MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições"

Transcrição

1 Motivação: MOQ-2: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS VA s e Distribuições Definimos anteriormente Espaço de Probabilidades como sendo a tripla (W,, P(.)), em que, dado um eperimento, W representa o conunto de todos os resultados possíveis; representa um evento; e P(.) é a função de probabilidade, cuo domínio é e o contradomínio é o intervalo [0,]. Nosso obetivo era (e continua sendo) modelar os eperimentos aleatórios a fim de quantificar os valores das probabilidades dos eventos. Para isso, é importante a noção de variável aleatória (v.a) e de função distribuição acumulada (FDA). A primeira é utilizada para descrever eventos; a segunda, para determinar as probabilidades de certos eventos em termos das v.a s. As variáveis aleatórias (v.a. s) transformam um espaço amostral qualitativo em quantitativo, ou sea, podemos descrever os resultados de um eperimento aleatório por meio de números, no lugar de palavras. Por isso, como veremos adiante, diferentemente da função de probabilidade, a FDA é uma função cuo domínio é a reta real e o contradomínio é o intervalo [0,], o que torna possível a sua representação gráfica. Além disso, v.a. s notáveis se adaptam a um grande contingente de problemas muito diferentes, sendo bastante úteis na modelagem de eperimentos aleatórios. NOTAÇÃO: O conunto de todos os pontos s, tais que (s) = é representado por {(s) = }. A probabilidade do evento {(s) = } será representada por P(=) ou p(). Definição: Uma variável aleatória é uma função real qualquer que associa a cada elemento s do espaço amostral W, um número real (s), equivalente ao valor específico de no ponto s. (.): W (s) s W

2 Eemplo : Uma moeda honesta é lançada uma vez. O espaço amostral é formado pelos dois únicos resultados possíveis: cara (K) e coroa (C). K e C são os dois pontos que formam o espaço amostral, W ={K,C}. Seam, portanto, os valores de : (K) ª e (C) ª 0 Como a moeda é honesta, os resultados são equiprováveis; portanto: P(K)=P(=) = ½ P(C)=P(=0) = ½ é uma v.a. que pode assumir dois valores, 0 e, cada um probabilidade ½, conforme ilustra a figura: ½ ½ 0 Figura. Representação das probabilidades associadas com uma v.a. relacionada ao lançamento de uma moeda honesta. Eemplo 2: Duas moedas honestas são lançadas simultaneamente, apenas uma vez. O espaço amostral possui quatro resultados possíveis e definimos os valores de associados a estes resultados da seguinte maneira: Resultados Possíveis (K,K) (K,C) (C,K) (C,C) Valor associado, (s) 0 2 Neste caso, temos:

3 P(=0) = ¼ ; P(=) = ½ ; P(=2) = ¼ ¼ ½ ¼ 0 2 Figura 2. Representação das probabilidades associadas com uma v.a. relacionada ao lançamento de duas moedas honestas. Nossa definição de v.a. nada mais é do que uma transformação de eventos (subconuntos de W) em valores numéricos (subconuntos de ). Como estes eventos são gerados a partir de um fenômeno aleatório, os valores de uma v.a. podem também ser interpretados como originados a partir de um fenômeno aleatório. Os valores de uma v.a. podem ser representados por subconuntos da reta real. Então, um evento em W, representado por {s,s 2,...,s k }define um subconunto correspondente {(s ),(s 2 ),...,(s k )} que, por sua vez, também pode ser chamado de evento. Qualquer número real (s), tal que a (s) b pode ser um evento, bem como o conunto nulo e toda a reta dos reais. Eemplo 3: Considere o eperimento de lançar dois dados. W pode ser descrito como o conunto de 36 pontos representados na figura a seguir. W ={(i,) i=,...,6 e =,...,6} º dado º dado Figura 3. Representação dos resultados possíveis no lançamento de dois dados honestos.

4 Podemos definir várias v.a. s associadas a este eperimento aleatório. Por eemplo: = soma dos valores das faces resultantes: (s) = i +, se s =(i,) Y = diferença entre os valores das faces resultantes: Y(s) = i, se s =(i,) e Y são v.a. s que podem assumir valores 2,3,...,2, no caso de e 0,...,, no caso de Y. Nas situações em geral, assim como ocorreu nos eemplos apresentados, descrevemos v.a. s em termos de eperimentos aleatórios, em vez de especificar sua forma funcional. OBS: Muitos consideram o nome variável aleatória inadequado pois, como vimos, trata-se de uma função real definida no espaço amostral que associa eventos a valores numéricos. A função de probabilidade P também é definida no espaço amostral, com a diferença que uma função de probabilidade é definida numa coleção de subconuntos (eventos) do espaço, enquanto uma v.a. é definida em cada ponto individual do espaço amostral. Os valores que uma função de probabilidade pode assumir estão limitados no intervalo entre 0 e, diferentemente dos valores de uma v.a., que não obedecem a esta restrição. Tipos de VA s As v.a. s podem ser classificadas em discretas ou contínuas. Analisaremos separadamente v.a. s discretas e contínuas pois as ferramentas matemáticas necessárias para cada caso são diferentes. No caso discreto, será necessária a aplicação de apenas somatórios e diferenças. No caso contínuo, será necessário o uso de cálculo integral e diferencial. VA s Discretas: Uma v.a. é dita discreta se assumir um número finito ou infinito enumerável de valores reais, 2,... Se for discreta e assumir determinados valores distintos, 2,..., n,..., então U n n U Ω = { s : ( s) = } = { = } e { = } I { = } = φ, i Portanto: = P(W) = P ( = ) (do aioma iii) n n n A soma das probabilidades para todos os valores possíveis vale, em ambos os casos. n Eemplos: número de filhos em uma família; número de presentes numa sessão de cinema; número de itens defeituosos em um lote. i

5 VA s Contínuas: Uma v.a. é dita contínua se assumir um número infinito não-enumerável de valores e a probabilidade de que assuma um valor em particular é nula. Neste caso, P( = i ) = 0, para qualquer i. Eemplos: altura e peso de pessoas, quantidade de açúcar em um alimento, tempo de espera em uma fila. Função Distribuição de Probabilidade Vimos que podemos associar uma v.a. a cada evento de um determinado eperimento aleatório. A função distribuição de probabilidade (f.d.p.) de uma determinada v.a. indica como a probabilidade total está distribuída por todos os valores que pode assumir. Definição (caso discreto): Se é uma v.a. discreta que assume valores discretos, 2,..., n,..., então definimos a função distribuição de probabilidade (f.d.p.) de como sendo a função f (.): [0,] f P( = 0, = ), se =, se =,2,..., n,... OBS: Os valores de uma v.a. discreta geralmente são chamados de pontos de massa; portanto a f.d.p. de uma v.a. discreta recebe os nomes de função massa, função probabilidade ou função freqüência discreta. A notação p (.) comumente é usada para o caso discreto. Propriedades: (i) f( ) > 0, para =,2,... (ii) f() = 0, para, =,2,... (iii) f ( ) = Eemplo 4: Considere um grupo de cinco doadores de sangue em potencial (A, B, C, D e E), dos quais, apenas A e B possuem sangue tipo O +. As cinco amostras de sangue, uma de cada um dos indivíduos, são colhidas aleatoriamente, até que um doador do tipo O + sea identificado. Sea Y = número de amostras necessárias para identificar o doador do tipo O +.

6 p() = P(Y=) = P(A ou B colhidas primeiro) = 2/ = 0,4 p(2) = P(Y=2) = P(C, D ou E colhidas primeiro e depois ou A ou B) = P(C, D ou E colhidas primeiro). P(A ou B depois C, D ou E colhidas primeiro) = 3/.2/4 = 0,3 p(3) = P(Y=3) = P(C, D ou E colhidas primeiro ou em segundo e A ou B colhidas depois) = 3/.2/4.2/3 = 0,2 p(4) = P(Y=4) = P(C, D ou E colhidas todas antes) = 3/.2/4./3 = 0, p(y) = 0, se y,2,3,4 A fdp está representada na tabela e figura a seguir: y soma P(y) 0,4 0,3 0,2 0, Figura. Representação da distribuição de probabilidades para o eemplo 4. p(y) y Definição (caso contínuo): Se é uma v.a. contínua, então definimos a função distribuição de probabilidade (f.d.p.) de como sendo a função f (.): [0, ), tal que, para quaisquer números a b b P ( a b) = f ( u) du para todo œ. a

7 OBS: A f.d.p. de uma v.a. contínua recebe também os nomes de função densidade de probabilidade ou função densidade. Propriedades: (i) f() 0, para todo œ. OBS: (ii) f d = Se for uma v.a. contínua, qualquer que sea o número c, P( = c) = 0. Portanto, para quaisquer números a < b, Eemplo : P ( a b) = P( a < b) = P( a < b) = P( a < < b) Suponha que uma pessoa utiliza para ir ao trabalho uma determinada linha de ônibus que passa a cada minutos. Devido a variações no tempo em que a pessoa leva para sair de casa, ela nem sempre chega no mesmo horário na parada de ônibus. Sea a v.a. que representa o tempo de espera da pessoa na parada de ônibus. O conunto dos possíveis valores de é o intervalo [0,]. Uma possível f.d.p. para é: f = 0 0 c.c. Graficamente: 0,4 f(y) 0, y

8 A probabilidade de que a pessoa espere entre e 3 minutos vale: P ( 3) = 3 f d = 3 d = 3 = 2 A probabilidade de que a pessoa espere pelo menos 4 minutos vale: P (4 ) = 4 f d = 4 d = 4 = Função Distribuição Acumulada Definição: A função distribuição acumulada (FDA) de uma v.a., representada por F (.), é a função F (.): [0,], que satisfaz: F () = P( ) = P({s: (s) }), para - < < Uma FDA é unicamente determinada para cada v.a. e, da feita que é conhecida, pode ser utilizada para determinar probabilidades de eventos em termos da v.a. correspondente. No entanto, diferentes v.a. s podem dar origem à mesma FDA. OBS: A FDA também é chamada de função distribuição, simplesmente. Propriedades: (i) F (.) é uma função monotônica não-decrescente; i.e, F ( ) F ( 2 ), para < 2. (ii) F (- ) = lim = 0 F e F ( ) = lim = F (iii) F (.) é contínua pela direita; i.e, F () = F ( + + ) ( F ( ) = lim F ( + h) ) 0< h 0 Toda função F(.) com domínio na reta real e contradomínio no intervalo [0,] que satisfaça as três propriedades apresentadas é definida como sendo uma função distribuição acumulada. Teorema : Dado qualquer, P( > ) = F ()

9 Teorema 2: Dados e 2 quaisquer, tais que < 2, P( < 2 ) = P( 2 ) - P( ) Teorema 3: Dado qualquer, P( < ) = F ( - ) Teorema 4: Dado qualquer, P( = ) = F ( + ) F ( - ) FDA de v.a. Discreta Sea uma v.a. discreta. F (.) pode ser obtida a partir de f (.) e vice-versa. (i) Dada f (.), então F = P( ) = f { : } (ii) Dada F (.),então f ( ) = F ( ) lim F ( h) 0< h 0 ( ) Eemplo 6: Voltando ao eemplo 4, vamos determinar a FDA para cada um dos possíveis valores de Y: F Y () = P(Y ) = P(Y =) = p() = 0,4. F Y (2) = P(Y 2) = P(Y =)+P(Y =2) = p() + p(2) = 0,7. F Y (3) = P(Y 3) = P(Y =)+P(Y =2)+P(Y =3) = p() + p(2)+ p(3) = 0,9. F Y (4) = P(Y 4) = P(Y =)+P(Y =2)+P(Y =3)+P(Y =4) = p() + p(2)+ p(3)+ p(4) =. Para qualquer outro valor de y, F(y) assume o valor de F para o valor possível mais próimo de Y à esquerda de y, por eemplo: F Y (2,7) = P(Y 2,7) = P(Y 2) = 0,7.

10 Então: Graficamente, temos: 0 0,4 F ( y) = 0,7 0,9 se y < se y < 2 se 2 y < 3 se 3 y < 4 se 4 y F(y) y Para uma v.a. discreta, o gráfico de F (.) terá forma de escada, apresentando saltos positivos entre os valores possíveis de. Por outro lado, f Y (2) = F Y (2) lim 0< h 0 f Y (2 h) = 0,7 0,4 = 0,3. FDA de v.a. Contínua Sea uma v.a. contínua. F (.) pode ser obtida a partir de f (.) e vice-versa. (i) Dada f (.), então F = P( ) = f ( u) du (ii) Dada F (.),então f = df d De acordo com (i), para cada, F (.) corresponde à área debaio da curva de f (.) à esquerda de.

11 Eemplo 7: Voltando ao eemplo, vamos determinar a FDA de : Temos que: f = 0 0 c.c. Da definição: = F f d Então: Graficamente, temos: 2 (i) < 0: F = 0d = 0 F() (ii) 0 : 0 F = 0d + d = 0 0 (iii) > : F = 0d + d + 0d =

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados

Leia mais

MB-210 Probabilidade e Estatística

MB-210 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2013 Variáveis

Leia mais

Variáveis Aleatórias - VA

Variáveis Aleatórias - VA Variáveis Aleatórias - VA cc ck kc kk 0 1 2 1/4 1/2 Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - Introdução Se entende por VA ou V. indicadoras uma lista de valores

Leia mais

Lucas Santana da Cunha de junho de 2017

Lucas Santana da Cunha de junho de 2017 VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados

Leia mais

1 Variáveis Aleatórias

1 Variáveis Aleatórias Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis

Leia mais

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Luiz Medeiros Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja um

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Variáveis Aleatórias Contínuas 14/10 1 / 25 VALE A PENA VER DE NOVO:Variáveis Aleatórias

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz

Leia mais

3. Variáveis aleatórias

3. Variáveis aleatórias 3. Variáveis aleatórias Numa eperiência aleatória, independentemente de o seu espaço de resultados ser epresso numericamente, há interesse em considerar-se funções reais em Ω, denominadas por variáveis

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω. PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Capítulo 5. Variáveis aleatórias. 5.1 Introdução

Capítulo 5. Variáveis aleatórias. 5.1 Introdução Capítulo 5 Variáveis aleatórias 5.1 Introdução Em experimentos aleatórios cujo espaço amostral contém alguns eventos de interesse é, em geral, mais fácil lidar como uma variável aleatória, isto é, é mais

Leia mais

Aula 10 Variáveis aleatórias discretas

Aula 10 Variáveis aleatórias discretas AULA 0 Aula 0 Variáveis aleatórias discretas Nesta aula você aprenderá um conceito muito importante da teoria de probabilidade: o conceito de variável aleatória. Você verá que as variáveis aleatórias e

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Variáveis Aleatórias Discretas 1/1

Variáveis Aleatórias Discretas 1/1 Variáveis Aleatórias Discretas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte do Espírito Santo

Leia mais

Variáveis aleatórias

Variáveis aleatórias Variáveis aleatórias Joaquim Neto joaquim.neto@ufjf.edu.br www.ufjf.br/joaquim_neto Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF

Leia mais

É o conjunto de resultados de uma experiência aleatória. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas;

É o conjunto de resultados de uma experiência aleatória. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas; Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali Eperiência na qual o resultado é incerto. E : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas; E : Joga-se uma

Leia mais

Conceitos básicos: Variável Aleatória

Conceitos básicos: Variável Aleatória : Variável Aleatória Variável aleatória (v.a.) valor numérico que é resultado de uma eperiência aleatória. Podemos ter variáveis aleatórias contínuas ou discretas. Eemplo 1: Suponha que lança duas moedas

Leia mais

Revisão Conceitos de Estatística aplicados à Epidemiologia

Revisão Conceitos de Estatística aplicados à Epidemiologia Revisão Conceitos de Estatística aplicados à Epidemiologia Carlos R. V. Kiffer Médico Infectologista Professor Doutor / Pesquisador Visitante LEMC / UNIFESP Sumário O que é Estatística? Conceitos População

Leia mais

Cap. 4 - Probabilidade

Cap. 4 - Probabilidade Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 4 - Probabilidade APOIO: Fundação de Apoio à Pesquisa

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado.

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado. Sistema Real Determinístico Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado. ❶ Não é possível prever um resultado particular, mas pode-se enumerar

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Conceitos, Discretas, Contínuas, Propriedades Itens 5. e 6. BARBETTA, REIS e BORNIA Estatística para Cursos de Engenharia e Informática. Atlas, 004 Variável aleatória Uma variável

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório? Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade A Teoria de Probabilidade é responsável pelo estudo de fenômenos que envolvem a incerteza (é impossível prever antecipadamente o resultado) e teve origem na teoria de jogos, servindo como ferramenta para

Leia mais

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada

Leia mais

Fundamentos de Estatística

Fundamentos de Estatística Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA mrborges@lncc.br Petrópolis, 9 de Fevereiro

Leia mais

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ elemento de S (s S) um número real x X(s) é denominada variável aleatória. O

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

Probabilidade Revisão de Conceitos

Probabilidade Revisão de Conceitos Probabilidade Revisão de Conceitos Espaço de Amostras A totalidade dos possíveis resultados de um experimento aleatório. Exemplo: jogar dados S = {(1,1),(1,),... (,1),(,)... (6,6)} S é dito o número de

Leia mais

BIOESTATISTICA. Unidade IV - Probabilidades

BIOESTATISTICA. Unidade IV - Probabilidades BIOESTATISTICA Unidade IV - Probabilidades 0 PROBABILIDADE E DISTRIBUIÇÃO DE FREQUÊNCIAS COMO ESTIMATIVA DA PROBABILIDADE Noções de Probabilidade Após realizar a descrição dos eventos utilizando gráficos,

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

Distribuições Discretas

Distribuições Discretas META: Estudar o comportamento das Variáveis Aleatórias Discretas, bem como das Distribuições Binomial e Poisson e suas aplicações. Entender o comportamento de uma Variável aleatória Contínua. OBJETIVOS:

Leia mais

Cursos de Licenciatura em Ensino de Matemática e de EGI Teoria de Probabilidade

Cursos de Licenciatura em Ensino de Matemática e de EGI Teoria de Probabilidade FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km, Tel: +5 4007, Fax: +5 400, Maputo Cursos de Licenciatura em Ensino de Matemática e de

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : I, em que I. Esquematicamente: As variáveis aleatórias

Leia mais

Experimento Aleatório

Experimento Aleatório Probabilidades 1 Experimento Aleatório Experimento aleatório (E) é o processo pelo qual uma observação é ob;da. Exemplos: ü E 1 : Jogar uma moeda 3 vezes e observar o número de caras ob;das; ü E 2 : Lançar

Leia mais

Exemplos. Experimento Aleatório. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras;

Exemplos. Experimento Aleatório. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras; Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Eperimento Aleatório Eperiência para o qual o modelo probabilístico é adequado. Eemplos E : Joga-se uma moeda quatro vezes e observa-se

Leia mais

6.3 Valor Médio de uma Variável Aleatória

6.3 Valor Médio de uma Variável Aleatória 6. 3 V A L O R M É D I O D E U M A V A R I Á V E L A L E A T Ó R I A 135 1. Considere uma urna contendo três bolas vermelhas e cinco pretas. Retire três bolas, sem reposição, e defina a v.a. X igual ao

Leia mais

Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr.

Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. 1 Ciclo 3 Encontro 2 PROBABILIDADE Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. Probabilidade 2 Texto: Módulo Introdução à Probabilidade O que é probabilidade? parte 1 de Fabrício Siqueira

Leia mais

Teoria da Probabilidade

Teoria da Probabilidade Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

Definição: É uma coleção bem definida de

Definição: É uma coleção bem definida de EST029 Cálculo de Probabilidade I Cap. 1: Introdução à Probabilidade Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Conjuntos: Definição e notação Definição: É uma coleção bem definida de objetos,

Leia mais

CE Estatística I

CE Estatística I CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,

Leia mais

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007 ESTATÍSTICA I Variáveis Aleatórias 1 Definição: A uma função X de domínio Ω com valores em Ñ X:Ω Ñ, ω X(ω)=x, chamamos variável aleatória (v.a.) em Ω. Ao contradomínio da função X, designaremos por V X

Leia mais

GET00143 TEORIA DAS PROBABILIDADES II Variáveis Aleatórias Unidmensionais

GET00143 TEORIA DAS PROBABILIDADES II Variáveis Aleatórias Unidmensionais Universidade Federal Fluminense Instituto de Matemática e Estatística GET43 TEORIA DAS PROBABILIDADES II Variáveis Aleatórias Unidmensionais Ana Maria Lima de Farias Jessica Quintanilha Kubrusly Mariana

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

14/03/2014. Tratamento de Incertezas TIC Aula 1. Conteúdo Espaços Amostrais e Probabilidade. Revisão de conjuntos. Modelos Probabilísticos

14/03/2014. Tratamento de Incertezas TIC Aula 1. Conteúdo Espaços Amostrais e Probabilidade. Revisão de conjuntos. Modelos Probabilísticos Tratamento de Incertezas TIC-00.176 Aula 1 Conteúdo Espaços Amostrais e Probabilidade Professor Leandro Augusto Frata Fernandes laffernandes@ic.uff.br Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2014.1/tic-00.176

Leia mais

Probabilidade ESQUEMA DO CAPÍTULO. UFMG-ICEx-EST Cap. 2- Probabilidade 1

Probabilidade ESQUEMA DO CAPÍTULO. UFMG-ICEx-EST Cap. 2- Probabilidade 1 Probabilidade ESQUEMA DO CAPÍTULO 2.1 ESPAÇOS AMOSTRAIS E EVENTOS 2.2 INTERPRETAÇÕES DE PROBABILIADE 2.3 REGRAS DE ADIÇÃO 2.4 PROBABILIDADE CONDICIONAL 2.5 REGRAS DA MULTIPLICAÇÃO E DA PROBABILIDADE TOTAL

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

Princípios de Modelagem Matemática Aula 09

Princípios de Modelagem Matemática Aula 09 Princípios de Modelagem Matemática Aula 09 Prof. José Geraldo DFM CEFET/MG 12 de maio de 2014 1 Modelos estatísticos e estimação de parâmetros A verificação de um modelo matemático demanda a realização

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

Conceitos básicos de teoria da probabilidade

Conceitos básicos de teoria da probabilidade Conceitos básicos de teoria da probabilidade Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes Exemplos:. Resultado no lançamento de

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 1ª Parte: Conceitos básicos, variáveis aleatórias, modelos probabilísticos para variáveis aleatórias discretas, modelo binomial, modelo de Poisson 1 Probabilidade

Leia mais

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse

Leia mais

Probabilidade e Estatística Probabilidade Condicional

Probabilidade e Estatística Probabilidade Condicional Introdução Probabilidade e Estatística Probabilidade Condicional Em algumas situações, a probabilidade de ocorrência de um certo evento pode ser afetada se tivermos alguma informação sobre a ocorrência

Leia mais

Aula 07. Modelos Probabilísticos. Stela Adami Vayego - DEST/UFPR 1

Aula 07. Modelos Probabilísticos. Stela Adami Vayego - DEST/UFPR 1 ula 07 Modelos Probabilísticos Stela dami Vayego - DEST/UFPR 1 Probabilidade Universo do estudo (população) Hipóteses, conjeturas,... Modelos Probabilísticos Distribuições de Frequências Resultados ou

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 Probabilidade As definições de probabilidade apresentadas anteriormente podem

Leia mais

Sumário. 2 Índice Remissivo 12

Sumário. 2 Índice Remissivo 12 i Sumário 1 Definições Básicas 1 1.1 Fundamentos de Probabilidade............................. 1 1.2 Noções de Probabilidade................................ 3 1.3 Espaços Amostrais Finitos...............................

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

Probabilidade - aula III

Probabilidade - aula III 2012/02 1 Regra da Multiplicação 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Usar a regra da multiplicação para calcular probabilidade de eventos Usar a. Regra da Multiplicação Frequentemente

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

2 Conceitos Básicos de Probabilidade

2 Conceitos Básicos de Probabilidade CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 2 03/14 1 / 31 Prof. Tarciana Liberal (UFPB) Aula 2 03/14

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ALEATORIEDADE Menino ou Menina me? CARA OU COROA? 3 Qual será o rendimento da Caderneta de Poupança no final deste ano? E qual será a taxa de inflação acumulada em 014? Quem será

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Tipos de Modelos Determinístico Sistema Real Probabilístico Modelo determinístico Causas Efeito Exemplos Gravitação F GM 1 M /r

Leia mais

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. Prof. Lorí Viali, Dr.

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/~viali Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística Probabilidade Disciplina: Cálculo das Probabilidades e Estatística I Prof. Tarciana Liberal Existem muitas situações que envolvem incertezas:

Leia mais

1 Definição Clássica de Probabilidade

1 Definição Clássica de Probabilidade Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica

Leia mais

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

ESTATÍSTICA EXPLORATÓRIA

ESTATÍSTICA EXPLORATÓRIA ESTATÍSTICA EXPLORATÓRIA Prof Paulo Renato A. Firmino praf62@gmail.com Aulas 07-08 Probabilidade Apanhado Geral Seguimos nossas discussões sobre a Incerteza Decidir usualmente envolve incerteza Uma presa

Leia mais

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ ESTATÍSTICA II Nota de aula 1 Prof. MSc. Herivelto T Marcondes dos Santos Fevereiro /2009 1 Modelos de probabilidade 1.1 Variável aleatória Definição: Sejam ε um

Leia mais

1 Definição de Probabilidade 2 Principais Teoremas 3 Probabilidades dos Espaços Amostrais 4 Espaços Amostrais Equiprováveis. Francisco Cysneiros

1 Definição de Probabilidade 2 Principais Teoremas 3 Probabilidades dos Espaços Amostrais 4 Espaços Amostrais Equiprováveis. Francisco Cysneiros Probabilidade 1 Definição de Probabilidade 2 Principais Teoremas 3 Probabilidades dos Espaços Amostrais 4 Espaços Amostrais Equiprováveis Francisco Cysneiros Introdução 1 - Conceito Clássico Se uma experiência

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 13 a Lista de Exercícios Práticos Conceitos Básicos de Probabilidade 1) Considere um experimento que consiste em

Leia mais

I. Variáveis Aleatórias

I. Variáveis Aleatórias I. Variáveis Aleatórias Raciocínio Lógico e Estatística Olá, Pessoal! Tudo em paz? Como vão os estudos? Segue um pequeno artigo introdutório sobre Variáveis Aleatórias. I.1 Conceito Bem, se você ler a

Leia mais

Probabilidades- Teoria Elementar

Probabilidades- Teoria Elementar Probabilidades- Teoria Elementar Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados

Leia mais

Momentos: Esperança e Variância. Introdução

Momentos: Esperança e Variância. Introdução Momentos: Esperança e Variância. Introdução Em uma relação determinística pode-se ter a seguinte relação: " + " = 0 Assim, m =, é a declividade e a e b são parâmetros. Sabendo os valores dos parâmetros

Leia mais

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache PROBABILIDADE Aula 2 Probabilidade Básica Fernando Arbache Probabilidade Medida da incerteza associada aos resultados do experimento aleatório Deve fornecer a informação de quão verossímil é a ocorrência

Leia mais

TEORIA DAS PROBABILIDADES

TEORIA DAS PROBABILIDADES TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da

Leia mais

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.

Leia mais

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Def.: Um experimento é dito aleatório quando o seu resultado não for previsível antes de sua realização, ou seja,

Leia mais

Noções sobre probabilidade

Noções sobre probabilidade Capítulo 3 Noções sobre probabilidade Um casal tem dois filhos. Qual é a probabilidade de: o primogênito ser homem? os dois filhos serem homens? pelo menos um dos filhos ser homem? A teoria das probabilidades

Leia mais

Variáveis Aleatórias Contínuas. Discente: Adaptado do seminário de André Luiz Cardoso de Sousa Docente: Prof. José Cláudio Faria

Variáveis Aleatórias Contínuas. Discente: Adaptado do seminário de André Luiz Cardoso de Sousa Docente: Prof. José Cláudio Faria Variáveis Aleatórias Contínuas Discente: Adaptado do seminário de André Luiz Cardoso de Sousa Docente: Prof. José Cláudio Faria Roteiro Variável Aleatória Contínua O que é? Exemplos Função Densidade de

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

)XQGDPHQWRVGHSUREDELOLGDGHHHVWDWtVWLFD

)XQGDPHQWRVGHSUREDELOLGDGHHHVWDWtVWLFD )XQGDPHQWRVGHUREDELOLGDGHHHVWDWtVWLFD,QWURGXomR A história da estatística pode ser dividida em três fases. De acordo com PEANHA (00), a estatística inicialmente não mantinha nenhuma relação com a probabilidade,

Leia mais

TEORIA DA PROBABILIDADE

TEORIA DA PROBABILIDADE TEORIA DA PROBABILIDADE Lucas Santana da Cunha lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 22 de maio de 2017 Introdução Conceitos probabiĺısticos são necessários

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. Professora: Denise Beatriz T. P. do Areal Ferrari Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica Professora: Denise Beatriz T. P. do Areal Ferrari denise@ita.br Distribuições Discretas Uniforme Bernoulli Binomial Poisson

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

canal para sinais contínuos

canal para sinais contínuos Processos estocásticos, Entropia e capacidade de canal para sinais contínuos 24 de setembro de 2013 Processos estocásticos, Entropia e capacidade de canal para1 sin Conteúdo 1 Probabilidade de sinais contínuos

Leia mais