Variável Complexa

Tamanho: px
Começar a partir da página:

Download "Variável Complexa"

Transcrição

1 Variável Complexa

2 Aula1 Utilizamos o símbolo C para denotar o plano real R 2 equipado com as seguintes operações: z 1 + z 2 = (x 1 + x 2, y 1 + y 2 ) adição z 1 z 2 = (x 1 x 2 y 1 y 2,, x 1 y 2 + x 2 y 1 ) multiplicação para z i = (x i, y i ) C, i = 1, 2. Temos C, o conjunto dos números complexos, satisfaz as as seguintes propriedades as quais o qualificam como um corpo: 1. Comutatividade: z 1 + z 2 = z 2 + z 1 e z 1 z 2 = z 2 z 1 z 1, z 2 C; 2. Associatividade z 1 +(z 2 +z 3 ) = (z 1 +z 2 )+z 3 e z 1 (z 2 z 3 ) = (z 1 z 2 ) z 3, z 1, z 2, z 3 C; 3. (Neutro aditivo) 0 = (0, 0) satisfaz 0 + z = z, z C; 4. (Identidade multiplicativa ) 1 = (1, 0) satisfaz 1ż = z, z C; 5. (Simétrico aditivo) para cada z = (x, y) C, existe z = ( x, y) satisfaz z + ( z) = 0; 6. (Inverso multiplicativo) para cada z = (x, y) C diferente de zero, existe 1 z = ( x x 2 + y, y 2 x 2 + y ) satisfaz z 1 2 z = 1; 7. Distributividade: z 1 (z 2 + z 3 ) = z 1 z 2 + z 1 z 3 z 1, z 2, z 3 C. Denotando x = (x, 0), vemos que o corpo dos números reais R (ou seja, o conjuntos dos números reais equipado com suas operações usuais de adição e multiplicação) pode ser visto como um subcorpo de C. Denotando i = (0, 1), todo número complexo z tem uma única representação da forma z = x + iy com x, y R. Salvo menção em contrário, quando denotarmos um número complexo z por z = x + iy, estaremos supondo que x, y R. Dizemos que x é a parte real de z (x = re(z)) e y é a parte imaginária de z (y = im(z)). Veja que o número complexo i tem seu quadrado i i igual a -1, isto é, a equação X = 0, possui uma solução complexa. Abaixo, mostramos que toda equação do segundo grau (com coeficientes reais) possui solução complexa. De fato, considere a seguinte equação do segundo grau ax 2 + bx + c = 0 a, b, c R e a 0. 1

3 Se o discriminante D = b 2 4ac for não-negativo, sabemos que a eq. acima possui raiz real; então é bastante estudarmos o caso D < 0. Desta forma, temos que b + i D e b i D 2a 2a são raízes da eq. acima. Em momento oportuno, mostraremos um fato muito mais geral, a saber: Toda equação polinomial com coeficientes complexos possui uma solução complexa. Mais notações. Dado um número complexo z = x+iy, z = x iy é chamado de o conjugado de z e o número real z = x 2 + y 2 é chamado de o módulo de z. Facilmente, verifica-se que: zz = z Dados z, w C com w 0 o quociente de z por w é o número complexo z w = z i. Escreva o quociente na forma x + iy. w 2 + 3i 2. Veja que z + w = z + w e z w = z w z, w C. Daí, mostre que um número complexo z é raiz de uma equação polinomial com coeficientes reais se, e somente se, seu conjugado z é raiz da mesma equação. Representação Polar. Dado z C diferente de zero, podemos escrever z = r(cos(θ) + isen(θ)) em que r > 0 e θ R é o ângulo que o vet0r z (z visto como elemento de R 2 ) faz com o eixo-x. Vemos que r está bem definido, pois r = z, todavia, θ está bem definido somente a menos de soma por elementos da forma 2jπ com j Z. O conjunto de ângulos θ que satisfazem z = z (cos(θ) + isen(θ)) é denotado por arg(z) (argumento de z). Exemplos. arg(i) = π 2 + 2jπ; j Z e arg(1 + i) = π 4 + 2jπ; j Z. Proposição. Vale a seguinte equação: arg(zw) = arg(z) + arg(w) z, w C. Em particular, se z = r(cos(θ) + isen(θ)), então z n = r n (cos(nθ) + isen(nθ)) n N. Demonstração. Fazer. Como apicação da proposição acima, descrevemos abaixo todas as raízes da equação Z n = z, onde z 0 = r 0 (cos(θ 0 ) + isen(θ 0 )). 2

4 Com efeito, temos que z = r(cos(θ) + isen(θ)) satisfaz z n = z 0 se, e somente se, r = n r 0 e (cos(θ 0 ) + isen(θ 0 )) = (cos(nθ) + isen(nθ)), ou seja, θ = θ 0 + 2jπ com j Z. Daí n z j = n r 0 (cos( θ 0 + 2jπ n são todas as raízes da eq. Z n = z 0. ) + isen( θ 0 + 2jπ )); j = 0, 1,..., n 1 n Lista de Exercícios Exercícios das pag. 13,14 e 15 Livro Cálculo em uma variável complexa. Márcio G. Soares 2. Mostre que z 1, z 2, z 3 C são colineares se, e somente se, o quociente z 2 z 1 z 3 z 1 é um número real. 3

5 Aula2 Notação. Dados z 0 C e r > 0, o disco de centro z 0 e raio r abaixo será denotado por D(z 0, r). {z z z 0 < r} Como no Cálculo de Funções de Várias Variáveis (no caso, duas variáveis), dizemos que: um subconjunto A C é aberto, quando cada ponto de A é centro de um disco inteiramente contido em A; a fronteira de um subconjunto L C é formado pelos pontos p C com a seguinte propriedade: todo disco centrado em p intersecta L e seu complementar. Utilizamos notação L para designar a fronteira de L; um subconjunto F C é dito fechado, quando F contém a sua fronteira; um ponto z 0 C é dito um ponto de acumulação de um subconjunto M C se: todo disco centrado em z 0 contém infinitos pontos de M. (Fazer muitos exemplos em sala!) Definição. Sejam D C e z 0 um ponto de acumulação de D (z 0 não necessariamente pertencente a D). Seja f : D C uma função. Dizemos que w 0 C é limite de f em z 0 se: Dado ɛ > 0, existe δ > 0 tal que 0 z D(z 0, ɛ) A f(z) D(w 0, δ). Nesse caso, denotamos lim z z0 f(z) = w 0. Exemplos. Seja f(z) = z a função identidade. Então lim z z0 f(z) = z 0 para todo z 0 C. Seja g(z) = z a função conjugado. z 0 C. Então lim z z0 f(z) = z 0 para todo Sejam f, g : D C e z 0 ponto de acumulação de D. Se f é limitada e o limite de g em z 0 vale 0, então o limite da função produto f(z)g(z) em z 0 também vale 0. (Fazer alguns exemplos concretos). 4

6 Obs. Sejam D C, f : D C uma função. Considere as funções u, v : D R definidas por u(z) = re[f(z)] e v(z) = im[f(z)]. Então, para todo z 0 um ponto de acumulação de D: lim f(z) = w 0 se, e somente se lim u(z) = re(w 0 ) e lim v(z) = im(w 0 ). z z 0 z z0 z z0 Propriedades aritméticas de limte. Sejam f, g : D C e z 0 ponto de acumulação de D. Suponha que Então 1. lim z z0 f(z) + g(z) = w 1 + w 2 ; 2. lim z z0 f(z)g(z) = w 1 w 2 ; f(z) 3. lim z z0 g(z) = w 1 se w 2 0. w 2 lim f(z) = w 1 e lim g(z) = w 2. z z 0 z z0 Decorre das propriedades acima que: Se f, g : D C é uma função polinomial (ou mesmo uma função racional) e z 0 ponto de acumulação de D que pertence a D, então lim z z0 f(z) = f(z 0 ). Definição. Uma função f : D C C é dita contínua em um ponto z 0 D se o limite de f em z 0 vale f(z 0 ). Quando f é conínua em todos os pontos de seu domínio, dizemos apenas que f é contínua. Exemplos. Vimos acima que funções racionais são funções contínuas. f(z) = z é uma função contínua. f(z) = z é uma função contínua. Soma, produto e quociente (quando bem definido) de funções contínuas são funções contínuas. (Fazer exemplos concretos) Composição de funções contínua ainda é uma função contínua. (Fazer exemplo concreto) 5

7 Definição. Sejam A C um aberto e z 0 A.Se o limite abaixo existe f(z) f(z 0 ) lim z z 0 z z 0 então dizemos que f tem derivada em z 0 e denotamos o tal limite por f (z 0 ) (a derivada de f em z 0 ). Quando a função f é derivável em todos os pontos de seu domínio, dizemos que f é holomorfa. Exemplos. A função identidade f(z) = z é holomorfa e sua derivada em qualquer ponto vale 1. Toda função constante é holomorfa e sua derivada em qualquer ponto vale 0. A função conjugado g(z) = z 0 não tem derivada em nenhum ponto z 0 C. Seja f(z) = z n. Então f (z) = nz n 1. Soma, produto e quociente (quando bem definido) de funções holomorfas são funções holomorfas. além disso, valem as seguintes regras aritméticas (f + g) (z) = f (z) + g (z) e (fg) (z) = f (z)g(z) + f(z)g (z) e ( f g ) (z) = f (z)g(z) f(z)g (z). (Fazer exemplos concretos) [f(z)] 2 Como conseqência do item acima, funções polinomiais (mais geralmente, funções racionais) são holomorfas. Composição de funções holomorfas ainda é uma função holomorfa. (Fazer exemplo concreto) Lista de Exercícios Prove todas as afirmações feitas na Aula Exercícios 01 da pag. 31 e 01,02,04 e 20 das pag. 55, 57 e 58 Livro Cálculo em uma variável complexa. Márcio G. Soares 6

8 Aula3 Notação. Dados z 0 C e r > 0, o disco de centro z 0 e raio r abaixo será denotado por D(z 0, r). {z z z 0 < r} Uma vez escrevendo números complexos z da seguinte forma: z = x + iy, para cada função complexa f(z), temos duas funções reais de duas variáveis u(x, y) e v(x, y) obtidas da equação f(z) = u(z)+iv(z), isto é, u(z) é a parte real de f(z) e v(z) é a parte imaginária. Dessa forma, é fácil verificar que f(z) é contínua em um ponto z 0 = x 0 + iy 0 se, e somente se, u(x, y) e v(x, y) são contínuas no ponto (x 0, y 0 ). Equações de Cauchy-Riemann Se f(z) é uma função complexa que tem derivada no ponto z 0 = x 0 + iy 0, então u(x, y) e v(x, y) (como definidas acima) são funções reais que possuem derivadas parciais no ponto (x 0, y 0 ) satisfazendo as Equações de Cauchy- Riemann abaixo Demonstração. Fazer. u x (x 0, y 0 ) = v y (x 0, y 0 ) u y (x 0, y 0 ) = v x (x 0, y 0 ) Como consequência da prova, verifica-se, também, que f (z 0 ) = u x (x 0, y 0 ) i u y (x 0, y 0 ). Como aplicação do resultado acima, por exemplo, verificamos imediatamente que a função f(z) = z não possui derivada em ponto algum. De fato, nesse caso, u(x, y) = x e v(x, y) = y, portanto u x (x 0, y 0 ) = 1 e v y (x 0, y 0 ) = 1 para todo z 0 = x 0 + iy 0. O exemplo a seguir mostra que não há uma recíproca imediata do resultado acima, isto é, não podemos dizer em geral que as Equações de Cachy- Riemann satisfeitas para as funções u(x, y) e v(x, y) garantem que que a função complexa f(z) tem derivada. De fato, Considere a função complexa f(z) que vale 0 nos pontos z fora dos eixos real e imaginário e vale 1 caso 7

9 contrário. Temos que as funções u(x, y) e v(x, y) são constantes iguais a 1, logo satisfazem as Eq. de Cauchy-Riemann. Por outro lado, a função f(z) não é contínua no ponto z 0 = 0, daí f(z) não tem derivada em z 0 = 0. De fato, há uma recíproca para o resutado acima, ao adicionarmos que as funções u(x, y) e v(x, y) são contínuas numa vizinhança do ponto (x 0, y 0 ). Isto é, vale o seguinte. Se u(x, y) e v(x, y) são contínuas numa vizinhança do ponto (x 0, y 0 ) s as Eq. de Cauchy-Riemann abaixo são satisfeitas, em todo ponto (x, y) dessa vizinhança u x u y v (x, y) = (x, y) y (x, y) = v (x, y) x então a função complexa f(z) tem derivada no ponto z 0. Demonstração. Fazer. A função exponencial Para z = x + iy, definimos exp(z) = e x (cos(y) + isen(y)). exp : C C, assim definida, é uma função complexa que possui derivada em todo ponto. De fato, fazendo exp(z) = u(z) + iv(z), temos u(x, y) = e x cos(y) e v(x, y) = e x sen(y). Essas funções reais possuem derivadas parciais contínuas e que satisfazem as condições de Cauchy-Riemann em todo ponto: e u x (x, y) = ex cos(y) u y (x, y) = es en(y) v x (x, y) = ex sen(y) y y (x, y) = ec os(y). Em particular, exp (z) = exp(z) para todo z C. algumas propriedades da função exponencial Abaixo, seguem 8

10 exp(z + w) = exp(z) exp(w); exp(z) = exp(z); A imagem da função exponencial é C \ {0}; A função exponencial envia retas horizontais em semirretas (abertas) partindo de 0; A função exponencial envia retas verticais em círculos centrados em 0. Lista de Exercícios Uma função complexa é dita inteira quando tem derivada em todos os pontos do plano complexo C. Um ponto z 0 C é dito uma singularidade de uma função complexa f(z) se existe um disco D(z 0, ɛ) tal que f(z) tem derivada em todo ponto do disco, exceto em z Exercícios de 01 até 20, pp. 55, 56, 57 Livro Cálculo em uma variável complexa. Márcio G. Soares 9

11 Logaritmo e Potências arbitrárias Ver seções 6 e 7 do livro texto Aula4 Lista de Exercícios Exercícios de 22 a 27 p. 57 Livro Cálculo em uma variável complexa. Márcio G. Soares 10

12 Sequências e Séries Aula 5 Estas notas estão fortemente baseadas no mateiral de apoio sobre sequências e séries de números reais (publicado na webpage do curso) Sequências. Dizemos que uma sequência de números complexos (z n ) converge para a C, ou a C é limite de (sz n ), se para cada ɛ > 0 existe n 0 N tal que z n a < ɛ para todo n > n 0. Notação. Utilizaremos as seguintes notações z n a para dizer que (z n ) converge para a e lim s n = a para dizer que a é limite de (s n ). Obs. 1. Seja (z n ) uma seq. de números complexos. Se (s n ) converge para a e para b, então a = b. 2. Seja (z n ) uma seq. de números complexos. Sejam x n e y n parte real e imaginária de z n respectivamente. Então, z n a se, e somente se, x n x e y n y em que x é a parte real e y é a parte imaginária de a. 3. Toda seq. de números complexos convergente é limitada Seja (z n ) n N uma seq. de números complexos. Seja N = {n 1,..., n k,...} subconjunto de N com n 1 < n 2 <... < n k < n K+1 <... Uma subseqüência de (s n ) com índices em N é, por definição, uma seq (t k ) k N tal que t k = s nk para cada k N. Proposição.Sejam (z n ) uma seq. de números complexos e a C. Então, z n a se, e somente se, toda subseq. de (z n ) converge para a. Bolzano-Weierstrass. Toda seq. limitada de números complexos possui uma subseq. convergente. Propriedades aritméticas. Se z n a e w n b, então 11

13 (a) z n ± w n a ± b; (b) z n w n ab; (c) zn w n a b se b 0. Uma seq. de números complexos (z n ) é dita uma sequência de Cauchy se Proposição. Seja (z n ) uma seq. de números complexos. Então, (z n )é convergente se, e somente se, satisfaz o seguinte Critério de Cauchy: para cada ɛ > 0 existe p N tal que z n z m < ɛ para quaisquer m, n p. Séries. Seja (z n ) uma seq. de números complexos. À expressão formal k=0 z k chamaremos de série (de n-ésimo termo z n ) e diremos que a série k=0 z k converge para um número complexo z se a seq. de somas parciais (S n ) definida por S n = n k=0 z k converge para z. Nesse caso, denotamos z = z k, ou ainda, z = z 0 + +z n +. Obs. A série de número complexos k=0 z k converge se, e somente se, a séries de números reais k=0 Re(z k) e k=0 Im(z k). Neste caso, z k = k=0 k=0 k=0 Re(z k ) + i Im(z k ). k=0 Proposição. Se a série k=0 z k converge, então z k 0. Série Geométrica. Se z C tem módulo menor do que 1, então 1 1 z = 1 + z + z2 + + z n +. Além disso, se z 1, então a s erie k=0 zk não converge. Dizemos que uma série de números complexos k=0 z k é absolutamente convergente quando a série de núremos reais k=0 z k. Proposição. Se z k é absolutamente convergente, então k=1 z k é convergente. k=1 A respeito da recíproca do resultado acima, o seguinte exemplo testefica a não veracidade dessa afirmação. 12

14 Exemplo. A série ( 1) k 1 k é convergente. k=1 Teste da razão. Seja (z k ) uma seq. de números complexos. Se existem um número real 0 a < 1 e um inteiro positivo k 0 tais que a k+1 < a para todo a k k k 0 suficientemente grande, então a série z k é convergente. k=0 Exemplo. k=0 k k é convergente. Teste da raiz. Seja (z k ) uma seq. de números complexos. Se existem um número real 0 a < 1 e um intiero positivo k 0 tais que k z k < a para todo k k 0, então a série z k é convergente. k=0 Exemplo. A série ( ) log(k) k é convergente. k=1 k Lista de Exercícios Exercícios de 01 a 09 pp. 86,87 e Exercício 16 p. 88 Livro Cálculo em uma variável complexa. Márcio G. Soares 13

Variável Complexa

Variável Complexa Variável Complexa 2017.2 Aula1 Utilizamos o símbolo C para denotar o plano real R 2 equipado com as seguintes operações: z 1 + z 2 = (x 1 + x 2, y 1 + y 2 ) adição z 1 z 2 = (x 1 x 2 y 1 y 2,, x 1 y 2

Leia mais

Notas Sobre Sequências e Séries Alexandre Fernandes

Notas Sobre Sequências e Séries Alexandre Fernandes Notas Sobre Sequências e Séries 2015 Alexandre Fernandes Limite de seqüências Definição. Uma seq. (s n ) converge para a R, ou a R é limite de (s n ), se para cada ɛ > 0 existe n 0 N tal que s n a < ɛ

Leia mais

1 Números Complexos e Plano Complexo

1 Números Complexos e Plano Complexo UNIVERSIDADE FEDERAL DE SANTA CATARINA Centro de Ciências Físicas e Matemáticas Departamento de Matemática SEMESTRE CÓDIGO DISCIPLINA TURMA 09-1 MTM5327 Variável Complexa 0549 Professor Lista de Exercícios

Leia mais

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e

Prova: Usando as definições e propriedades de números reais, temos λz = λx + iλy e Lista Especial de Exercícios de Física Matemática I Soluções (Número complexo, sequência de Cauchy, função exponencial e movimento hamônico simples) IFUSP - 8 de Agosto de 08 Exercício Se z x + iy, x,

Leia mais

Capítulo 1 Como motivação para a construção dos números complexos aconselha-se o visionamento do quinto do capítulo do documentário Dimensions, disponível em http://www.dimensions-math.org/ Slides de apoio

Leia mais

Cálculo Diferencial e Integral Química Notas de Aula

Cálculo Diferencial e Integral Química Notas de Aula Cálculo Diferencial e Integral Química Notas de Aula João Roberto Gerônimo 1 1 Professor Associado do Departamento de Matemática da UEM. E-mail: jrgeronimo@uem.br. ÍNDICE 1. INTRODUÇÃO Esta notas de aula

Leia mais

Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa.

Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa. UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE MATEMÁTICA Campus Apucarana Prof. Dr. Márcio Hiran Simões Apostila de Cálculo Diferencial e Integral 3 - Funções de uma Variável Complexa.

Leia mais

Mais Alguns Aspectos da Derivação Complexa

Mais Alguns Aspectos da Derivação Complexa Mais Alguns Aspectos da Derivação Complexa META: Introduzir o conceito de funções holomorfas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir funções holomorfas e determinar se uma

Leia mais

CÁLCULO I. 1 Número Reais. Objetivos da Aula

CÁLCULO I. 1 Número Reais. Objetivos da Aula CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida EMENTA: Conceitos introdutórios de limite, limites trigonométricos, funções contínuas, derivada e aplicações. Noções introdutórias sobre a integral

Leia mais

Lista 1 - Métodos Matemáticos II Respostas

Lista 1 - Métodos Matemáticos II Respostas Lista 1 - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele

Leia mais

NÚMEROS COMPLEXOS CAPÍTULO

NÚMEROS COMPLEXOS CAPÍTULO NÚMEROS COMPLEXOS CAPÍTULO 1 Neste capítulo, exploramos as estruturas algébrica e geométrica do sistema dos números complexos, para o que supomos conhecidas várias propriedades correspondentes dos números

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 13, 2015 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

Fichas de Análise Matemática III

Fichas de Análise Matemática III Fichas de Análise Matemática III Fernando Lobo Pereira, João Borges de Sousa Depto de Engenharia Electrotécnica e de Computadores Faculdade de Engenharia da Universidade do Porto Instituto de Sistemas

Leia mais

Números Complexos. Cálculo Diferencial e Integral III WELLINGTON JOSÉ CORRÊA. Campo Mourão, Paraná. Brasil. Universidade Tecnológica Federal do Paraná

Números Complexos. Cálculo Diferencial e Integral III WELLINGTON JOSÉ CORRÊA. Campo Mourão, Paraná. Brasil. Universidade Tecnológica Federal do Paraná Ministério da Educação Universidade Tecnológica Federal do Paraná ampus ampo Mourão Números omplexos álculo Diferencial e Integral III WELLINGTON JOSÉ ORRÊA ampo Mourão, Paraná Brasil Sumário Wellington

Leia mais

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que:

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que: Números Complexos e Polinômios Prof. Gustavo Sarturi [!] Esse documento está sob constantes atualizações, qualquer erro de ortografia, cálculo, favor comunicar. Última atualização: 01/11/2018. 1 Números

Leia mais

Convergência, séries de potência e funções analíticas

Convergência, séries de potência e funções analíticas Convergência, séries de potência e funções analíticas Roberto Imbuzeiro Oliveira March 16, 2011 1 Algumas palavras sobre convergência em C Tudo o que descreveremos aqui é análogo ao que se define e prova

Leia mais

Complementos sobre Números Complexos

Complementos sobre Números Complexos Complementos sobre Números Complexos Ementa 1 Introdução Estrutura Algébrica e Completude 1 O Corpo dos números complexos Notações 3 Interpretação Geométrica e Completude de C 4 Forma Polar de um Número

Leia mais

Funções analíticas LISTA DE EXERCÍCIOS

Funções analíticas LISTA DE EXERCÍCIOS LISTA DE EXERCÍCIOS Funções analíticas. Suponha que f : Ω C é C-diferenciável. Denote por r (Ω) o conjunto { z; z Ω}. Mostre que g : r (Ω) C dada por g (z) := f ( z) é ainda C-diferenciável. Recíproca?

Leia mais

TURMA:12.ºA/12.ºB. O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz)

TURMA:12.ºA/12.ºB. O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz) GUIA DE ESTUDO NÚMEROS COMPLEXOS TURMA:12.ºA/12.ºB 2017/2018 (ABRIL/MAIO) Números Complexos O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz) A famosa igualdade de Euler i e 10 A

Leia mais

Funções Elementares do Cálculo Complexos 1

Funções Elementares do Cálculo Complexos 1 Funções Elementares do Cálculo Complexos 1 META: Definir algumas funções elementares no campo dos complexos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir algumas funções elementares

Leia mais

ANÁLISE MATEMÁTICA 3 NÚMEROS COMPLEXOS

ANÁLISE MATEMÁTICA 3 NÚMEROS COMPLEXOS ANÁLISE MATEMÁTICA 3 NÚMEROS COMPLEXOS APÊNDICE Maria do Rosário de Pinho e Maria Margarida Ferreira Setembro 1998 Faculdade de Engenharia da Universidade do Porto Licenciatura em Engenharia Electrotécnica

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

NÚMEROS COMPLEXOS CAPÍTULO

NÚMEROS COMPLEXOS CAPÍTULO NÚMEROS COMPLEXOS CAPÍTULO 1 Neste capítulo, exploramos as estruturas algébrica e geométrica do sistema dos números complexos, para o que supomos conhecidas várias propriedades correspondentes dos números

Leia mais

Notas breves sobre números complexos e aplicações

Notas breves sobre números complexos e aplicações Notas breves sobre números complexos e aplicações Complementos de Análise Matemática - ESI DMat - Universidade do Minho Dezembro de 2005 1 Definição O conjunto dos números complexos, denotado por C, pode-se

Leia mais

Curso de Matemática Aplicada.

Curso de Matemática Aplicada. Aula 1 p.1/25 Curso de Matemática Aplicada. Margarete Oliveira Domingues PGMET/INPE Sistema de números reais e complexos Aula 1 p.2/25 Aula 1 p.3/25 Conjuntos Conjunto, classe e coleção de objetos possuindo

Leia mais

MAT Cálculo Avançado - Notas de Aula

MAT Cálculo Avançado - Notas de Aula bola fechada de centro a e raio r: B r [a] = {p X d(p, a) r} MAT5711 - Cálculo Avançado - Notas de Aula 2 de março de 2010 1 ESPAÇOS MÉTRICOS Definição 11 Um espaço métrico é um par (X, d), onde X é um

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano. Prof. Ulisses Lima Parente Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Prof. Ulisses Lima Parente 1 Os números irracionais Ao longo deste módulo, vimos que a representação

Leia mais

Slides de apoio: Fundamentos

Slides de apoio: Fundamentos Pré-Cálculo ECT2101 Slides de apoio: Fundamentos Prof. Ronaldo Carlotto Batista 23 de fevereiro de 2017 Conjuntos Um conjunto é coleção de objetos, chamados de elememtos do conjunto. Nomeraremos conjuntos

Leia mais

Curso: MAT 221- CÁLCULO DIFERENCIAL E INTEGRAL IV Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 2008

Curso: MAT 221- CÁLCULO DIFERENCIAL E INTEGRAL IV Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 2008 Curso: MAT 22- CÁLCULO DIFERENCIAL E INTEGRAL IV Professor Oswaldo Rio Branco de Oliveira Período: Segundo Semestre de 2008 APRESENTAÇÃO Um objetivo do curso: Um estudo da exponenciação, subdividido nos

Leia mais

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano

Material Teórico - Módulo de Potenciação e Dízimas Periódicas. Números Irracionais e Reais. Oitavo Ano Material Teórico - Módulo de Potenciação e Dízimas Periódicas Números Irracionais e Reais Oitavo Ano Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto 1 Os números irracionais Ao longo

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre de 2011/ o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2011, 10h,

Análise Complexa e Equações Diferenciais 1 o Semestre de 2011/ o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2011, 10h, Instituto Superior Técnico Departamento de Matemática (Cursos: Análise Complexa e Equações Diferenciais o Semestre de 2/22 o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2, h, Duração:

Leia mais

Introdução à Linguagem da Topologia

Introdução à Linguagem da Topologia Introdução à Linguagem da Topologia Corpos Define-se corpo por um conjunto K, munido de duas operações básicas chamadas de adição e multiplicação. São os axiomas do corpo: Axiomas da Adição Associatividade:

Leia mais

Conjunto dos Números Complexos

Conjunto dos Números Complexos Conjunto dos Unidade Imaginária Seja a equação: x + 0 Como sabemos, no domínio dos números reais, esta equação não possui solução, criou-se então um número cujo quadrado é. Esse número, representado pela

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 5 27 de agosto de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 5 27 de agosto de 200 Aula 5 Pré-Cálculo Expansões decimais: exemplo Números reais numericamente

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013 Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 Cursos: 1 o Teste Versão A LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função

Leia mais

Funções do Plano Complexo(MAT162) Notas de Aulas Prof Carlos Alberto S Soares

Funções do Plano Complexo(MAT162) Notas de Aulas Prof Carlos Alberto S Soares Funções do Plano Complexo(MAT62) Notas de Aulas 2-209 Prof Carlos Alberto S Soares O Plano Complexo Considerando a nossa definição de número complexo, é claro que existe uma correspondênca biunívoca entre

Leia mais

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57

Limites de Funções. Bases Matemáticas. 2 o quadrimestre de o quadrimestre de / 57 2 o quadrimestre de 2017 2 o quadrimestre de 2017 1 / Visão Geral 1 Limites Finitos Limite para x ± 2 Limites infinitos Limite no ponto Limite para x ± 3 Continuidade Definição e exemplos Resultados importantes

Leia mais

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I FUNÇÕES Profa. Dra. Amanda L. P. M. Perticarrari amanda.perticarrari@unesp.br Conteúdo Função Variáveis Traçando Gráficos Domínio e Imagem Família de Funções Funções Polinomiais Funções Exponenciais

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 1 NÚMEROS E FUNÇÕES COMPLEXAS (1) Calcule i, i e i e represente estes números geometricamente.

Leia mais

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais:

Espaços Euclidianos. Espaços R n. O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: Espaços Euclidianos Espaços R n O conjunto R n é definido como o conjunto de todas as n-uplas ordenadas de números reais: R n = {(x 1,..., x n ) : x 1,..., x n R}. R 1 é simplesmente o conjunto R dos números

Leia mais

NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados

NOTAÇÕES. Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados ITA006 NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais i: unidade imaginária; i z = x+ iy, x, y = 1 : conjunto dos números reais : conjunto dos números inteiros = {0, 1,, 3,...

Leia mais

Introdução: Um pouco de História

Introdução: Um pouco de História Números Complexos Introdução: Um pouco de História Houve um momento na História da Matemática em que a necessidade de expressar a raiz de um número negativo se tornou fundamental. Em equações quadráticas

Leia mais

ANÉIS. Professora: Elisandra Bär de Figueiredo

ANÉIS. Professora: Elisandra Bär de Figueiredo Professora: Elisandra Bär de Figueiredo ANÉIS DEFINIÇÃO 1 Um sistema matemático (A,, ) constituído de um conjunto não vazio A e duas leis de composição interna sobre A, uma adição: (x, y) x y e uma multiplicação

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1. (1) Descreva as regiões do plano complexo definidas por z i c z, onde c é um número real não negativo.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1. (1) Descreva as regiões do plano complexo definidas por z i c z, onde c é um número real não negativo. Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 1 NÚMEROS COMPLEXOS E FUNÇÕES COMPLEXAS Números Complexos 1) Descreva as regiões

Leia mais

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :

Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais : Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence

Leia mais

Análise I. Notas de Aula 1. Alex Farah Pereira de Novembro de 2017

Análise I. Notas de Aula 1. Alex Farah Pereira de Novembro de 2017 Análise I Notas de Aula 1 Alex Farah Pereira 2 3 22 de Novembro de 2017 1 Turma de Matemática. 2 Departamento de Análise-IME-UFF 3 http://alexfarah.weebly.com ii Conteúdo 1 Conjuntos 1 1.1 Números Naturais........................

Leia mais

Convergência de Séries de Números Complexos

Convergência de Séries de Números Complexos Convergência de Séries de Números Complexos META: Apresentar o conceito de convergência de séries de números complexos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir convergência

Leia mais

Séries de Laurent e Teoremas de Cauchy

Séries de Laurent e Teoremas de Cauchy Séries de Laurent e Teoremas de Cauchy Roberto Imbuzeiro Oliveira 3 de Abril de 20 A maior parte destas notas tem como refererência o livro de David Ullrich, Complex Made Simple. Preliminares sobre séries

Leia mais

AULA 1: PRÉ-CÁLCULO E FUNÇÕES

AULA 1: PRÉ-CÁLCULO E FUNÇÕES MATEMÁTICA I AULA 1: PRÉ-CÁLCULO E FUNÇÕES Prof. Dr. Nelson J. Peruzzi Profa. Dra. Amanda L. P. M. Perticarrari Parte 1 Conjuntos numéricos A reta real Intervalos Numéricos Valor absoluto de um número

Leia mais

Prova Substitutiva de MAT Cálculo IV - IFUSP 2 ō semestre de /12/2009 Prof. Oswaldo Rio Branco de Oliveira

Prova Substitutiva de MAT Cálculo IV - IFUSP 2 ō semestre de /12/2009 Prof. Oswaldo Rio Branco de Oliveira Prova Substitutiva de MAT0220 - Cálculo IV - IFUSP 2 ō semestre de 2009-8/2/2009 Prof. Oswaldo Rio Branco de Oliveira Nome : N ō USP : GABARITO Q 2 3 4 5 6 7 8 9 0 2 Total N JUSTIFIQUE TODAS AS PASSAGENS

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 01 Lista 1 Números Naturais 1. Demonstre por indução as seguintes fórmulas: (a) (b) n (j 1) = n (soma dos n primeiros ímpares).

Leia mais

MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari

MATEMÁTICA I. Profa. Dra. Amanda L. P. M. Perticarrari MATEMÁTICA I Profa. Dra. Amanda L. P. M. Perticarrari amanda.perticarrari@unesp.br www.fcav.unesp.br/amanda MATEMÁTICA I AULA 1: PRÉ-CÁLCULO Profa. Dra. Amanda L. P. M. Perticarrari CONJUNTOS NUMÉRICOS

Leia mais

Prova Extramuro BOA PROVA! Respostas da Parte II

Prova Extramuro BOA PROVA! Respostas da Parte II Prova Extramuro Nome: Identidade (Passaporte): Assinatura: Instruções (i) O tempo destinado a esta prova é de 5 horas. (ii) 25 porcento da pontuação total é da parte I (Perguntas dissertativas). BOA PROVA!

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

Limites de Funções de Variáveis Complexas

Limites de Funções de Variáveis Complexas Limites de Funções de Variáveis Complexas AULA 2 META: Introduzir o conceito de limite de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir limites de

Leia mais

META: Introduzir o conceito de derivada de funções de variáveis complexas.

META: Introduzir o conceito de derivada de funções de variáveis complexas. AULA 3 META: Introduzir o conceito de derivada de funções de variáveis complexas. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir derivada de funções de variáveis complexas e determinar

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

Produtos de potências racionais. números primos.

Produtos de potências racionais. números primos. MATEMÁTICA UNIVERSITÁRIA n o 4 Dezembro/2006 pp. 23 3 Produtos de potências racionais de números primos Mário B. Matos e Mário C. Matos INTRODUÇÃO Um dos conceitos mais simples é o de número natural e

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2009/2010

Análise Complexa e Equações Diferenciais 2 ō Semestre 2009/2010 Análise Complexa e Equações Diferenciais ō Semestre 9/ ō Teste - Versão A (Cursos: Todos) 4 de Abril de, h Duração: h 3m. Seja u(x,y) = xe x cos(y) e x y sen(y)+β(x), em que β : R R é uma função de classe

Leia mais

Capítulo 2 Funções de uma variável complexa. A origem dos números complexos repousa na solução de equações algébricas

Capítulo 2 Funções de uma variável complexa. A origem dos números complexos repousa na solução de equações algébricas Capítulo 2 Funções de uma variável complexa A origem dos números complexos repousa na solução de equações algébricas para. A solução da equação de 1º. grau:, remonta ao Egito antigo. Note que com os coeficientes

Leia mais

PROVAS DE ANÁLISE COMPLEXA

PROVAS DE ANÁLISE COMPLEXA PROVAS DE ANÁLISE COMPLEXA PROFESSOR RICARDO SA EARP () Seja Ω um domínio do plano complexo. Sejam f e g funções holomorfas em Ω. Assuma que g nunca se anule em Ω e que f(z) ( ) R, para todo z Ω. g(z)

Leia mais

Universidade Federal de Viçosa. Departamento de Matemática

Universidade Federal de Viçosa. Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas - CCE Departamento de Matemática Notas de Aulas Disciplina:MAT 206 - Fundamentos de Matemática II Simone Maria de Moraes Viçosa Minas

Leia mais

A origem de i ao quadrado igual a -1

A origem de i ao quadrado igual a -1 A origem de i ao quadrado igual a -1 No estudo dos números complexos deparamo-nos com a seguinte igualdade: i 2 = 1. A justificativa para essa igualdade está geralmente associada à resolução de equações

Leia mais

Resumo Elementos de Análise Infinitésimal I

Resumo Elementos de Análise Infinitésimal I Apêndice B Os números naturais Resumo Elementos de Análise Infinitésimal I Axiomática de Peano Axioma 1 : 1 N. Axioma 2 : Se N, então + 1 N. Axioma 3 : 1 não é sucessor de nenhum N. Axioma 4 : Se + 1 =

Leia mais

Ana Carolina Boero. Página: Sala Bloco A - Campus Santo André

Ana Carolina Boero.   Página:  Sala Bloco A - Campus Santo André Funções de uma variável real a valores reais E-mail: ana.boero@ufabc.edu.br Página: http://professor.ufabc.edu.br/~ana.boero Sala 512-2 - Bloco A - Campus Santo André Funções de uma variável real a valores

Leia mais

Universidade Federal de Viçosa. Departamento de Matemática

Universidade Federal de Viçosa. Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas - CCE Departamento de Matemática Notas de Aulas Disciplina:MAT 206 - Fundamentos de Matemática II Simone Maria de Moraes Viçosa Minas

Leia mais

Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos

Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos Notas de aula: Cálculo e Matemática Aplicados às Notas de aula: Ciências dos Alimentos 1 Conjuntos Um conjunto está bem caracterizado quando podemos estabelecer com certeza se um elemento pertence ou não

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Analisando cada uma das afirmações temos (A) z z = z z é uma afirmação verdadeira

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

Aula 6 Forma trigonométrica ou polar e forma exponencial de um número complexo

Aula 6 Forma trigonométrica ou polar e forma exponencial de um número complexo Aula 6 Forma trigonométrica ou polar e forma exponencial de um número complexo MÓDULO - AULA 6 Autores: Celso Costa e Roberto Geraldo Tavares Arnaut Objetivos 1 Entender a forma trigonométrica e exponencial

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρe iα, onde: ρ = i i = + ) = tg α = = ; como

Leia mais

Números Reais. Jairo Menezes e Souza 19/09/2013 UFG/CAC

Números Reais. Jairo Menezes e Souza 19/09/2013 UFG/CAC UFG/CAC 19/09/2013 Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Iniciamos com o conjunto dos números naturais N = {0, 1, 2, 3, 4, 5,...} Chamamos de Z o conjunto dos números

Leia mais

NÚMEROS COMPLEXOS

NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS - 016 1. (EFOMM 016) O número complexo, z z (cos θ i sen θ), sendo i a unidade imaginária e 0 θ π, que satisfaz a inequação z i e que possui o menor argumento θ, é a) b) c) d) 5 5 z i

Leia mais

Bases Matemáticas. Aula 4 Conjuntos Numéricos. Rodrigo Hausen. v /9

Bases Matemáticas. Aula 4 Conjuntos Numéricos. Rodrigo Hausen. v /9 Bases Matemáticas Aula 4 Conjuntos Numéricos Rodrigo Hausen v. 2016-6-10 1/9 Números Naturais, Inteiros e Racionais naturais: inteiros: racionais: N = {0, 1, 2,...} Z = {... 2, 1, 0, 1, 2,...} { } p Q

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρ cis α, onde: ρ = i i = + ) = tg α = = ;

Leia mais

1 Limites e Conjuntos Abertos

1 Limites e Conjuntos Abertos 1 Limites e Conjuntos Abertos 1.1 Sequências de números reais Definição. Uma sequência de números reais é uma associação de um número real a cada número natural. Exemplos: 1. {1,2,3,4,...} 2. {1,1/2,1/3,1/4,...}

Leia mais

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 1. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 1 Universidade Portucalense Conceitos Algébricos Propriedades das operações de números reais Considerem-se três números reais quaisquer, a, b e c. 1. A adição de

Leia mais

Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013

Unidade 5 - Subespaços vetoriais. A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa. 10 de agosto de 2013 MA33 - Introdução à Álgebra Linear Unidade 5 - Subespaços vetoriais A. Hefez e C. S. Fernandez Resumo elaborado por Paulo Sousa PROFMAT - SBM 10 de agosto de 2013 Às vezes, é necessário detectar, dentro

Leia mais

Análise Complexa e Equações Diferenciais Guia 3 João Pedro Boavida. 21 a 28 de Setembro

Análise Complexa e Equações Diferenciais Guia 3 João Pedro Boavida. 21 a 28 de Setembro 2 de Setembro de 211 21 a 28 de Setembro A secção Números complexos e matrizes 2 2 indica algumas das conclusões da discussão no final do guia 1 As secções Derivação em C e Integração em C resumem algumas

Leia mais

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n.

Lista 1. 9 Se 0 < x < y e n N então 0 < x n < y n. UFPR - Universidade Federal do Paraná Departamento de Matemática CM095 - Análise I Prof. José Carlos Eidam Lista 1 Em toda a lista, K denota um corpo ordenado qualquer. Corpos ordenados 1. Verifique as

Leia mais

Propriedades das Funções Contínuas e Limites Laterais Aula 12

Propriedades das Funções Contínuas e Limites Laterais Aula 12 Propriedades das Funções Contínuas e Limites Laterais Aula 12 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 27 de Março de 2014 Primeiro Semestre de 2014 Turma 2014106 -

Leia mais

Pré-Cálculo. Humberto José Bortolossi. Aula 6 29 de março de Departamento de Matemática Aplicada Universidade Federal Fluminense

Pré-Cálculo. Humberto José Bortolossi. Aula 6 29 de março de Departamento de Matemática Aplicada Universidade Federal Fluminense Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 6 29 de março de 2010 Aula 6 Pré-Cálculo 1 Implicações e teoria dos conjuntos f (x) =g(x) u(x)

Leia mais

Preparar o Exame Matemática A

Preparar o Exame Matemática A 07. { {. 07. Como o polinómio tem coeficientes reais e é uma das suas raízes, então também é raiz de. Recorrendo à regra de Ruffini vem,. Utilizando a fórmula resolvente na equação, vem: ssim, as restantes

Leia mais

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas.

Capítulo 1. f : A B. elementos A com elementos de B ilustradas nos seguintes diagramas. Capítulo 1 Funções Sejam A e B conjuntos não vazios. Uma função com domínio A e contradomínio B é uma regra f que a cada elemento em A associa um único elemento em B. A notação usual para uma função f

Leia mais

Isometrias no plano euclidiano.

Isometrias no plano euclidiano. Isometrias no plano euclidiano. 1 O E n é o espaço afim euclidiano n-dimensional e é constituído pelo R n como R-espaço n-dimensional munido do produto interno ( ) ( ) x,..., x, y,..., y = x y +... + x

Leia mais

UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET

UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET INTRODUÇÃO AO CÁLCULO FUNDAMENTOS DE MATEMÁTICA ELEMENTAR I NÚMEROS COMPLEXOS 1. Representar geometricamente

Leia mais

Capítulo 1 Números Reais

Capítulo 1 Números Reais Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

DE MATEMÁTICA I. Prof. ADRIANO CATTAI. Corpos Numéricos (Atualizada em 8 de março de 2016)

DE MATEMÁTICA I. Prof. ADRIANO CATTAI. Corpos Numéricos (Atualizada em 8 de março de 2016) ac COMPLEMENTOS DE MATEMÁTICA I Prof. ADRIANO CATTAI Corpos Numéricos (Atualizada em 8 de março de 2016) NOME: DATA: / / Não há ciência que fale das harmonias da natureza com mais clareza do que a matemática

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013

Análise Complexa e Equações Diferenciais 1 o Semestre 2012/2013 Análise Complexa e Equações Diferenciais 1 o Semestre 01/013 1 o Teste Versão A Cursos: LEGM, LEMat, MEAer, MEAmbi, MEBiol, MEC, MEEC, MEQ) 3 de Novembro de 01, 8h Duração: 1h 30m 1. Considere a função

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios

Leia mais

Lista de Exercícios da Primeira Semana Análise Real

Lista de Exercícios da Primeira Semana Análise Real Lista de Exercícios da Primeira Semana Análise Real Nesta lista, a n, b n, c n serão sempre sequências de números reais.. Mostre que todo conjunto ordenado com a propriedade do supremo possui a propriedade

Leia mais

Lista 2 - Métodos Matemáticos II Respostas

Lista 2 - Métodos Matemáticos II Respostas Lista - Métodos Matemáticos II Respostas Prof. Jorge Delgado Importante: As resoluções não pretendem ser completas mas apenas uma indicação para o aluno consultar caso seja necessário, cabendo a ele fornecer

Leia mais

INTRODUÇÃO À TEORIA DOS CONJUNTOS

INTRODUÇÃO À TEORIA DOS CONJUNTOS 1 INTRODUÇÃO À TEORIA DOS CONJUNTOS Gil da Costa Marques 1.1 Introdução 1.2 Conceitos básicos 1.3 Subconjuntos e intervalos 1.4 O conjunto dos números reais 1.4.1 A relação de ordem em 1.5 Intervalos 1.5.1

Leia mais

Corpos Finitos Parte I

Corpos Finitos Parte I Corpos Finitos Parte I IC-UNICAMP/2006-1s 1 Roteiro Introdução Aritmética em corpos primos Aritmética em corpos binários Aritmética em corpos de extensão IC-UNICAMP/2006-1s 2 Introdução aos corpos finitos

Leia mais

INTRODUÇÃO À TEORIA DOS CONJUNTOS1

INTRODUÇÃO À TEORIA DOS CONJUNTOS1 INTRODUÇÃO À TEORIA DOS CONJUNTOS1 TÓPICO Gil da Costa Marques 1.1 Elementos da Teoria dos Conjuntos 1.2 Introdução 1.3 Conceitos Básicos 1.4 Subconjuntos e Intervalos 1.5 Conjuntos Numéricos 1.5.1 O Conjunto

Leia mais

1 R n, propriedades, topologia

1 R n, propriedades, topologia 1 R n, propriedades, topologia Lembrete: Dados dois conjuntos A, B é dito produto cartesiano de A com B o conjunto A B = {(a, b) : a A, b B}. Em particular, R R = R 2 = {(x, y) : x, y R}: podemos representar

Leia mais

1º S I M U L A D O - ITA IME - M A T E M Á T I C A

1º S I M U L A D O - ITA IME - M A T E M Á T I C A Professor: Judson Santos / Luciano Santos Aluno(a): nº Data: / /0 º S I M U L A D O - ITA IME - M A T E M Á T I C A - 0 0) Seja N o conjunto dos inteiros positivos. Dados os conjuntos A = {p N; p é primo}

Leia mais