Processos de Poisson

Tamanho: px
Começar a partir da página:

Download "Processos de Poisson"

Transcrição

1 Processos de Poisson Mauro C. M. Campos 1 SUMÁRIO I Alguns fatos sobre a distribuição exponencial 1 II Alguns fatos sobre a distribuição de Poisson 2 III Processos estocásticos em tempo contínuo 2 IV Processos de Poisson I: construção e propriedades fundamentais 3 V Processos de Poisson II: uma classe particular de processos de contagem 3 VI Processos de Poisson III: teoremas limite 5 VII Processos de Poisson IV: falta de memória do passado 6 VIII Processos de Poisson V: superposição e decomposição 6 IX Exercícios 6 X Índice de notações 7 Referências 8 OBS.: Notas de aula. Em 6 de junho de I. ALGUNS FATOS SOBRE A DISTRIBUIÇÃO EXPONENCIAL Definição 1. τ Exp(), > 0, se sua função densidade de probabilidade é A função de distribuição acumulada e a função de sobrevivência são dadas por e A média e a variância de τ são dadas por E(τ) = 1 Finalmente, a função geradora de momentos é dada por para todo u <. f τ (t) = e t I (0, ) (t). (1) F τ (t) = Pr(τ t) = 1 e t I (0, ) (t) (2) S τ (t) = Pr(τ > t) = 1 F τ (t) = e t I (0, ) (t). (3) M τ (u) = E(e uτ ) = Var(τ) = 1 2. (4) u Teorema 1. Se τ Exp(), então Pr(τ > s + t τ > s) = Pr(τ > t) = e t para todo s, t 0. idd Teorema 2. Sejam τ 1,..., τ k Exp(). Então k T k := τ i Gama(t k ; k, ) = e tk (t k) n 1 (n 1)! I (0, )(t k ). (6) i=1 Departamento de Estatística, Universidade Federal do Espírito Santo UFES. Av. Fernando Ferrari 514, Goiabeiras, CEP , Vitória ES. (5)

2 2 II. ALGUNS FATOS SOBRE A DISTRIBUIÇÃO DE POISSON Definição 2. N Po(), > 0, se sua função de probabilidade é A média e a variância de N são dadas por A função geradora de momentos é dada por para todo u real. f N (k) = e k k! I {0,1,2,...}(k). (7) E(N) = Var(N) =. (8) M N (u) = E(e un ) = e (eu 1) Teorema 3. Se N Po() e M Po(ν) são va.a s independentes, então N + M Po( + ν). (9) III. PROCESSOS ESTOCÁSTICOS EM TEMPO CONTÍNUO Definição 3 (Processo estocástico em tempo contínuo). Seja ϕ um conjunto. Um processo estocástico em tempo contínuo é uma família (X t ) t 0 de variáveis aleatórias (va.a s) tal que X t assume valores em ϕ para todo t 0. O conjunto ϕ é chamado de espaço de estados e cada um de seus elementos é chamado de estado. Comentário 1. Probabilidades que ocorrem na teoria de processos estocásticos em tempo contínuo dependem das probabilidades P (x 0, x 1,..., x n ) = Pr(X t0 = x 0, X t1 = x 1,..., X tn = x n ) (10) para quaisquer 0 t 0 t 1 t n e x 0, x 1,..., x n ϕ. É possível calcular (10) conhecendo: a distribuição de X t0, P (x 0 ) = Pr(X t0 = x 0 ) e as probabilidades de transição, P (x 1 x 0 ) = Pr(X t1 = x 1 X t0 = x 0 ) P (x 2 x 0, x 1 ) = Pr(X t2 = x 2 X t0 = x 0, X t1 = x 1 ). P (x n x 0,..., x n 1 ) = Pr(X tn = x n X t0 = x 0,..., X tn 1 = x n 1 ). Isso porque P (x 0, x 1,..., x n ) = P (x 0 )P (x 1 x 0 )P (x 2 x 0, x 1 )... P (x n x 0,..., x n 1 ). (11) Definição 4 (Média, variância e correlação). Descrevemos o valor médio, a variabilidade e a estrutura de correlação de um processo estocástico em tempo contínuo através das seguintes funções: 1) A função média do processo é definida por 2) A função variância do processo é definida por 3) A função de autocovariância do processo é definida por 4) A função de autocorrelação do processo é definida por ϱ s,t := γ s,t σ 2 s σt 2 Comentário 2. Observe que: σ 2 t = γ t,t para todo t γ s,t = γ t,s para todo par s, t ϱ s,t = ϱ t,s para todo par s, t. µ t := E(X t ) t 0. (12) σ 2 t := Var(X t ) = E(X 2 t ) µ 2 t t 0. (13) γ s,t := Cov(X s, X t ) = E(X s X t ) µ s µ t s, t 0. (14) s, t 0. (15) Comentário 3. Nesse texto vamos estudar uma classe particular de processos estocásticos em tempo contínuo, chamados de processos de Poisson. A próxima subseção apresenta a construção do processo de Poisson e suas propriedades fundamentais, a partir de uma sequência de va.a s independentes e exponencialmente distribuídas com parâmetro > 0.

3 3 IV. PROCESSOS DE POISSON I: CONSTRUÇÃO E PROPRIEDADES FUNDAMENTAIS Definição 5 (Construção do processo de Poisson). Considere uma sequência de eventos (de um certo tipo) ocorrendo aleatoriamente ao longo do tempo a partir de um instante inicial t = 0 e sejam τ 1, τ 2,... tais que τ 1 é o tempo inicial até a ocorrência do primeiro evento, e para i 2, τ i é o tempo entre a ocorrência do (i 1)-ésimo evento até a ocorrência do i-ésimo evento. Assuma que τ 1, τ 2, τ 3,... são va.a. s independentes e exponencialmente distribuídas com parâmetro > 0. Para t 0, N t representa o número de eventos ocorridos no intervalo [0, t], ou seja, N t := max{k 0 : T k t}, (16) onde T 0 = 0, e para k 1, T k := k i=1 τ i representa o tempo de espera até a ocorrência do k-ésimo evento. O processo (N t ) t 0 é chamado de processo de Poisson com taxa. Esse é um processo estocástico de contagem em tempo contínuo com espaço de estados N := {0, 1, 2,...}. Teorema 4 (Propriedades fundamentais do processo de Poisson). Seja (N t ) t 0 um processo de Poisson com taxa. Então: 1) T k Gama(k, ) para todo k 1 2) E(T k ) = k/ para todo k 1 3) Var(T k ) = k/ 2 para todo k 1 4) N t Po(t) para todo t 0. Em particular N 0 = 0 com probabilidade 1 5) µ t = E(N t ) = t para todo t 0 6) σ 2 t = Var(N t ) = t para todo t 0 7) γ s,t = min{s, t} para todo s, t 0 8) N t1, N t2 N t1,..., N tm N tm 1 são va.a s independentes para quaisquer 0 t 1 t 2 t m. Além disso, N ti N ti 1 d = Nti t i 1 para i = 1,..., m (assuma que t 0 = 0) 9) (N t ) t 0 é Markoviano, ou seja, Pr(N s+t = j N t0 = i 0,..., N tm 1 = i m 1, N s = i) = Pr(N s+t N s = j i N t0,..., N tn 1, N s = i) (17) para quaisquer 0 t 0 t 1 t m 1 s t e i 0, i 1,..., i m 1, i, j N. = Pr(N s+t N s = j i N s = i) (18) = Pr(N s+t N s = j i) (19) = Pr(N t = j i) (20) Comentário 4. N t N s representa o número de eventos ocorridos no intervalo (s, t] sempre que 0 s < t. N t N s é chamado de incremento do processo de Poisson no intervalo (s, t]. Um processo estocástico de contagem possui incrementos independentes se o número de eventos ocorridos em intervalos disjuntos são independentes. Um processo estocástico de contagem possui incrementos estacionários se a distribuição de probabilidade do número de eventos ocorridos em um intervalo, só depende do comprimento do intervalo. O item 8) do teorema 4 garante que os incrementos do processo de Poisson são independentes e estacionários. Podemos representar o processo de Poisson através do seguinte grafo: ϕ = N V. PROCESSOS DE POISSON II: UMA CLASSE PARTICULAR DE PROCESSOS DE CONTAGEM Definição 6 (Processo de contagem em tempo contínuo). Considere uma sequência de eventos (de um certo tipo) ocorrendo aleatoriamente ao longo do tempo a partir de um instante inicial t = 0. Um processo estocástico em tempo contínuo (N t ) t 0 com espaço de estados ϕ é um processo de contagem (em tempo contínuo) em ϕ se 1) N t representa o número de eventos ocorridos no intervalo [0, t] 2) N t ϕ = {0, 1, 2,...} =: N para todo t 0 3) N s N t sempre que 0 s < t 4) N t N s representa o número de eventos ocorridos no intervalo (s, t] sempre que 0 s < t. N t N s é chamado de incremento do processo de contagem no intervalo (s, t]. Dizemos que: (Incrementos independentes) (N t ) t 0 possui incrementos independentes se o número de eventos ocorridos em intervalos disjuntos são independentes. Formalmente, (N t ) t 0 possui incrementos independentes se são va.a s independentes para quaisquer 0 t 1 t 2, t n. N t2 N t1,..., N tm N tm 1 (21)

4 4 (Incrementos estacionários) (N t ) t 0 possui incrementos estacionários se a distribuição de probabilidade do número de eventos ocorridos em um intervalo, só depende do comprimento do intervalo. Formalmente, (N t ) t 0 possui incrementos estacionários se N s+t N s d = Nt (22) para quaisquer s, t 0. Definição 7 (Processo de Poisson com taxa ). Um processo de contagem em tempo contínuo (N t ) t 0 em N é um processo de Poisson com taxa > 0, se 1) N 0 = 0 2) (N t ) t 0 possui incrementos independentes 3) (N t ) t 0 possui incrementos estacionários onde para quaisquer s, t 0. N t d = Ns+t N s Po(t) (23) Definição 8 (Processo de Poisson com taxa ). Um processo de contagem em tempo contínuo (N t ) t 0 em N é um processo de Poisson com taxa > 0, se 1) N 0 = 0 2) (N t ) t 0 possui incrementos independentes 3) (N t ) t 0 possui incrementos estacionários onde Pr(N h = k) = Pr(N s+h N s = k) = Pr(N s+h = i + k N s = i) = Comentário 5. Uma função f é o(h) na vizinhança do zero se 1 h + o(h) se k = 0 h + o(h) se k = 1 o(h) se k 2 0 se k < 0. (24) f(h) h 0 (25) quando h 0. Por exemplo, f(t) = t 2 é o(h) na vizinhança do zero, pois h 2 /h = h 0 quando h 0. Teorema 5. As definições 7 e 8 são equivalentes. PROVA. Vamos mostrar que a definição 8 implica na definição 7. A implicação contrária fica como exercício. De fato, para k 0 segue que Pr(N t+h = k) = Pr(N t = i) Pr(N t+h = k N t = i) (26) = = = i=0 Pr(N t = i) Pr(N t+h N t = k i N t = i) (27) i=0 Pr(N t = i) Pr(N t+h N t = k i) (28) i=0 Pr(N t = i) Pr(N h = k i). (29) Considerando a notação p k (t) := Pr(N t = k) para k = 0, 1, 2,..., segue que { p0 (t + h) = (1 h)p 0 (t) + o(h) para k = 0 p k (t + h) = (1 h)p k (t) + hp k 1 (t) + o(h) para k 1. i=0 Observando que para k 0 p k (t + h) p k (t) dp k(t) =: p h dt k(t) (31) quando h 0, chegamos então ao seguinte sistema de equações diferenciais { p 0 (t) = p 0 (t) para k = 0 p k (t) = p (32) k(t) + p k 1 (t) para k 1, (30)

5 5 sujeito às condições iniciais p k (0) = δ 0k, k 0. A solução desse problema de valor inicial é dada por para k = 0, 1, 2,.... Portanto N t Po(t) p k (t) = e t (t)k k! Corolário 1. Seja (N t ) t 0 um processo de Poisson com taxa. Então µ t = E(N t ) = t e σt 2 = Var(N t ) = t para todo t 0. Definição 9. Sejam T 0, T 1, T 2,... tais que T 0 = 0, e para k 1, T k := min{t > 0 : N(t) = k} =: O tempo de espera até a ocorrência do k-ésimo evento. (34) Além disso, defina τ i := T i T i 1 para i 1 e observe que T k = k i=1 τ i. Observe também que τ 1 é o tempo inicial até a ocorrência do primeiro evento, e para i 2, τ i é o tempo a partir de T i 1 até a ocorrência do i-ésimo evento. Teorema 6. τ 1 = T 1, τ 2 = T 2 T 1, τ 3 = T 3 T 2,... iid Exp(). Além disso, E(τ i ) = 1/ e Var(τ i ) = 1/ 2 para todo i 1. PROVA. Temos que Assim τ 1 Exp(). Agora observe que Pr(τ 1 > t) = Pr(Nenhum evento em [0, t]) = Pr(N t = 0) = e t. (35) Pr(τ 2 > t τ 1 = u 1 ) = Pr(Nenhum evento em (u 1, u 1 + t]) = Pr(N t = 0) = e t. (36) Assim τ 2 é independente de τ 1, e possui a mesma distribuição. Repetindo o argumento, a prova segue por indução em n: Pr(τ n+1 > t τ 1 = u 1,..., τ n = u n ) = Pr(Nenhum evento em ( n i=1 u i, n i=1 u i + t]) = Pr(N t = 0) = e t. (37) Portanto τ 1, τ 2,... são va.a s iid com distribuição comum Exp() Corolário 2. T k = k i=1 τ i Gama(k, ) para todo k 1. Além disso, E(T k ) = k/ e Var(T k ) = k/ 2 para todo k 1. Comentário 6. O resultado do teorema 6 faz a ligação entre o desenvolvimento construtivo dos processos de Poisson (apresentado na seção IV) e o desenvolvimento apresentado nessa seção (seção V). O desenvolvimento realizado até esse momento, permite afirmar o seguinte teorema. Teorema 7. Um processo de contagem em tempo contínuo (N t ) t 0 em N é um processo de Poisson com taxa > 0 se, e somente se, τ 1, τ 2,... são va.a. s independentes e exponencialmente distribuídas com parâmetro. Teorema 8. Seja (N t ) t 0 um processo de Poisson com taxa. Dado N t = k, os k tempos de espera T 1,..., T k, são va.a. s independentes e uniformemente distribuídas no intervalo [0, t]. Isso significa que a densidade conjunta de T 1,..., T k dado N t = k é igual à densidade conjunta das estatísticas de ordem correspondentes k va.a. s independentes e uniformemente distribuídas no intervalo [0, t]. Ou seja, f(t 1,..., t k k) = k! t k, (38) para 0 < t 1 <... < t k < t. VI. PROCESSOS DE POISSON III: TEOREMAS LIMITE Teorema 9 (Lei dos grandes números). Seja (N t ) t 0 um processo de Poisson com taxa. Então quando t. N t t (33) q.c. (39) Teorema 10 (Teorema central do limite). Seja (N t ) t 0 um processo de Poisson com taxa. Então N t t t D N(0, 1) (40) quando t. Isso significa que quando t é suficientemente grande. N t a N(t, t) (41)

6 6 VII. PROCESSOS DE POISSON IV: FALTA DE MEMÓRIA DO PASSADO Definição 10 (Tempo de parada). Seja (N t ) t 0 um processo de Poisson com taxa e seja T uma va.a. tal que T [0, + ]. Dizemos que T é um tempo de parada em relação ao processo (N t ) t 0, se para todo t 0 é possível determinar se o evento [T t] ocorreu ou não, conhecendo apenas a história do processo até o tempo t, denotada aqui por (N u : 0 u t). Teorema 11. Seja (N t ) t 0 um processo de Poisson com taxa. Então para todo t 0 e qualquer tempo de parada T temos que Pr(N T +t N T = k N u ; u T ) = e t (t)k (42) k! para k = 0, 1, 2,.... Isso significa que: N T +t N T [N u ; u T ] d = N t Po(t) E(N T +t N T N u ; u T ) = E(N t ) = t e Var(N T +t N T N u ; u T ) = Var(N t ) = t. Em particular, os resultados valem se T = T n para algum n 1 ou se T é uma variável degenerada em algum s positivo. Corolário 3. Seja (N t ) t 0 um processo de Poisson com taxa. Então para todo n 0 temos que Pr(τ n+1 > t τ 0,..., τ n ) = Pr(T n+1 T n > t T 0,..., T n ) = e t (43) para todo t 0. Observe que esse resultado segue imediatamente do teorema 11 quando T = T n e k = 0. VIII. PROCESSOS DE POISSON V: SUPERPOSIÇÃO E DECOMPOSIÇÃO Teorema 12 (Superposição de processos de Poisson). Sejam (L t ) t 0 e (M t ) t 0 processos de Poisson independentes um do outro e com taxas e ν respectivamente. O processo (N t ) t 0, onde N t = L t + M t, é chamado de superposição dos processos (L t ) t 0 e (M t ) t 0. (N t ) t 0 é um processo de Poisson com taxa + ν. Teorema 13 (Decomposição de processos de Poisson). Seja (N t ) t 0 um processo de Poisson com taxa. Suponha que cada vez que um evento de interesse ocorre no tempo, ele é classificado como sendo do tipo I ou do tipo II com probabilidades p e 1 p respectivamente, 0 < p < 1. (Nt I ) t 0 representa o número de eventos do tipo I no intervalo [0, t] e (Nt II ) t 0 representa o número de eventos do tipo II no intervalo [0, t]. Note que N t = Nt I + Nt II. (Nt I ) t 0 e (Nt II ) t 0 são processos de Poisson independentes um do outro e com taxas p e (1 p) respectivamente. IX. EXERCÍCIOS Exercício 1. Seja (N t ) t 0 um processo de Poisson com taxa = 15. Calcule: Pr(N 6 = 9) Pr(N 6 = 9, N 20 = 13, N 56 = 27) Pr(N 20 = 13 N 6 = 9) Pr(N 6 = 9 N 20 = 13) Exercício 2. Seja (N t ) t 0 um processo de Poisson com taxa = 2. Calcule: µ t = E(N t ) para t 0 σ 2 t = Var(N t ) para t 0 γ s,t = Cov(N s, N t ) para s, t 0 E(N s+t N s ) para s, t 0 Exercício 3. Em certa rodovia, a intensidade média do fluxo de tráfego é de 30 carros por minuto. Assuma que a contagem de carros (registrada por um medidor) segue o processo de Poisson. Calcule: a probabilidade de que 2 ou mais carros sejam registrados durante um intervalo de dois segundos. a probabilidade de passar mais de um minuto, a partir de um instante inicial, até registrar o primeiro carro. Exercício 4. Seja (N t ) t 0 um processo de Poisson com taxa. Mostre que para todo s, t 0. γ s,t = Cov(N s, N t ) = min{s, t}, Exercício 5. Seja (N t ) t 0 um processo de Poisson com taxa. Mostre que 1 h + o(h) se k = 0 h + o(h) se k = 1 Pr(N h = k) = Pr(N s+h N s = k) = Pr(N s+h = i + k N s = i) = o(h) se k 2 0 se k < 0.

7 7 Esse exercício completa a prova do teorema 5. Exercício 6. Uma loja possui duas entradas, uma pela rua A e outra pela rua B. Os fluxos de consumidores que chegam na loja a partir dessas duas entradas são processos de Poisson independentes com taxas de 1/2 consumidor por minuto e de 3/2 consumidores por minuto respectivamente. Qual é a probabilidade que um novo consumidor entre na loja durante um intervalo fixado de 3 minutos? Qual é o tempo médio entre chegadas de novos consumidores? Qual é a probabilidade que um dado consumidor entre pela rua A? Exercício 7. O fluxo de consumidores numa loja é descrito por um processo de Poisson com taxa de 25 consumidores por hora. Sabe-se que a proporção de consumidores do sexo feminino é de 80%. Qual é a probabilidade que nenhum consumidor homem entre nessa loja durante um intervalo de 15 minutos? Exercício 8. Consider the road network pictured in Figure. The inputs are Poisson processes with the rates indicated, and the probabilities of a vehicle choosing the indicated directions are written on the arrows. Describe the traffic flow on each branch of the network. 1=30 0,3 0,7 2=60 0,6 1,0 0,4 0,5 0,5 0,2 0,8 1,0 Exercício 9. Considere que o tráfego numa rodovia é conhecido. O número de veículos passando num sentido segue o processo de Poisson com taxa de 60 veículos por hora, sendo que 20% desses veículos são caminhões. O número de veículos passando no sentido contrário segue o processo de Poisson com taxa de 80 veículos por hora, sendo que 30% desses veículos são caminhões. Em geral, 10% de todos os veículos páram num restaurante que fica ao lado da rodovia. Assuma que o número de pessoas num caminhão é 1 e o número de pessoas num carro varia de 1 até 5 com as seguintes probabilidades 3/10, 3/10, 2/10, 1/10 e 1/10. Encontre o valor esperado do número de pessoas que chegam no restaurante num período de 1 hora. Exercício 10. Considerando as devidas adaptações na notação, resolva os exercícios 3, 4, 5, 6, 7 e 8 do capítulo 3 do livro-texto do curso [1]. Exercício 11. Seja (N t ) t 0 um processo de Poisson com taxa e seja B uma subconjunto de R + := [0, ). Nesse exercício, N B representa o número de eventos ocorridos no conjunto B. Por exemplo, se B = [0, t], então N B = N t ; se B = (s, s + t], então N B = N s+t N s ; se B = (s, t] (u, v], então N B = N t N s + N v N u. A 1,..., A n formam uma partição de B, tal que B = i A i e representa o comprimento de um subconjunto qualquer de R +. Mostre que Pr(N A1 = k 1,..., N An = k n N B = k) = para quaisquer k 1,..., k n N onde k = i k i. 3=30 k! k 1! k n! ( A1 B ) k1 ( An B ) kn, X. ÍNDICE DE NOTAÇÕES Segue abaixo uma lista da notação utilizada nessa seção: (X t ) t 0 processo estocástico em tempo contínuo. (N t ) t 0 processo de contagem em tempo contínuo. ϕ = N =: {0, 1, 2,...} espaço de estados do processo de contagem. i, j, k,... estados em ϕ. µ t := E(X t ) função média do processo. σ 2 t := Var(X t ) função variância do processo. γ s,t := Cov(X s, X t ) função de autocovariância do processo. ϱ s,t função de autocorrelação do processo. (N t ) t 0 processo de Poisson com taxa, PP(). τ 1, τ 2,... idd Exp() tempos entre ocorrências sucessivas de eventos no PP(). N t := max{k 0 : T k t} estado do PP() no tempo t T 0 = 0 e T k = k i=1 τ i = min{t > 0 : N t = k}, k 1, tempo de espera até a ocorrência do k-ésimo evento no PP(). (T k ) k 0 tempos de espera no PP(). p k (t) := Pr(N t = k) probabilidade de [N t = k].

8 8 REFERÊNCIAS [1] HOEL, P.; PORT, S.; STONE, C. Introduction to Stochastic Processes. Illinois: Waveland Press, [2] GRIMMETT, G.; STIRZAKER, D. Probability and Random Processes, 3rd edition. New York: Oxford University Press, [3] ROSS, S. Introduction to Probability Models, 8th edition. San Diego: Academic Press, [4] FELLER, W. An Introduction to Probability Theory and its Applications, vol I. New York: John Wiley, [5] RIZZO, M. Statistical Computing with R. New York: Chapman & Hall/CRC Press, 2008.

PROCESSOS ESTOCÁSTICOS

PROCESSOS ESTOCÁSTICOS PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas e Sinais CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos

Leia mais

A estacionariedade prova-se de maneira semel- hante.

A estacionariedade prova-se de maneira semel- hante. Se por outro lado (U 1, U 2,...) é IID então mostremos que X n U 1 + + U n tem incrementos independentes e estacionários. De facto, dados n > m temos que X n X m U m+1 + + U n. Tome-se quaisquer n 1

Leia mais

Processos de Poisson

Processos de Poisson Processos de Poisson Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Capitulo 5 Taylor & Karlin 1 / 37 Distribuição de Poisson Seja a variável

Leia mais

Modelos para Séries Temporais Aula 1. Morettin e Toloi, 2006, Capítulo 2 Morettin, 2011, Capítulo 2 Bueno, 2011, Capítulo 2

Modelos para Séries Temporais Aula 1. Morettin e Toloi, 2006, Capítulo 2 Morettin, 2011, Capítulo 2 Bueno, 2011, Capítulo 2 Modelos para Séries Temporais Aula 1 Morettin e Toloi, 2006, Capítulo 2 Morettin, 2011, Capítulo 2 Bueno, 2011, Capítulo 2 Modelos para Séries Temporais Os modelos utilizados para descrever séries temporais

Leia mais

PROCESSO DE POISSON. Processo Estocástico Prof, Ms. Eliana Carvalho

PROCESSO DE POISSON. Processo Estocástico Prof, Ms. Eliana Carvalho Processo Estocástico Prof, Ms. Eliana Carvalho Este processo estocástico deve o seu nome ao matemático francês Simion-Denis Poisson (1781-1840). Espaço de estados discreto (cadeia) Variável tempo é contínua

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Luis Henrique Assumpção Lolis 26 de maio de 2014 Luis Henrique Assumpção Lolis Processos Estocásticos 1 Conteúdo 1 Introdução 2 Definição 3 Especificando um processo aleatório 4

Leia mais

Processos estocásticos

Processos estocásticos 36341 - Introdução aos Processos Estocásticos Curso de Pós-Graduação em Engenharia Elétrica Departamento de Engenharia Elétrica Universidade de Brasília Processos estocásticos Geovany A. Borges gaborges@ene.unb.br

Leia mais

Módulo III: Processos de Poisson, Gaussiano e Wiener

Módulo III: Processos de Poisson, Gaussiano e Wiener Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo

Leia mais

Processos aleatórios - características

Processos aleatórios - características Capítulo 6 Processos aleatórios - características temporais 6.1 O conceito de processo aleatório Um processo aleatório ou estocástico é um espaço de amostras em que cada elemento é associado a uma função

Leia mais

IND 1115 Inferência Estatística Aula 6

IND 1115 Inferência Estatística Aula 6 Conteúdo IND 5 Inferência Estatística Aula 6 Setembro de 004 A distribuição Lognormal A distribuição Beta e sua relação com a Uniforme(0,) Mônica Barros mbarros.com mbarros.com A distribuição Lognormal

Leia mais

Sistemas Reparáveis - Processo de Contagem

Sistemas Reparáveis - Processo de Contagem Sistemas Reparáveis - Processo de Contagem Enrico A. Colosimo Colaboração: Rodrigo C. P. dos Reis e Maria Luiza Toledo Programa de Pós-Graduação em Estatística - UFMG Teoria básica de Processos de Contagem

Leia mais

Aula 5. Processo de Poisson. Exemplos.

Aula 5. Processo de Poisson. Exemplos. Aula 5. Processo de Poisson. Exemplos. Exemplo 1. Processo de Poisson com diferentes tipos de eventos. Consideramos um processo de Poisson com intensidade λ. Suponha que em cada instante de ocorrência

Leia mais

Modelos Probabilísticos de Desempenho. Profa. Jussara M. Almeida 1º Semestre de 2014

Modelos Probabilísticos de Desempenho. Profa. Jussara M. Almeida 1º Semestre de 2014 Modelos Probabilísticos de Desempenho Profa. Jussara M. Almeida 1º Semestre de 2014 Modelos Probabilísticos Processos Estocásticos Processos de Poisson Filas M/M/1, M/G/1... Mais genericamente: modelos

Leia mais

PRE29006 LISTA DE EXERCÍCIOS #

PRE29006 LISTA DE EXERCÍCIOS # INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS #3 06. Exercícios. [, Exercício 7.] Seja A uma variável

Leia mais

Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo:

Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo: Por que aparecem as filas? Não é eficiente, nem racional, que cada um disponha de todos os recursos individualmente. Por exemplo: que cada pessoa disponha do uso exclusivo de uma rua para se movimentar;

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Plano de Curso Probabilidade e Estatística UAEst/CCT/UFCG Ementa Fenômeno aleatório versus fenômeno determinístico. Espaço amostral e eventos. Introdução à teoria das probabilidades. Abordagem axiomática

Leia mais

Métodos Matemáticos na Ciência de Dados: Introdução Relâmpago. II

Métodos Matemáticos na Ciência de Dados: Introdução Relâmpago. II Métodos Matemáticos na Ciência de Dados: Introdução Relâmpago. II Vladimir Pestov 1 University of Ottawa / Université d Ottawa Ottawa, Ontario, Canadá 2 Universidade Federal de Santa Catarina Florianópolis,

Leia mais

TE802 Processos Estocásticos em Engenharia. Processo Aleatório. TE802 Processos Aleatórios. Evelio M. G. Fernández. 18 de outubro de 2017

TE802 Processos Estocásticos em Engenharia. Processo Aleatório. TE802 Processos Aleatórios. Evelio M. G. Fernández. 18 de outubro de 2017 TE802 Processos Estocásticos em Engenharia Processos Aleatórios 18 de outubro de 2017 Processo Aleatório Processo Aleatório (ou Estocástico), X(t): Função aleatória do tempo para modelar formas de onda

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição t de Student 02/14 1 / 1 A distribuição t de Student é uma das distribuições

Leia mais

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017 padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições

Leia mais

Cadeias de Markov em Tempo Continuo

Cadeias de Markov em Tempo Continuo Cadeias de Markov em Tempo Continuo Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Capitulos 6 Taylor & Karlin 1 / 44 Análogo ao processo

Leia mais

Modelos discretos e contínuos

Modelos discretos e contínuos Modelos discretos e contínuos Joaquim Neto joaquim.neto@ufjf.edu.br Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF Versão 3.0 1

Leia mais

ROTEIRO DA APRESENTAÇÃO PROCESSOS ESTOCÁSTICOS

ROTEIRO DA APRESENTAÇÃO PROCESSOS ESTOCÁSTICOS ROTEIRO DA APRESENTAÇÃO MODELOS ESTOCÁSTICOS APLICADOS À INDÚSTRIA Prof. Lupércio França Bessegato Departamento de Estatística Universidade Federal de Juiz de Fora lupercio.bessegato@ufjf.edu.br www.ufjf.br/lupercio_bessegato

Leia mais

Poder Executivo Ministério da Educação Universidade Federal do Amazonas Instituto de Ciências Exatas Departamento de Estatística PLANO DE ENSINO

Poder Executivo Ministério da Educação Universidade Federal do Amazonas Instituto de Ciências Exatas Departamento de Estatística PLANO DE ENSINO PLANO DE ENSINO 1. IDENTIFICAÇÃO DA DISCIPLINA CURSO: IE01 - Estatística PERÍODO LETIVO: 2017/2 TURMA: EB01 DISCIPLINA: Probabilidade I SIGLA: IEE201 CARGA HORÁRIA TOTAL: 90 horas CRÉDITOS: 6.6.0 TEÓRICA:

Leia mais

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II 13 de Dezembro de 2013 Exercício 1. Descreva o espaço de probabilidade associado às seguintes experiências aleatórias: 1. Uma moeda

Leia mais

5. PRINCIPAIS MODELOS CONTÍNUOS

5. PRINCIPAIS MODELOS CONTÍNUOS 5. PRINCIPAIS MODELOS CONTÍNUOS 2019 5.1. Modelo uniforme Uma v.a. contínua X tem distribuição uniforme com parâmetros e ( < ) se sua função densidade de probabilidade é dada por f ( x )={ 1 β α, α x β

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari denise@ita.br Distribuições Discretas Uniforme Bernoulli Binomial Poisson

Leia mais

ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. Prof.: Idemauro Antonio Rodrigues de Lara

ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS. Prof.: Idemauro Antonio Rodrigues de Lara 1 ALGUNS MODELOS DE VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS Prof.: Idemauro Antonio Rodrigues de Lara 2 Modelos de variáveis aleatórias discretas 1. Distribuição Uniforme Discreta 2. Distribuição Binomial

Leia mais

Processos Estocásticos e Cadeias de Markov Discretas

Processos Estocásticos e Cadeias de Markov Discretas Processos Estocásticos e Cadeias de Markov Discretas Processo Estocástico(I) Definição: Um processo estocástico é uma família de variáveis aleatórias {X(t) t T}, definidas em um espaço de probabilidades,

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09 Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

PROCESSOS ESTOCÁSTICOS. O resultado de muitas experiências aleatórias é função do tempo ou de uma (ou mais) coordenada espacial.

PROCESSOS ESTOCÁSTICOS. O resultado de muitas experiências aleatórias é função do tempo ou de uma (ou mais) coordenada espacial. 37 PROCESSOS ESTOCÁSTICOS O resultado de muitas experiências aleatórias é função do tempo ou de uma (ou mais) coordenada espacial. Ex: i) O valor da temperatura média diária ou semanal numa cidade. O acontecimento

Leia mais

Curso: Engenharia de Produção

Curso: Engenharia de Produção Vamos admitir que o tempo de atendimento (tempo de serviço) de clientes diferentes são variáveis aleatórias independentes e que o atendimento de cada consumidor é dado por uma variável S tendo função densidade

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08 Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

4. ([Magalhães, 2011] - Seção 2.4) Seja X U( α, α), determine o valor do parâmetro α de modo que:

4. ([Magalhães, 2011] - Seção 2.4) Seja X U( α, α), determine o valor do parâmetro α de modo que: GET189 Probabilidade I Lista de exercícios - Capítulo 6 1. ([Ross, 21] - Capítulo 5) Em uma estação, trens partem para a cidade A de 15 em 15 minutos, começando às 7:h; e trens partem para a cidade B de

Leia mais

Distribuições Discretas

Distribuições Discretas META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Distribuição Normal Motivação: Distribuição

Leia mais

AULA 17 - Distribuição Uniforme e Normal

AULA 17 - Distribuição Uniforme e Normal AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço

Leia mais

Avaliação e Desempenho Aula 18

Avaliação e Desempenho Aula 18 Avaliação e Desempenho Aula 18 Aula passada Fila com buffer finito Fila com buffer infinito Medidas de interesse: vazão, número médio de clientes na fila, taxa de perda. Aula de hoje Parâmetros de uma

Leia mais

Análise de Dados e Simulação

Análise de Dados e Simulação Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco Processo de Poisson. Processo de Poisson Homogêneo Considere N(t) o número de ocorrências de um determinado

Leia mais

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I 2014/2015 Os exercícios assinalados com (*) têm um nível de dificuldade superior. Exercício 1. Seja (X, F) um espaço mensurável. Mostre

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aula passada Algoritmo para simular uma fila Medidas de interesse Média amostral Aula de hoje Teorema do Limite Central Intervalo de Confiança Variância amostral

Leia mais

Estatística Aplicada

Estatística Aplicada Estatística Aplicada Variável Aleatória Contínua e Distribuição Contínua da Probabilidade Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE

Leia mais

UMA PITADA DE PASSEIOS ALEATÓRIOS

UMA PITADA DE PASSEIOS ALEATÓRIOS UMA PITADA DE PASSEIOS ALEATÓRIOS RENATO JACOB GAVA 1. Introdução Suponha que um jogador entre num cassino com 0 reais em dinheiro para apostar. Assuma que ele participe de um jogo que consiste de apostas

Leia mais

Pr = 6 = = = 0.8 =

Pr = 6 = = = 0.8 = IND 5 Inferência Estatística Semestre 004.0 Teste 05/0/004 GABARITO Problema (5 pontos) Uma gulosa professora de estatística é fissurada por trufas de chocolate. Em busca da trufa ideal, ela vai provando

Leia mais

teoria de probabilidade e estatística, uma sequência de palavra série de tempo é usada alternativamente para

teoria de probabilidade e estatística, uma sequência de palavra série de tempo é usada alternativamente para Na teoria de probabilidade e estatística, uma sequência de variáveis aleatórias é independente e indenticamente distribuida (i.i.d) se cada variável aleatória tem a mesma distribuição de probabilidade

Leia mais

Modelagem e Análise Aula 9

Modelagem e Análise Aula 9 Modelagem e Análise Aula 9 Aula passada Equações de fluxo Tempo contínuo Aula de hoje Parâmetros de uma fila Medidas de desempenho Cálculo do tempo de espera Resultado de Little Parâmetros da Fila chegada

Leia mais

Processos Estocásticos aplicados à Sistemas Computacionais

Processos Estocásticos aplicados à Sistemas Computacionais Processos Estocásticos aplicados à Sistemas Computacionais Magnos Martinello Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Lei dos Grandes Números e Teorema Central do Limite 02/14 1 / 9 Lei dos Grandes Números Lei

Leia mais

Probabilidades e Estatística TODOS OS CURSOS

Probabilidades e Estatística TODOS OS CURSOS Duração: 90 minutos Grupo I Probabilidades e Estatística TODOS OS CURSOS Justifique convenientemente todas as respostas 2 o semestre 206/207 05/07/207 :30 o Teste C 0 valores. Uma peça de certo tipo é

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

Probabilidade de Ruína e Processos de Lévy α-estáveis

Probabilidade de Ruína e Processos de Lévy α-estáveis Apresentação Probabilidade de Ruína e Processos de Lévy α-estáveis Universidade de São Paulo IME - USP 08 de abril, 2010 Apresentação Distribuições Estáveis e Processos de Lévy α-estáveis Convergência

Leia mais

METODOLOGIA COM BASE PROBABILÍSTICA PARA A MEDIÇÃO DA EFICÁCIA DO PROCESSO DE ENSINO NOS SISTEMAS PRESENCIAL E A DISTÂNCIA

METODOLOGIA COM BASE PROBABILÍSTICA PARA A MEDIÇÃO DA EFICÁCIA DO PROCESSO DE ENSINO NOS SISTEMAS PRESENCIAL E A DISTÂNCIA METODOLOGIA COM BASE PROBABILÍSTICA PARA A MEDIÇÃO DA EFICÁCIA DO PROCESSO DE ENSINO NOS SISTEMAS PRESENCIAL E A DISTÂNCIA Fortaleza, abril/2014 Graziella Batista de Moura Universidade de Fortaleza graziella@unifor.br

Leia mais

Modelos de Distribuição PARA COMPUTAÇÃO

Modelos de Distribuição PARA COMPUTAÇÃO Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO

Leia mais

Universidade Federal do ABC Rua Santa Adélia, Bairro Bangu - Santo André - SP - Brasil CEP Telefone/Fax:

Universidade Federal do ABC Rua Santa Adélia, Bairro Bangu - Santo André - SP - Brasil CEP Telefone/Fax: Universidade Federal do ABC Rua Santa Adélia, 166 - Bairro Bangu - Santo André - SP - Brasil CEP 09.210-170 - Telefone/Fax: +55 11 4996-3166 1. CÓDIGO E NOME DA DISCIPLINA BC1436 - PRINCÍPIOS DE SIMULAÇÃO

Leia mais

ACH Introdução à Estatística Conteúdo Teórico: 12 - Simulação

ACH Introdução à Estatística Conteúdo Teórico: 12 - Simulação ACH2053 - Introdução à Estatística Conteúdo Teórico: Marcelo S. Lauretto Referências: Morris DeGroot, Mark Schervish. Probability and Statistics. 4th Ed. - 4o capítulo Ilya M. Sobol. A Primer for the Monte

Leia mais

Professora Ana Hermínia Andrade. Período

Professora Ana Hermínia Andrade. Período Distribuições de probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Modelos de distribuição Para

Leia mais

Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios

Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia

Leia mais

Distribuições de probabilidade contínuas

Distribuições de probabilidade contínuas BIE5781 Aula 3 Distribuições de probabilidade contínuas CONCEITOS Distribuições de probabilidade (revisão) Função de densidade probabilística Função de probabilidade acumulada Esperança e variância de

Leia mais

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos 1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino 003/005 IST-Secção de Sistemas

Leia mais

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23 Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração

Leia mais

PLANEJAMENTO DE TRANSPORTES TT049

PLANEJAMENTO DE TRANSPORTES TT049 UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE TRANSPORTES PLANEJAMENTO DE TRANSPORTES TT049 Prof. Diego Fernandes Neris diego.neris@ufpr.br Filas: Problema mais comum na engenharia de transportes e de

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 6 Distribuições Contínuas (Parte 02) Leitura obrigatória: Devore, Capítulo 4 Chap 6-1 Distribuições de Probabilidade Distribuições de Probabilidade Distribuições de Probabilidade

Leia mais

Teorema do Limite Central

Teorema do Limite Central Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2

Leia mais

Amostra Aleatória Simples

Amostra Aleatória Simples Amostra Aleatória Simples Airlane Pereira Alencar 4 de Abril de 2018 Alencar, A.P. (IME-USP) Amostra Aleatória Simples 4 de Abril de 2018 1 / 34 Definições e Notações Notações População ou Universo U =

Leia mais

Tiago Viana Flor de Santana

Tiago Viana Flor de Santana ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ tiagodesantana@uel.br sala 07 Curso: MATEMÁTICA Universidade Estadual

Leia mais

SCX5005 Simulação de Sistemas Complexos II. Problemas em Simulação

SCX5005 Simulação de Sistemas Complexos II. Problemas em Simulação SCX5005 Simulação de Sistemas Complexos II Alguns Marcelo S. Lauretto Referências: Morris DeGroot, Mark Schervish. Probability and Statistics. 4th Ed. - 4o capítulo Ilya M. Sobol. A Primer for the Monte

Leia mais

Noções de Processos Estocásticos e Cadeias de Markov

Noções de Processos Estocásticos e Cadeias de Markov Noções de Processos Estocásticos e Cadeias de Markov Processo Estocástico Definição: Processo Estocástico é uma coleção de variáveis aleatórias indexadas por um parâmetro t R (entendido como tempo). X={

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 02/14 1 / 1 A distribuição F de Snedecor também conhecida como distribuição de Fisher é frequêntemente

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Um teorema de grande importância e bastante utilidade em probabilidade

Leia mais

Introdução aos Proc. Estocásticos - ENG 430

Introdução aos Proc. Estocásticos - ENG 430 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 35 Fabrício Simões

Leia mais

Inferência Estatistica

Inferência Estatistica Inferência Estatistica Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Modelos e Inferência Um modelo é uma simplificação da realidade (e alguns

Leia mais

Estatísticas Inferenciais Distribuições Amostrais. Estatística

Estatísticas Inferenciais Distribuições Amostrais. Estatística Estatística Na descrição dos conjuntos de dados x 1,..., x n, não foi feita menção ao conceito de população. Estatísticas inferenciais: preocupadas com a fonte dos dados e em tentar fazer generalizações

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 20

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 20 Teoria das Filas aplicadas a Sistemas Computacionais Aula 20 Magnos Martinello Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia

Leia mais

Aula 11. Variáveis Aleatórias Contínuas Bidimensionais

Aula 11. Variáveis Aleatórias Contínuas Bidimensionais Aula. Variáveis Aleatórias Contínuas Bidimensionais Resumo de caso unidimensional Caso Discreto p p 2 p 3 Caso Contínuo f(x) x x 2 x 3 i p i + f x dx X x x 2 x 3 P p p 2 p 3 Caso bidimensional Caso Discreto

Leia mais

Continuidade de processos gaussianos

Continuidade de processos gaussianos Continuidade de processos gaussianos Roberto Imbuzeiro Oliveira April, 008 Abstract 1 Intrudução Suponha que T é um certo conjunto de índices e c : T T R é uma função dada. Pergunta 1. Existe uma coleção

Leia mais

PROCESSOS ESTOCÁSTICOS

PROCESSOS ESTOCÁSTICOS PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos e Científicos

Leia mais

Distribuições conjuntas de probabilidades e complementos

Distribuições conjuntas de probabilidades e complementos Probabilidades e Estatística 2004/05 Colectânea de Exercícios LEIC, LERCI, LEE Capítulo 5 Distribuições conjuntas de probabilidades e complementos 02 x = 0 065 x = 1 Exercício 51 (a) P(X = x) = 015 x =

Leia mais

3. Considere uma amostra aleatória de tamanho 7 de uma normal com média 18. Sejam X e S 2, a média e a variância amostral, respectivamente.

3. Considere uma amostra aleatória de tamanho 7 de uma normal com média 18. Sejam X e S 2, a média e a variância amostral, respectivamente. 1 Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas Professores: Clarice Demétrio, Roseli Leandro e Mauricio Mota Lista 3- Distribuições Amostrais-

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama

Leia mais

FORMULÁRIO PROCESSOS ESTOCÁSTICOS E APLICAÇÕES MAEG-ISEG exp(x) = j=0. j+1 xj ( 1) j=1. ( 1) j x j for 1 < x < 1

FORMULÁRIO PROCESSOS ESTOCÁSTICOS E APLICAÇÕES MAEG-ISEG exp(x) = j=0. j+1 xj ( 1) j=1. ( 1) j x j for 1 < x < 1 FORMULÁRIO PROCESSOS ESTOCÁSTICOS E APLICAÇÕES MAEG-ISEG 008 Desenvolvimentos em série log( + x) = ( + x) = exp(x) = X ( ) = Cadeias de Markov + x X x! for < x X ( ) x for < x < Equações de Chapman-Kolmogorov

Leia mais

Capítulo 3 Processos de Poisson

Capítulo 3 Processos de Poisson Capítulo 3 Processos de Poisson Exercício 31 Este exercício decorre de desenvolvimentos efectuados nas aulas teóricas e do Exercício (6) Exercício 32 Procedendo como no Exercício 4, conclui-se que a distribuição

Leia mais

Processos Estocásticos. Professora Ariane Ferreira

Processos Estocásticos. Professora Ariane Ferreira Professora Conteúdos das Aulas 2 1.Apresentação da disciplina e introdução aos (PE) 2.Conceitos de Probabilidades 3.Variaveis aleatorias 4.Introdução aos 5.Processos de Poisson 6.Cadeias de Markov 7.Passeio

Leia mais

Processos de Lévy: Preliminares

Processos de Lévy: Preliminares Processos de Lévy: Preliminares Pedro A. Morettin Instituto de Matemática e Estatística Universidade de São Paulo pam@ime.usp.br http://www.ime.usp.br/ pam Sumário 1. Introdução 2. Alguns processos em

Leia mais

Introdução aos Proc. Estocásticos - ENG 430

Introdução aos Proc. Estocásticos - ENG 430 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 34 1 Motivação 2 Conceitos

Leia mais

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos 1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino IST-Secção de Sistemas e Controlo

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS fonte de graus de soma de quadrado variação liberdade quadrados médio teste F regressão 1 1,4 1,4 46,2 resíduo 28 0,8 0,03 total 2,2 A tabela de análise de variância (ANOVA) ilustrada acima resulta de

Leia mais

ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época de Recurso Duração: 2 horas. 1. a Parte Teórica N. o de Exame: RESOLUÇÃO

ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época de Recurso Duração: 2 horas. 1. a Parte Teórica N. o de Exame: RESOLUÇÃO ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época de Recurso Duração: 2 horas 1. a Parte Teórica N. o de Exame: RESOLUÇÃO 27.01.2015 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação:

Leia mais

Avaliação de Desempenho

Avaliação de Desempenho Avaliação de Desempenho Aula passada Métricas, Técnicas, Erros Aula de hoje Conceitos importantes de probabilidade Como fazer a análise de desempenho? Modelos Matemáticos Modelos de Simulação Como fazer

Leia mais

Variáveis Aleatórias Discretas e Distribuição de Probabilidade

Variáveis Aleatórias Discretas e Distribuição de Probabilidade Variáveis Aleatórias Discretas e Distribuição de Probabilidades - parte IV 2012/02 1 Distribuição Poisson Objetivos Ao final deste capítulo você deve ser capaz de: Ententer suposições para cada uma das

Leia mais

Metodologia de Box-Jenkins. Metodologia de Box-Jenkins. Metodologia de Box-Jenkins

Metodologia de Box-Jenkins. Metodologia de Box-Jenkins. Metodologia de Box-Jenkins Programa de Pós-graduação em Engenharia de Produção Análise de séries temporais: Modelos de Box-Jenkins Profa. Dra. Liane Werner Metodologia de Box-Jenkins Para os modelos de decomposição e os modelos

Leia mais

COS767 - Modelagem e Análise Aula 3 - Simulação

COS767 - Modelagem e Análise Aula 3 - Simulação COS767 - Modelagem e Análise Aula 3 - Simulação Validando resultados da simulação Média e variância amostral Teorema do Limite Central Intervalo de confiança Organizando as execuções da simulação Verificando

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias nuas

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aleatórias nuas ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 04: Variáveis Aleatórias Contínuas nuas Função densidade de probabilidade contínua nua f(x) a b f(x) 0 para

Leia mais

Nome do Autor. Título do Livro

Nome do Autor. Título do Livro Nome do Autor Título do Livro É expressamente proibido reproduzir, no todo ou em parte, sob qualquer forma ou meio, nomeadamente fotocópia, esta obra. As transgressões serão passíveis das penalizações

Leia mais

ATeoria de filas é uma das abordagens mais utilizadas no estudo de desempenho

ATeoria de filas é uma das abordagens mais utilizadas no estudo de desempenho Teoria de Filas - Resumo e Exercícios Pedroso 24 de setembro de 2014 1 Introdução 2 Definições básicas ATeoria de filas é uma das abordagens mais utilizadas no estudo de desempenho e dimensionamento de

Leia mais

Teoria de Filas Aula 10

Teoria de Filas Aula 10 Aula Passada Comentários sobre a prova Teoria de Filas Aula 10 Introdução a processos estocásticos Introdução a Cadeias de Markov Aula de Hoje Cadeias de Markov de tempo discreto (DTMC) 1 Recordando...

Leia mais

SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS

SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS 4 SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS Em muitos problemas de probabilidade que requerem o uso de variáveis aleatórias, uma completa especificação da função de densidade de probabilidade ou não está

Leia mais

Modelagem de um sistema por cadeias de Markov

Modelagem de um sistema por cadeias de Markov Modelagem de um sistema por cadeias de Markov Sistemas sem memória : somente o estado imediatamente anterior influencia o estado futuro. rocesso estacionário: probabilidades de transição de um estado para

Leia mais

Análise de Dados e Simulação

Análise de Dados e Simulação Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco Simulação de Variáveis Aleatórias Contínuas. O método da Transformada Inversa Teorema Seja U U (0,1). Para qualquer

Leia mais

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,

Leia mais