( k) = P = = Taxa de Retorno de um Ativo (ação, títulos, imóveis, etc.) em um único período:

Tamanho: px
Começar a partir da página:

Download "( k) = P = = Taxa de Retorno de um Ativo (ação, títulos, imóveis, etc.) em um único período:"

Transcrição

1 FE- USP-EC Curso de Graduação em Cêcas Cotábes Dscpla: EC056 - Gestão de Rscos e Ivestmetos.. Rsco de Mercado e Teora das Carteras Profa. Dra Joaíla Ca.. Rsco de Mercado e Teora das Carteras I. O que é retoro? II. O que rsco de um atvo dvdual (solado), e como se mede? III. O que modfca a aálse de rsco quado de forma uma cartera (portfólo)? IV. O que a teora das carteras trouxe para o estudo do rsco (Marowtz, Tob e Sharpe)? V. O que é o modelo CPM e como se gereca o rsco levado em cota seus cocetos? VI. E o modelo PT? I. Retoro Taxa de Retoro de um tvo (ação, títulos, móves, etc.) em um úco período: ( P P ) + D P Ode: taxa de retoro do período P preço do atvo ao fal do período P - preço do atvo ao fal do período - D dvdedos (o caso de ação) recebdos pelo propretáro Taxa de Retoro Esperada (Méda) Retoro Esperado (ou Retoro Médo): E ( ) + t + L + t

2 II. Rsco de um tvo Idvdual (solado) a) Cocetos de rsco Chace de um eveto desfavorável ocorrer: certeza Probabldade de gaho ser meor do que o esperado b) Demostração do rsco: Dstrbução de Probabldade em tabela: Retoros e suas respectvas probabldades Dstrbução de Probabldade em Gráfco: Meor faxa de valores mplca em meor varação e meor rsco (e vce-versa) II. Rsco de um tvo: Varabldade de Retoro Fução de Desdade e de Probaldade QUL É MELHOR LTERTIV DE IVESTIMETO??? C D -00,0% -50,0% 0,0% 50,0% 00,0% 50,0% 00,0% Taxa Esperada de Retoro II. Rsco de um tvo Idvdual c) Meddas de rsco: Desvo Padrão Desvo-padrão Desvo-Padrão ( ) P Sgfcado: demostra o quato as taxas podem estar dstates (se desvam) da taxa esperada (méda). VRIÂCI Meddas de Rsco () ( ) ( ) t t t t População () d) Rsco x Retoro: Coefcete de varação Possblta comparar rsco () com retoro (), expressado rsco por cada udade de retoro. s t ( ) ( t ) t t mostra ()

3 DESVIO-PDRÃO Meddas de Rsco () ( ) ( ) t t t s s População mostra t II. Rsco de um tvo Idvdual Meddas de Retoro e Rsco (%) Retoro Médo Varâca dos Retoros Desvo-padrão dos Retoros Coefcete de varação (rsco em relação ao retoro) p ( )p III. Rsco de uma cartera - Coceto a) Coceto Retoro da cartera atvos dvduas b) Medda de Rsco Méda poderada dos Rsco da Cartera O desvo da cartera ão é gual ao dos atvos dvduas. Motvo: Exste correlação etre os retoros dos atvos III. Rsco de uma cartera - Meddas b) Medda de Rsco Covarâca Cov ( ) ( )( ) Coceto: mede se os retoros das duas ações tedem a subr e car jutos. Cov(,) > 0 Cov(,) 0 Cov(,) < 0 Retoros das ações tedem a se movmetar a mesma dreção (ção sobe, a também tede a subr, se a ação car, também tede a car) Os Retoros das ações são depedetes Retoros das ações tedem a se movmetar em dreções opostas (ção sobe, e a ca; e vceversa)

4 III. Rsco de uma cartera Varâca de uma Cartera de tvos: P w + w + Rscos Isolados w w Cov( ) Rsco Combado III. Rsco de uma cartera - Meddas b) Medda de Rsco :Coefcete de Correlação Coefcete de Correlação() ( ) Coceto: Grau em que o retoro de um atvo acompaha o de outro ρ Cov( ) Ode: w partcpação do atvo a cartera P w partcpação do atvo a cartera P w + w 00% + ρ (,) > 0 ρ (,) 0 0 > ρ (,) - Retoros das ações tedem a se movmetar a mesma dreção (ção sobe, a também tede a subr, se a ação car, também tede a car) Os Retoros das ações são depedetes Retoros das ações tedem a se movmetar em dreções opostas (ção sobe, e a ca; e vceversa) III. Rsco de uma cartera Varâca de uma Cartera de tvos: w + w + w w P P ρ Cov( ) Cov( ) ρ (, ) (, ) w + w + w Rscos Isolados w Cov( ) ρ (, ) Rsco Combado III. Rsco de uma cartera - Dversfcação c) Coceto Importate: Dversfcação Teorcamete:.Se combarmos atvos de retoros com correlação egatva perfeta (-) em uma cartera, pode-se levar o rsco da cartera a zero, ou seja todo o rsco podera ser elmado pela dversfcação (desvo padrão da cartera sera zero) pratcamete mpossível de se ecotrar a prátca. Se combarmos atvos de retoros com correlação postva perfeta (+) em uma cartera, o rsco da cartera sera o mesmo dos atvos solados, ou seja, ehum rsco sera elmado pela dversfcação (desvo padrão da cartera sera o mesmo dos atvos) dfícl de se ecotrar a prátca Profa.Joaíla Ca

5 Esperado Retoro E III. Rsco de uma cartera ( atvos) Coefcete de Correlação (ρ) Coefcete de Correlação 0,50% 0,00% 9,50% 9,00% 8,50% ρ 0,5 ρ 0 ρ 0,5 ρ ρ 8,00% 7,50% 7,00% 6,50% 0,00%,00%,00% 3,00% 4,00% 5,00% 6,00% 7,00% 8,00% Desvo Padrão a prátca: III. Rsco de uma cartera Exste algum grau de correlação postva (porém meor do que um) etre os retoros dos atvos, o que leva a se ter alguma redução de rsco pela dversfcação É dfícl ecotrar atvos de correlação perfeta, pos de alguma forma elas varam de acordo com o mercado (cojutura, ecooma), que é o rsco do mercado. Profa.Joaíla Ca III. Rsco de uma cartera d) Tpos de rsco Rsco Dversfcável / ão sstemátco: parte do rsco de um atvo que pode ser atrbuído a causas radômcas, específcas de uma empresa -> elmado pela dversfcação. Ex: greve, perda de clete, sazoaldade, qualdade admstração, etc. Rsco ão Dversfcável / de mercado /sstemátco: atrbuído a fatores de mercado, que afetam todas as empresas, eão podem serelmadospordversfcação. Ex: guerra, flação, cdetes teracoas, evetos polítcos, etc. III. Rsco de uma cartera Rsco Total Rsco dversfcável + Rsco ão dversfcável Profa.Joaíla Ca Profa.Joaíla Ca

6 Dversfcação e Correlação (ρ) III. Rsco de uma cartera. O rsco Dversfcável pode ser elmado pela dversfcação (estudos mostram que em toro de 40 ações o rsco dversfcável va quase a zero e acma de 5 ações já se tem uma dversfcação satsfatóra). Logo, o úco rsco relevate é o ão dversfcável, pos o dversfcável pode ser elmado se o vestdor crar uma cartera com um determado úmero de títulos. IV. Teora das Carteras - Cartera de tvos de Rsco Marowtz (95) Frotera efcete: formada pelas carteras que oferecem o mas alto grau de retoro para um dado grau de rsco; (ou mas baxo grau de rsco para um dado retoro) Frotera Efcete IV. Cartera com tvos de Rsco e sem Rsco Reta de Mercados de Captas (CML) (TOI): mplação do modelo de Marowtz, com clusão da taxa lvre de rsco: ova frotera efcete se stua a reta em vez da curva. (exste apeas uma cartera ótma de atvos de rsco)

7 IV. Cartera com tvos de Rsco e sem Rsco: ova Frotera Efcete (CML) Prcpas Implcações:. Só exste uma úca cartera ( M, M ) de atvos de rsco que pertece à ova frotera efcete (M).. Toda cartera efcete deve ser uma combação de duas (sub)carteras: tvos com rsco (M) tvos sem rsco (títulos goverametas) V. CPM (Captal sset Prcg Model) Sharpe (964), Lter (965) e Moss (966) O CPM é um modelo de equlíbro o Mercado de Captas, cujos prcpas pressupostos são: ) Há mutos vestdores, ode guém tem poder de fluecar o preço de mercado dos atvos ) Todos os vestdores plaejam vestr em um mesmo período (exemplo: um ao) 3) Ivestmetos: só em atvos faceros egocados em bolsa 4) Todos são racoas e buscam otmzar a relação rsco-retoro (buscam maxmzar utldade esperada (melhor rsco x retoro) 5) Todos detêm as mesmas formações e aalsam os títulos e o ambete ecoômco da mesma forma (expectatvas homogêeas (estmatvas dêtcas)) 6) ão há custos de trasação V.CPM (Captal sset Prcg Model) V. Marowtx x Sharpe : CML x SML (Captal Maret Le x Securtes Maret Le) Prcpas mplcações: ) Todos os vestdores possuem duas (sub)carteras: Cartera do mercado (M), que clu todos os atvos de rsco egocados publcamete tvo lvre de rsco proporção de cada sub-cartera depederá do grau de aversão ao rsco ) O prêmo de rsco depederá do grau de aversão ao rsco médo dos agetes 3) O retoro esperado de cada atvo depederá do prêmo de rsco de Mercado e do quato os retoros deste atvo são sesíves ao retoro de mercado (meddo pelo β) Rsco Total Itríseco + Sstemátco Dversfcável + ão Dversfcável Rsco Sstemátco ão Dversfcável (CPM)

8 V. Marowtz x Sharpe : CML x SML V.CPM- Custo de Captal Própro ( ) Modelo de equlíbro CML (Captal Maret Le) Reta de Mercado de Captas Rsco total e retoro de carteras e títulos Rsco: Desvo-padrão da cartera SML (Securty Maret Le) Reta de Mercado de Títulos Rsco sstemátco e retoro de um atvo dada a cartera Rsco: coefcete beta (volatldade de uma ação em relação à cartera que cotém todas as ações) Queda do Retoro: umeto do Preço + β f umeto do Retoro: Queda do Preço ( ) M f V. O modelo CPM: Rsco de um atvo (cotdo em uma cartera) a) Coceto: O Modelo de Precfcação de tvos (CPM) assoca o rsco ão dversfcável e os retoros de todos os atvos. b) Medda do rsco: eta (β) beta medda do rsco ão dversfcável Ídce do grau de movmeto do retoro de um atvo em resposta à mudaça o retoro do mercado. O beta de uma ação mede a sua cotrbução para o rsco da cartera como um todo Ex: rasl - retoro do mercado IOVESP eta V. O modelo CPM: Rsco de um atvo (cotdo em uma cartera) Que valores podem assumr o beta (β) sgfcado: Iterpretação Movmeta-se a mesma Duas vezes com maor reação/rsco que o mercado e qual o dreção do mercado Mesma reação/rsco que o mercado (rsco médo) 0 ão afetado pelos movmetos do mercado - Movmeta-se em dreção - oposta ao mercado Coefcete eta de Carteras: o beta de uma cartera é a méda poderada dos betas dos títulos dvduas

9 V. O modelo CPM: Rsco de um atvo (cotdo em uma cartera) c) Rsco e Retoro pelo CPM eta: medda aproprada de rsco relatvo a uma ação Retoro: qual o ível de retoro exgdo dado um determado ível de beta? Equação da Reta de Mercado de Títulos K j Taxa de retoro exgdo do atvo j R f Taxa de Retoro lvre de rsco β coefcete beta (ídce de rsco ão dversfcável para o atvo j) K m Taxa de retoro do mercado K j R f + [( K m - R f ) * β] O Prêmo pelo rsco do mercado (RPm) K m - R f O Prêmo pelo rsco da ação (Rp) β * ( K m - R f ) V. O modelo CPM: Rsco de um atvo (cotdo em uma cartera) Ex. Um vestdor deseja determar o retoro de um atvo que tem um beta de,5. taxa de retoro lvre de rsco do mercado é de 6%, e o ídce OVESP (retoro esperado do mercado) é de %. Calcular a taxa de retoro do atvo. Retoro exgdo Lha de Mercado de Títulos K j 3,5 Prêmo pelo rsco do K m atvo 7,5% Retoro Lvre de Rsco R f 6 Prêmo pelo rsco do mercado 5% 0,5,0,5,0 eta β Iclação da reta: extesão pela qual os vestdores são avessos ao rsco quato mas clada maor aversão Profa.Joaíla Ca V. O modelo CPM: Rsco de um atvo (cotdo em uma cartera) d) Cálculo e Iterpretação do eta (β) É o coefcete agular da Reta característca de regressão etre retoro do mercado ( M ) e retoro da ação ( ) a cada ao. β β α + β M V. CPM d) Cálculo e Iterpretação do eta (β) Reta característca:reta de regressão etre retoro do mercado(x) e retoro da ação(y) a cada ao. Y a + bx + e Mede a volatldade relatva de uma ação versus uma ação méda ou o mercado (IOVESP). β Cov( Kj, Km) M r JM J M Covarâca etre a ação e o mercado β 0,5 M Varâca dos retoros do mercado Depede de:. da correlação dos retoros da ação com os do mercado, ou seja, da sua correlação com o mercado de ações. da volatldade dos retoros da ação em relação à volatldade dos retoros do mercado sua própra varabldade em relação à varabldade do mercado

10 VI. PT Teora da Precfcação por rbtragem a) Coceto utor: Stepha Ross (976) Se dos atvos têm os mesmos fatores de rsco e fluxo de caxa esperado, devem ter o mesmo valor; CPM é modelo de úco fator de rsco: beta (rsco ão dversfcável), mas outros fatores de mercado seram determates: Mercado: PI, atvdade ecoômca, flação, taxa de câmbo, etc Empresa: setor ecoômco, fata de mercado comparada aos cocorretes,etc VI. PT Teora da Precfcação por rbtragem b) Forma de Cálculo da Taxa de Juros + ) b ( ) b RF ( RF j ode bfator de sesbldade c) Vatages: Permte corporar város fatores ecoômcos a um modelo para (tetar) explcar o retoro das ações dvduas; bordagem mas abragete, possu meos pressupostos do que o CPM. Medda estatístca: aálse fatoral, dvsão em classes de atvos RF j VI. COMO O CPM E PT JUDM GERECIR O RISCO DE MERCDO? CPM: Modelo de um fator: rsco de ação é fução do rsco de mercado e do beta. judar gestor a escolher ações -> ex:pode-se determar o melhor mometo de se adqurr uma ação, tedo em vsta seu beta ser > ou <. Se o mercado estver em alta, o gestor deve calbrar o beta para > Se o mercado estver em baxa, o gestor deve calbrar o beta para < VI. COMO O CPM E PT JUDM GERECIR O RISCO DE MERCDO? PT: Modelo de múltplos fatores Pode ajudar a mesurar a exposção ao rsco de mercado dos atvos (volatldade de mercado), relatvo a dferetes fatores de rsco decdr como hedgear a cartera, que strumetos dervatvos usar para reduzr o rsco da cartera

11 O que fo vsto este tópco: I. O que é retoro? II. O que rsco de um atvo dvdual (solado), e como se mede? III. O que modfca a aálse de rsco quado de forma uma cartera (portfólo)? IV. O que a teora das carteras trouxe para o estudo do rsco (Marowtz, Tob e Sharpe)? V. O que é o modelo CPM e como se gereca o rsco levado em cota seus cocetos? VI. E o modelo PT?

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos FEA -USP Graduação Cêcas Cotábes EAC05 04_0 Profa. Joaíla Ca. Rsco e Retoro. Cocetos Báscos Rotero BE-cap.6 Tema 0 Rsco e Retoro. Cocetos Báscos I. O que é Retoro? II. Qual é o Rsco de um Atvo Idvdual

Leia mais

( k) 2.1. Risco de Mercado e Teoria das Carteiras

( k) 2.1. Risco de Mercado e Teoria das Carteiras FEA -USP Graduação Cêcas Cotábes Dscpla: EAC056 - Gestão de Rscos e Ivestmetos.. Rsco de Mercado e Teora das Carteras.. Rsco de Mercado e Teora das Carteras I. O que é Retoro? II. Qual é o Rsco de um Atvo

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Faculdade de Ecooma, Admstração e Cotabldade de Rberão Preto Ecooma Moetára Curso de Ecooma / º. Semestre de 014 Profa. Dra. Rosel da Slva Nota de aula CAPM Itrodução Há dos modelos bastate utlzados para

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

RRR- 1 A RELAÇÃO RISCO-RETORNO

RRR- 1 A RELAÇÃO RISCO-RETORNO - 1 A ELAÇÃO ISCO-ETONO V -INTODUÇÃO À TEOIA DOS MECADOS DE CAPITAIS -! Algus cocetos de base à teora dos mercados de captas: " edbldade de um vestmeto em acções: edbldade em valor Dvdedos + mas/meos valas

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Análise da Informação Económica e Empresarial

Análise da Informação Económica e Empresarial Aálse da Iformação Ecoómca e Empresaral Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração Aálse da Iformação Ecoómca e Empresaral Guão Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional.

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional. Curso Aperfeçoameto em Avalação de Programas Socas ª Turma Dscpla: Téccas quattatvas de levatameto de dados: prcpas téccas de amostragem Docete: Claudete Ruas Brasíla, ovembro/005 Pesqusa por amostragem

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens Dados xpermetas Para medr a produção de certa varedade de mlho, faremos um expermeto o qual a varedade de mlho semete é platada em váras parcelas homogêeas com o mesmo fertlzate, pestcda etc. Depos mede-se

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição:

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição: 6// IV. Juros: taxa efetva, equvalete e proporcoal Matemátca Facera Aplcada ao Mercado Facero e de Captas Professor Roaldo Távora IV. Taxa efetva Defção: É a taxa de juros em que a udade referecal de seu

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

Diversificação - exemplo

Diversificação - exemplo INCETEZA E ISCO /4/009 Dversfcação - exemplo oss cap. 0 Cartera com N atvos Nova stuação: Cartera mas dversfcada Todos os títulos têm a mesma Varânca Todas as covarâncas são guas Todos os Títulos tem a

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avalação de Empresas MODELO DE DIVIDENDOS Dvdedos em um estáo DDM Dscouted Dvded Model Muto utlzados a precfcação de uma ação em que o poto de vsta do vestdor é extero à empresa e eralmete esse vestdor

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE GOVERNO DO ESTADO DO CEARÁ Cd Ferrera Gomes Goverador Domgos Gomes de Aguar Flho Vce Goverador SECRETARIA DO PLANEJAMENTO E GES- TÃO (SEPLAG)

Leia mais

ÍNDICE DE THEIL Referência Obrigatória: Hoffman cap 4 pags 99 a 116 e cap 3 pgs (seção 3.4).

ÍNDICE DE THEIL Referência Obrigatória: Hoffman cap 4 pags 99 a 116 e cap 3 pgs (seção 3.4). Cetro de Polítcas Socas - Marcelo Ner ÍNDICE DE HEIL Referêca Obrgatóra: Hoffma cap 4 pags 99 a 6 e cap 3 pgs 42-44 (seção 3.4).. Coteúdo Iformatvo de uma mesagem Baseado a teora da formação, que aalsa

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações Itrodução.1 Juros Smples Juro: recompesa pelo sacrfíco de poupar o presete, postergado o cosumo para o futuro Maora das taxas de uros aplcadas o mercado facero são referecadas pelo crtéro smples Determa

Leia mais

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA Aula 7 Prof. Dr. Marco Atoo Leoel Caetao Dstrbuções de Probabldade DISCRETAS CONTÍNUAS (Números teros) Bomal Posso Geométrca Hper-Geométrca Pascal (Números reas) Normal t-studet F-Sedecor Gama

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

Introdução. Incerteza: o básico. Perfil do tomador de risco: Teoria da Probabilidade. Prof: Sabino da Silva Porto Júnior

Introdução. Incerteza: o básico. Perfil do tomador de risco: Teoria da Probabilidade. Prof: Sabino da Silva Porto Júnior Icerteza: o básco Prof: Sabo da Slva Porto Júor Sabo@ppge.ufrgs.br Itrodução Até agora: coseqüêcas das escolhas dos cosumdores são cohecdas com certeza. Nova suposção: cosumdores e produtores tem apeas

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

EMPRESA E MERCADO DE CAPITAIS FLUXOS FINANCEIROS FONTES DE FINANCIAMENTO DAS EMPRESAS. Mercado de Capitais. Empresa. Debêntures.

EMPRESA E MERCADO DE CAPITAIS FLUXOS FINANCEIROS FONTES DE FINANCIAMENTO DAS EMPRESAS. Mercado de Capitais. Empresa. Debêntures. TEF II Prof. Crstao Fort MERCADO ACIONÁRIO Empresa Operações Corretes Aqusção de atvos reas Fote: S.C. Myers/1976 EMPRESA E MERCADO DE CAPITAIS FLUXOS FINANCEIROS Caxa Ivestdo a empresa Caxa gerado pelas

Leia mais

Unidade II ESTATÍSTICA

Unidade II ESTATÍSTICA ESTATÍSTICA Udade II 3 MEDIDAS OU PARÂMETROS ESTATÍSTICOS 1 O estudo que fzemos aterormete dz respeto ao agrupameto de dados coletados e à represetação gráfca de algus deles. Cumpre agora estudarmos as

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

Estatística Básica - Continuação

Estatística Básica - Continuação Professora Adraa Borsso http://www.cp.utfpr.edu.br/borsso adraaborsso@utfpr.edu.br COEME - Grupo de Matemátca Meddas de Varabldade ou Dspersão Estatístca Básca - Cotuação As meddas de tedêca cetral, descrtas

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Escola Secundária de Jácome Ratton

Escola Secundária de Jácome Ratton Ecola Secudára de Jácome Ratto Ao Lectvo / Matemátca Aplcada à Cêca Soca Na Ecola Secudára do Suceo aualmete é premado o aluo que tver melhor méda a ua clafcaçõe a dferete dcpla. No ao lectvo 9/, o do

Leia mais

PESQUISA EM MERCADO DE CAPITAIS. Prof. Patricia Maria Bortolon, D. Sc. (colaboração de Prof. Claudio Cunha)

PESQUISA EM MERCADO DE CAPITAIS. Prof. Patricia Maria Bortolon, D. Sc. (colaboração de Prof. Claudio Cunha) PESQUISA EM MERCADO DE CAPITAIS Prof. Patrca Mara Bortolon, D. Sc. (colaboração de Prof. Claudo Cunha) Cap. 15 Testes Empírcos de Modelos de Equlíbro ELTON, E.; GRUBER, M.; BROWN, S., GOETZMANN, W. Moderna

Leia mais

MEDIDAS DE DISPERSÃO 9. MEDIDAS DE DISPERSÃO

MEDIDAS DE DISPERSÃO 9. MEDIDAS DE DISPERSÃO Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa MEDIDAS DE DISPERSÃO 9 9. MEDIDAS DE DISPERSÃO

Leia mais

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros.

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros. Dscpla POO-I 2º Aos(If) - (Lsta de Eercícos I - Bmestre) 23/02/2015 1) Escrever um programa que faça o calculo de trasformação de horas em muto ode às horas devem ser apeas úmero teros. Deverá haver uma

Leia mais

Medidas de Localização

Medidas de Localização 07/08/013 Udade : Estatístca Descrtva Meddas de Localzação João Garbald Almeda Vaa Cojuto de dados utlzação de alguma medda de represetação resumo dos dados. E: Um cojuto com 400 observações como aalsar

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Cetífca Matemátca Udade Curso Egehara do Ambete Ao º Semestre º Folha Nº 8: Aálse de Regressão e de Correlação Probabldades e Estatístca Ao 00/0. Pretede-se testar um strumeto que mede a cocetração

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL 3 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL Como vto em amotragem o prmero bmetre, etem fatore que fazem com que a obervação de toda uma população em uma pequa eja mpratcável, muta veze em vrtude

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@pucrs.br http://.pucrs.br/faat/val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos auetou e 30%. o país A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

Universidade Federal de Alfenas - Unifal-MG Departamento de Ciências Exatas

Universidade Federal de Alfenas - Unifal-MG Departamento de Ciências Exatas Uversdade Federal de Alfeas - Ufal-MG Departameto de Cêcas Exatas Apostla Laboratóro de Físca I Prof. Dr. Célo Wsewsk Alfeas 05. oções geras sobre meddas de gradezas e avalação de certezas.. Medção (measuremet).....

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Coleção de úeros estatístcas stcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações a da Telebrás

Leia mais

Parte 3 - Regressão linear simples

Parte 3 - Regressão linear simples Parte 3 - Regressão lear smples Defção do modelo Modelo de regressão empregado para eplcar a relação lear etre duas varáves (ajuste de uma reta). O modelo de regressão lear smples pode ser epresso a forma:

Leia mais

2 Estrutura a Termo de Taxa de Juros

2 Estrutura a Termo de Taxa de Juros Estrutura a Termo de Taxa de Juros 20 2 Estrutura a Termo de Taxa de Juros A Estrutura a termo de taxa de juros (também cohecda como Yeld Curve ou Curva de Retabldade) é a relação, em dado mometo, etre

Leia mais

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes UERJ CTC IE Departameto de Iormátca e Cêca da Computação Udade I - Erros as apromações umércas. I. - Cosderações geras. Há váras stuações em dversos campos da cêca em que operações umércas são utlzadas

Leia mais

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento:

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento: Lsta de Exercícos #9 Ass uto: Aáls e de Re gres s ão Mé todo de Mímos Quadrados. ANPEC 99 - Questão 8 A capacdade de produção stalada (Y), em toeladas, de uma frma, pode ser fução da potêca stalada (X),

Leia mais

Projeto de rede na cadeia de suprimentos

Projeto de rede na cadeia de suprimentos Projeto de rede a cadea de suprmetos Prof. Ph.D. Cláudo F. Rosso Egehara Logístca II Esboço O papel do projeto de rede a cadea de suprmetos Fatores que fluecam decsões de projeto de rede Modelo para decsões

Leia mais

Estatística: uma definição

Estatística: uma definição Coleção de úmeros estatístcas Estatístca: uma defção O úmero de carros veddos o país aumetou em 30%. A taa de desemprego atge, este mês, 7,5%. As ações da Telebrás subram R$,5, hoje. Resultados do Caraval

Leia mais

Perguntas Freqüentes - Bandeiras

Perguntas Freqüentes - Bandeiras Pergutas Freqüetes - Baderas Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte por lqudar a obrgação de forma parcelada

Leia mais

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES POLINOMIAIS4 Gl da Costa Marques Fudametos de Matemátca I 4.1 Potecação de epoete atural 4. Fuções polomas de grau 4. Fução polomal do segudo grau ou fução quadrátca 4.4 Aálse do gráfco de uma

Leia mais

CÁLCULO DO RETORNO ESPERADO DA CARTEIRA DE MERCADO E DO RETORNO DO ATIVO LIVRE DE RISCO PARA O BRASIL

CÁLCULO DO RETORNO ESPERADO DA CARTEIRA DE MERCADO E DO RETORNO DO ATIVO LIVRE DE RISCO PARA O BRASIL ESCOLA FEDERAL DE ENGENHARIA DE ITAJUBÁ INSTITUTO DE ENGENHARIA MECÂNICA DEPARTAMENTO DE PRODUÇÃO CÁLCULO DO RETORNO ESPERADO DA CARTEIRA DE MERCADO E DO RETORNO DO ATIVO LIVRE DE RISCO PARA O BRASIL Dego

Leia mais

Caracterização de Partículas. Prof. Gerônimo

Caracterização de Partículas. Prof. Gerônimo Caracterzação de Partículas Prof. Gerômo Aálse Graulométrca de partículas Tabela: Sére Padrão Tyler Mesh Abertura Lvre (cm) âmetro do fo () 2 ½ 0,7925 0,088 0,6680 0,070 ½ 0,56 0,065 4 0,4699 0,065

Leia mais

Matemática Financeira

Matemática Financeira Cocetos Báscos de Matemátca Facera Uversdade do Porto Faculdade de Egehara Mestrado Itegrado em Egehara Electrotécca e de Computadores Ecooma e Gestão Na prátca As decsões faceras evolvem frequetemete

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES

UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES Aa Mara Lma de Faras Luz da Costa Laurecel Com a colaboração dos motores Maracajaro

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística Projeção de Ceáros Aplcados ao Orçameto Empresaral Com revsão das Ferrametas de Estatístca Prof. Dr. Marco Atoo Leoel Caetao TÓPICO Tratameto, Quatfcação e Vsualzação de Dados Faceros. Itrodução Na dvulgação

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola Cetro de Cêcas Agráras e Ambetas da UFBA Departameto de Egehara Agrícola Dscpla: AGR116 Boestatístca Proessor: Celso Luz Borges de Olvera Assuto: Estatístca Descrtva Tema: Meddas de Posção e Meddas de

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

09/03/2014 RETORNO. I Conceitos Básicos. Perguntas básicas. O que é matemática financeira? Por que estudar matemática financeira?

09/03/2014 RETORNO. I Conceitos Básicos. Perguntas básicas. O que é matemática financeira? Por que estudar matemática financeira? 09/0/04 I Cocetos Báscos Matemátca Facera Aplcaa ao Mercao Facero e e Captas Proessor Roalo Távora Pergutas báscas O que é matemátca acera? Por que estuar matemátca acera? = RETORNO Matemátca Facera Aplcaa

Leia mais

Olá, amigos concursandos de todo o Brasil!

Olá, amigos concursandos de todo o Brasil! Matemátca Facera ICMS-RJ/008, com gabarto cometado Prof. Wager Carvalho Olá, amgos cocursados de todo o Brasl! Veremos, hoje, a prova do ICMS-RJ/008, com o gabarto cometado. - O artgo º da Le.948 de 8

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apotametos ão dspesa de modo algum a letura ateta da bblografa prcpal da cadera Chama-se a ateção para a mportâca do trabalho pessoal a realzar pelo aluo resolvedo os problemas

Leia mais

Análise Estatística com Excel. Prof. Dr. Evandro Marcos Saidel Ribeiro

Análise Estatística com Excel. Prof. Dr. Evandro Marcos Saidel Ribeiro Aálse Estatístca com Excel Prof. Dr. Evadro Marcos adel Rbero E-mal: esadel@usp.br Home page: www.fearp.usp.br/~sadel Módulo Itrodução. Apresetação geral dos tópcos do curso. Estatístca e Excel a empresa

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

Í N D I C E. Séries de Pagamentos ou Rendas Renda Imediata ou Postecipada Renda Antecipada Renda Diferida...

Í N D I C E. Séries de Pagamentos ou Rendas Renda Imediata ou Postecipada Renda Antecipada Renda Diferida... Curso: Pós-graduação / MBA Campus Vrtual Cruzero do Sul - 2009 Professor Resposável: Carlos Herque de Jesus Costa Professores Coteudstas: Carlos Herque e Douglas Madaj UNIVERSIDADE CRUZEIRO DO SUL Cohecedo

Leia mais

CORRELAÇÃO Aqui me tens de regresso

CORRELAÇÃO Aqui me tens de regresso CORRELAÇÃO Aqui me tes de regresso O assuto Correlação fez parte, acompahado de Regressão, do programa de Auditor Fiscal, até 998, desaparecedo a partir do cocurso do ao 000 para agora retorar soziho.

Leia mais

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP Iferêca Estatístca e Aplcações I Edso Zagacom Martez Departameto de Medca Socal FMRP/USP edso@fmrp.usp.br Rotero Parte I Escola frequetsta Defções: parâmetros, estmatvas Dstrbuções de probabldade Estmação

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

Teoria das Comunicações

Teoria das Comunicações Teora das Comucações.6ª Revsão de robabldade rof. dré Noll arreto rcíos de Comucação robabldade Cocetos áscos Eermeto aleatóro com dversos resultados ossíves Eemlo: rolar um dado Evetos são cojutos de

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

Como CD = DC CD + DC = 0

Como CD = DC CD + DC = 0 (9-0 www.eltecampas.com.br O ELITE RESOLVE IME 008 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO Determe o cojuto-solução da equação se +cos = -se.cos se + cos = se cos ( se cos ( se se.cos cos + + = = (

Leia mais

Monitoramento ou Inventário Florestal Contínuo

Monitoramento ou Inventário Florestal Contínuo C:\Documets ad Settgs\DISCO_F\MEUS-DOCS\LIVRO_EF_44\ef44_PDF\CAP XIV_IFCOTIUO.doc 6 Motorameto ou Ivetáro Florestal Cotíuo Agosto Lopes de Souza. ITRODUÇÃO Parcelas permaetes de vetáro florestal cotíuo

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves A aálse de regressão e correlação compreedem

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@ufrgs.br http://www.ufrgs.br/~val/ Estatístca: uma defção Coleção de úmeros estatístcas O úmero de carros veddos o país aumetou em 30%. A taa de desemprego atge, este mês, 7,5%.

Leia mais

Uso de covariáveis em modelos biométricos para estimação de altura total em árvores de Eucalyptus dunnii

Uso de covariáveis em modelos biométricos para estimação de altura total em árvores de Eucalyptus dunnii Uso de covaráves em modelos bométrcos para estmação de altura total em árvores de Eucalyptus du Oar Medes de Olvera Adrao Rbero de Medoça Fábo Mareto Glso Ferades da Slva Samuel de Pádua Chaves e Carvalho

Leia mais

Capítulo 2 O conceito de Função de Regressão Populacional (FRP) e Função de Regressão Amostral (FRA)

Capítulo 2 O conceito de Função de Regressão Populacional (FRP) e Função de Regressão Amostral (FRA) I Metodologa da Ecoometra O MODELO CLÁSSICO DE REGRESSÃO LINEAR. Formulação da teora ou da hpótese.. Especfcação do modelo matemátco da teora. 3. Especfcação do modelo ecoométrco da teora. 4. Obteção de

Leia mais

Contabilometria. Aula 8 Regressão Linear Simples

Contabilometria. Aula 8 Regressão Linear Simples Contalometra Aula 8 Regressão Lnear Smples Orgem hstórca do termo Regressão Le da Regressão Unversal de Galton 1885 Galton verfcou que, apesar da tendênca de que pas altos tvessem flhos altos e pas axos

Leia mais

Avaliação da sensibilidade de modelos de composição de carteiras à incerteza nos parâmetros

Avaliação da sensibilidade de modelos de composição de carteiras à incerteza nos parâmetros SIMPEP - Bauru, SP, Brasl, 08 a 0 de ovembro de 2004 Avalação da sesbldade de modelos de composção de carteras à certeza os parâmetros Lus Vtal Maluf Cuha Vaa (Egehara de Produção EPUSP) lus.vaa@tau.com.br

Leia mais

FERRAMENTAS DE ANÁLISE DE RISCOS EM ESTRATÉGIAS EMPRESARIAIS

FERRAMENTAS DE ANÁLISE DE RISCOS EM ESTRATÉGIAS EMPRESARIAIS FERRAMENTAS DE ANÁLISE DE RISCOS EM ESTRATÉGIAS EMRESARIAIS or: Herbert Kmura RAE-eletrôca, Volume, Número 2, jul-dez/2002. http://www.rae.com.br/eletroca/dex.cfm?fuseacto=artgo&id=825&secao=wc&volume=&numero=2&ao=

Leia mais

Lealdade à Marca e Sensibilidade ao Preço: Um Estudo da Escolha da Marca pelo Consumidor. Autoria: Delane Botelho, André Torrres Urdan.

Lealdade à Marca e Sensibilidade ao Preço: Um Estudo da Escolha da Marca pelo Consumidor. Autoria: Delane Botelho, André Torrres Urdan. Lealdade à Marca e Sesbldade ao Preço: Um Estudo da Escolha da Marca pelo Cosumdor Autora: Delae Botelho, Adré Torrres Urda Resumo Este artgo usa dados em pael do tpo escaeados, desagregados ao ível de

Leia mais