplicac~oes Pouco Discutidas nos Cusos de Mec^anica Rodigo Dias Tasia Obsevatoio Aston^oico Depataento de Fsica,

Leia mais

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO AULA 6 MECÂNICA Dinâmica Atito e plano inclinado 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos.

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos. CAPÍTULO 4 - DINÂMICA A dinâmica estuda as elações ente as foças que actuam na patícula e os movimentos po ela adquiidos. A estática estuda as condições de equilíbio de uma patícula. LEIS DE NEWTON 1.ª

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

Exercícios Resolvidos Astronomia (Gravitação Universal)

Exercícios Resolvidos Astronomia (Gravitação Universal) Execícios Resolvios Astonoia (Gavitação Univesal) 0 - Cite as leis e Keple o oviento os copos celestes I "As óbitas que os planetas esceve ao eo o Sol são elípticas, co o Sol ocupano u os focos a elipse"

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESO POITÉNI D UNIVERSIDDE DE SÃO PUO Depatamento de Engenhaia Mecânica PME 00 MEÂNI ª Pova 0/04/007 Duação 00 minutos (Não é pemitido o uso de calculadoas) ω D 3 g ª Questão (3,0 pontos) O sistema mostado

Leia mais

O sofrimento é passageiro. Desistir é pra sempre! Gravitação

O sofrimento é passageiro. Desistir é pra sempre! Gravitação O sofimento é passageio. Desisti é pa sempe! Gavitação 1. (Upe 015) A figua a segui ilusta dois satélites, 1 e, que obitam um planeta de massa M em tajetóias ciculaes e concênticas, de aios 1 e, espectivamente.

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SCOL POLITÉCIC UIVRSI SÃO PULO epatamento de ngenhaia ecânica P 100 CÂIC 1 Pova Substitutiva 1 de julho de 017 - uação: 110 minutos (não é pemitido o uso de celulaes, tablets, calculadoas e dispositivos

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO Tópicos de Física ásica 006/1 pof. Mata SEMN 8 PRIMEIR PROV - SOLUÇÃO NOME: TÓPIOS E FÍSI ÁSI 006/1 Tuma IF PRIMEIR PROV SOLUÇÃO QUESTÃO 1 (alo: 1,5 pontos) Numa epeiência, foam deteminados os aloes da

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Unesp 2013) No dia 5 de junho de 2012, pôde-se obseva, de deteminadas egiões da Tea, o fenômeno celeste chamado tânsito de Vênus, cuja póxima ocoência se daá em 2117. Tal fenômeno só é possível poque

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos ... Do que tata a? Até aqui: Lei de Coulomb noteou! : outa foma de calcula campos eléticos fi mais simples quando se tem alta simetia (na vedade, só tem utilidade pática nesses casos!!) fi válida quando

Leia mais

02 C V ap = V 0 (γ Hg γ v ) Dq V ap = 500(0, )( 18 22) = 3,4 ml 03 E

02 C V ap = V 0 (γ Hg γ v ) Dq V ap = 500(0, )( 18 22) = 3,4 ml 03 E esoluções de xecícios ÍIC II O Calo e os enômenos émicos Capítulo 8 Dilatação émica, - L adi a L Di ( )( - ) - a 5 o C - - BLOCO BLOCO C plicando a expessão da dilatação linea L a Di e testando as altenativas:

Leia mais

Prof. A.F.Guimarães Questões Dinâmica 3 Trabalho, Potência e Energia

Prof. A.F.Guimarães Questões Dinâmica 3 Trabalho, Potência e Energia Questão 1 Po. A.F.Guimaães Questões Dinâmica Tabalho, Potência e Enegia (FUVEST) Uma patícula de massa kg, patindo do epouso, está sujeita à ação exclusiva de duas oças constantes F 1 e F pependiculaes

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

Física II F 228 2º semestre aula 2: gravimetria, matéria escura, energia potencial gravitacional e a expansão do universo

Física II F 228 2º semestre aula 2: gravimetria, matéria escura, energia potencial gravitacional e a expansão do universo Física II F 8 º semeste 01 aula : gavimetia, matéia escua, enegia potencial gavitacional e a expansão do univeso Revendo a aula passada: pincípio de supeposição (e coigindo um eo) m F F 1 z M b a M 1 Discussão

Leia mais

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6.

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6. 9 &55(1((/e5,&$ Nos capítulos anteioes estudamos os campos eletostáticos, geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo iniciaemos o estudo da coente elética, que nada mais

Leia mais

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições.

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições. d d A Cinemática Escala estuda as gandezas: Posição, Deslocamento, Velocidade Média, Velocidade Instantânea, Aceleação Média e Instantânea, dando a elas um tatamento apenas numéico, escala. A Cinemática

Leia mais

1. Introdução: classificação das colisões segundo a variação na energia

1. Introdução: classificação das colisões segundo a variação na energia Colisões M.F.B, 004 Física 004/ tua IFA AULA Objetivo: discuti ocessos de colisão ente atículas. Assuntos: colisões elásticas e inelásticas O que você deve se caaz ao final desta aula:! obte as velocidades

Leia mais

Exercícios. setor Aula 25. Separando as esferas. afastando a barra A ELETRIZAÇÃO POR INDUÇÃO E A ATRAÇÃO DE CORPOS NEUTROS

Exercícios. setor Aula 25. Separando as esferas. afastando a barra A ELETRIZAÇÃO POR INDUÇÃO E A ATRAÇÃO DE CORPOS NEUTROS seto 116 1160409 1160409-SP ula 5 ELETIZÇÃO PO INDUÇÃO E TÇÃO DE COPOS NEUTOS = conduto ou isolante, inicialmente eletizado (induto) = conduto, inicialmente neuto (induzido) Passo 1: Passo : Passo 3: Passo

Leia mais

FÍSICA - 1 o ANO MÓDULO 32 COLISÕES REVISÃO

FÍSICA - 1 o ANO MÓDULO 32 COLISÕES REVISÃO FÍSICA - 1 o ANO MÓDULO 32 COLISÕES REVISÃO Fixação 1) Duas partículas A e B, de assas A = 1,0 kg e B = 2,0 kg, ove-se inicialente sobre a esa reta, coo ilustra a figura, onde estão assinalados os sentidos

Leia mais

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular*

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular* 48 APOSTILA AGA0501 - Física da Tea e do Univeso 1º semeste de 014 Pofa. Jane Gegoio-Hetem CAPÍTULO 4 Movimento Cicula* 4.1 O movimento cicula unifome 4. Mudança paa coodenadas polaes 4.3 Pojeções do movimento

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

LISTA de GRAVITAÇÃO PROFESSOR ANDRÉ

LISTA de GRAVITAÇÃO PROFESSOR ANDRÉ LISA de GRAVIAÇÃO PROFESSOR ANDRÉ 1. (Ufgs 01) Em 6 de agosto de 01, o jipe Cuiosity" pousou em ate. Em um dos mais espetaculaes empeendimentos da ea espacial, o veículo foi colocado na supefície do planeta

Leia mais

Polícia Rodoviária Federal. Exercícios de Física Aula 1 de 5. Prof. Dirceu Pereira UNIDADE 1 - NOÇÕES SOBRE VETORES. 1) Não são grandezas vetoriais:

Polícia Rodoviária Federal. Exercícios de Física Aula 1 de 5. Prof. Dirceu Pereira UNIDADE 1 - NOÇÕES SOBRE VETORES. 1) Não são grandezas vetoriais: UNIDADE 1 - NOÇÕES SOBRE VETORES 1) Não são gandezas vetoiais: a) tempo, deslocamento e foça. b) foça, velocidade e aceleação. c) tempo, tempeatua e volume. d) tempeatua, velocidade e volume. ) (Unitau-SP)

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.1: Rotação de um Copo Rígido Do pofesso paa o aluno ajudando na avaliação de compeensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 1.8 Equilíbio Estático Estudamos que uma patícula

Leia mais

CAPÍTULO 7: CAPILARIDADE

CAPÍTULO 7: CAPILARIDADE LCE000 Física do Ambiente Agícola CAPÍTULO 7: CAPILARIDADE inteface líquido-gás M M 4 esfea de ação molecula M 3 Ao colocamos uma das extemidades de um tubo capila de vido dento de um ecipiente com água,

Leia mais

APÊNDICE DO CAPÍTULO 12.

APÊNDICE DO CAPÍTULO 12. APÊNDICE DO CAPÍTULO 12. GRAVITAÇÃO A foça gavitacional é o paadigma de foça em mecˆanica newtoniana. Este esumo visa auxilia o estudo dessa foça no capítulo 12 do livo-texto, cujas figuas e exemplos complementam

Leia mais

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas

Electrostática. Programa de Óptica e Electromagnetismo. OpE - MIB 2007/2008. Análise Vectorial (revisão) 2 aulas Electostática OpE - MIB 7/8 ogama de Óptica e Electomagnetismo Análise Vectoial (evisão) aulas Electostática e Magnetostática 8 aulas Campos e Ondas Electomagnéticas 6 aulas Óptica Geomética 3 aulas Fibas

Leia mais

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto MATEMÁTICA FRENTE ÁLGEBRA n Módulo 8 Dispositivo de Biot-Ruffini Teoema Do Resto ) x + x x x po x + Utilizando o dispositivo de Biot-Ruffini: coeficientes esto Q(x) = x x + x 7 e esto nulo ) Pelo dispositivo

Leia mais

FEP2195 Física Geral e Experimental para a Engenharia I Gabarito da prova 2 14/05/2009

FEP2195 Física Geral e Experimental para a Engenharia I Gabarito da prova 2 14/05/2009 FP95 Físia Geal e peiental paa a ngenhaia I Gabaito da pova 4/05/009 Ua bola de basquete (de assa M e ua bola de tênis (de assa são abandonadas do epouso a ua altua h do solo, onfoe ostado na figua. Os

Leia mais

Dinâmica do Movimento dos Corpos GRAVITAÇÃO. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Dinâmica do Movimento dos Corpos GRAVITAÇÃO. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques 15 GRAVITAÇÃO Gil da Costa Maques Dinâmica do Movimento dos Copos 15.1 A Inteação Gavitacional 15. Newton, a Lua e a Teoia da Gavitação Univesal 15.4 Massa e Gavitação 15.5 Massas geam dois tipos de campos

Leia mais

Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C

Física Geral I. 1º semestre /05. Indique na folha de teste o tipo de prova que está a realizar: A, B ou C Física Geral I 1º seestre - 2004/05 1 TESTE DE AVALIAÇÃO 2668 - ENSINO DE FÍSICA E QUÍMICA 1487 - OPTOMETRIA E OPTOTÉCNIA - FÍSICA APLICADA 8 de Novebro, 2004 Duração: 2 horas + 30 in tolerância Indique

Leia mais

Magnetismo: conhecido dos gregos, ~ 800 A.C. certas pedras (magnetite, Fe 3

Magnetismo: conhecido dos gregos, ~ 800 A.C. certas pedras (magnetite, Fe 3 8. Capos Magnéticos 8.1. Definição e popiedades do capo agnético. 8.2. Foça agnética nu conduto pecoido po ua coente. 8.3. Moento sobe ua espia de coente nu capo agnético unifoe 8.4. Moviento dua patícula

Leia mais

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss.

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss. lectomagnetismo e Óptica LTI+L 1ºSem 1 13/14 Pof. J. C. Fenandes http://eo-lec lec-tagus.ist.utl.pt/ lectostática 1.4 Teoema de Gauss (cálculo de Campos). ρ dv = O integal da densidade de caga dá a caga

Leia mais

Geodésicas 151. A.1 Geodésicas radiais nulas

Geodésicas 151. A.1 Geodésicas radiais nulas Geodésicas 151 ANEXO A Geodésicas na vizinhança de um buaco nego de Schwazschild A.1 Geodésicas adiais nulas No caso do movimento adial de um fotão os integais δ (expessão 1.11) e L (expessão 1.9) são

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Aula de UNIDADE - MOVIMENTO VERTICAL NO VÁCUO 1) (UFJF-MG) Um astonauta está na supefície da Lua quando solta, simultaneamente, duas bolas maciças, uma de chumbo e outa de madeia, de uma altua de,0 m em

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

Cap. 44 Exercício. Partículas, e o início do Universo... Obs. - Levar a calculadora científica para a prova 3.

Cap. 44 Exercício. Partículas, e o início do Universo... Obs. - Levar a calculadora científica para a prova 3. Cap. 44 Execício Patículas, e o início do Univeso... Obs. - Leva a calculadoa científica paa a pova 3. Classificação de patículas: Léptons: eléton, neutino-e - ; úon, neutino-; tau, neutino-τ Não sofe

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Segunda Chamada (SC) 1/8/2016

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Segunda Chamada (SC) 1/8/2016 UNIVESIDADE FEDEAL DO IO DE JANEIO INSTITUTO DE FÍSICA Fisica I 2016/1 Segunda Chaada (SC) 1/8/2016 VESÃO: SC As questões discursivas deve ser justificadas! Seja claro e organizado. Múltipla escolha (6

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

( ) ρ = ( kg/m ) ρ = 1000 kg/m 4ºC CAPÍTULO 5 MECÂNICA DOS FLUIDOS

( ) ρ = ( kg/m ) ρ = 1000 kg/m 4ºC CAPÍTULO 5 MECÂNICA DOS FLUIDOS CAPÍTULO 5 MECÂNICA DOS LUIDOS luidos são substâncias que odem flui, escoa-se com maio ou meno facilidade oque as suas moléculas: movem-se umas em edo das outas com equeno atito, como nos líquidos e estão

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

Quasi-Neutralidade e Oscilações de Plasma

Quasi-Neutralidade e Oscilações de Plasma Quasi-Neutalidade e Oscilações de Plasma No pocesso de ionização, como é poduzido um pa eléton-íon em cada ionização, é de se espea que o plasma seja macoscopicamente uto, ou seja, que haja tantos elétons

Leia mais

Bola, taco, sinuca e física

Bola, taco, sinuca e física Revista Basileia de Ensino de ísica, v. 29, n. 2, p. 225-229, (2007) www.sfisica.og. Bola, taco, sinuca e física (Ball, cue, snooke and physics) Eden V. Costa 1 Instituto de ísica, Univesidade edeal luminense,

Leia mais

3. Análise estatística do sinal

3. Análise estatística do sinal 3. Análise estatística do sinal A análise da intensidade do sinal ecebido é u pocesso que abange dois estágios, sendo eles: i) a estiativa do sinal ediano ecebido e ua áea elativaente pequena, e ii) a

Leia mais

RESOLUÇÃO 1 A AVALIAÇÃO UNIDADE I COLÉGIO ANCHIETA-BA RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO 1 A AVALIAÇÃO UNIDADE I COLÉGIO ANCHIETA-BA RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO VLIÇÃO UNIDDE I - OLÉGIO NHIET- PROF MRI NTÔNI GOUVEI ELORÇÃO e PESQUIS: PROF DRINO RIÉ e WLTER PORTO Questão ) figua abaio epesenta u galpão foado po u paalelepípedo etângulo e u seicilindo

Leia mais

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica Aula 2 de Fenômemo de tanspote II Cálculo de condução Paede Plana Paede Cilíndica Paede esféica Cálculo de condução Vamos estuda e desenvolve as equações da condução em nível básico paa egime pemanente,

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear).

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear). TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linea). Cao Aluno: Este texto de evisão apesenta um dos conceitos mais impotantes da física, o conceito de quantidade de movimento. Adotamos

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

Prof.Silveira Jr CAMPO ELÉTRICO

Prof.Silveira Jr CAMPO ELÉTRICO Pof.Silveia J CAMPO ELÉTRICO 1. (Fuvest 017) A deteminação da massa da molécula de insulina é pate do estudo de sua estutua. Paa medi essa massa, as moléculas de insulina são peviamente ionizadas, adquiindo,

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

Movimento unidimensional com aceleração constante

Movimento unidimensional com aceleração constante Movimento unidimensional com aceleação constante Movimento Unifomemente Vaiado Pof. Luís C. Pena MOVIMENTO VARIADO Os movimentos que conhecemos da vida diáia não são unifomes. As velocidades dos móveis

Leia mais

10/Out/2012 Aula 6. 3/Out/2012 Aula5

10/Out/2012 Aula 6. 3/Out/2012 Aula5 3/Out/212 Aula5 5. Potencial eléctico 5.1 Potencial eléctico - cagas pontuais 5.2 Supefícies equipotenciais 5.3 Potencial ciado po um dipolo eléctico 5.4 elação ente campo e potencial eléctico 1/Out/212

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

Questão 37. Questão 39. Questão 38. Questão 40. alternativa D. alternativa C. alternativa A. a) 20N. d) 5N. b) 15N. e) 2,5N. c) 10N.

Questão 37. Questão 39. Questão 38. Questão 40. alternativa D. alternativa C. alternativa A. a) 20N. d) 5N. b) 15N. e) 2,5N. c) 10N. Questão 37 a) 0N. d) 5N. b) 15N. e),5n. c) 10N. U corpo parte do repouso e oviento uniforeente acelerado. Sua posição e função do tepo é registrada e ua fita a cada segundo, a partir do prieiro ponto à

Leia mais

TENSÃO SUPERFICIAL. Prof. Harley P. Martins Filho. Tensão superficial 7/28/2017

TENSÃO SUPERFICIAL. Prof. Harley P. Martins Filho. Tensão superficial 7/28/2017 TENSÃO SUPERFICIAL Pof. Haley P. Matins Filho 1 Tensão supeficial o Oigem: desbalanceamento de foças coesivas nas moléculas da supefície de um líquido Esquema de distibuição molecula em uma massa de líquido:

Leia mais