GAN Matemática Discreta Professores Renata de Freitas e Petrucio Viana. Lista A

Tamanho: px
Começar a partir da página:

Download "GAN Matemática Discreta Professores Renata de Freitas e Petrucio Viana. Lista A"

Transcrição

1 GAN Matemática Discreta Professores Renata de Freitas e Petrucio Viana Lista A 1. Verdadeiro ou falso? Justifique. (a) {3} {3, 4, 5} (b) {3} {{3}, 4, 5} (c) {3} {3, 4, 5} (d) {3} {{3}, 4, 5} 2. Verdadeiro ou falso? Justifique. Para A = {0, 1, 2, {1}}, temos: (a) {0} A (b) 0 A (c) {1, 2} A (d) {1, 2} A (e) {{1}, 2} A (f) {0, {2}} A 3. Considere os seguintes conjuntos: A: O conjunto de todos os inteiros positivos menores que 10. B: O conjunto de todos os números primos menores que 11. C: O conjunto de todos os números ímpares maiores que 1 e menores que 6. D: O conjunto cujos únicos elementos são 1 e 2. E: O conjunto cujo único elemento é 1. F : O conjunto de todos os números primos menores que 8. G: O conjunto dos números primos que ocorrem na fatoração do número (a) Determine as relações de inclusão entre estes conjuntos. (Quais destes conjuntos estão contidos em quais?) (b) Defina estes conjuntos por lista.

2 (c) Defina estes conjuntos por propriedade. 4. Considere dados um conjunto universo U, uma propriedade P sobre elementos de U e algoritmos que resolvem os seguintes problemas de decisão: (i) Dados: Dois objetos x e y do conjunto universo U. Questão: x = y? (ii) Dados: Um objeto x do conjunto universo U. Questão: x possui a propriedade P? Escreva algoritmos que resolvam os problemas a seguir. (a) Dados: Dois conjuntos finitos A U e B U definidos por lista. Questão: A B? (b) Dados: Um conjunto finito A U definido por lista e um conjunto B U definido por propriedade. Questão: A B? 5. Considere os conjuntos: Responda e justifique: (a) A B? (b) B A? (c) A = B? (d) C D? (e) D C? (f) C = D? 6. Verdadeiro ou falso? Justifique. A = {x N : x é múltiplo de 4} B = {x N : x é par} C = {x N : x é divisível por 3 e é par} D = {x N : x é divisível por 6} (a) Os divisores de 24 são números pares. (b) Todo múltiplo de 3 é ímpar. (c) A soma de números pares é um número par. (d) A soma de números ímpares é um número par. (e) A soma de um número par com um número ímpar é um número ímpar. 2

3 (f) Para todos a, b, c N, se a divide b e c, então a 2 divide bc. (g) Para todos a, b, c N, se a divide bc, então a divide b e a divide c. 7. Verdadeiro ou falso? Justifique. (a) Se A B e B C, então A C. (b) Se A B e C B, então A C. (c) Se A B, B C e C A, então A = B = C. (d) A B se, e somente se, A B e B A. (e) A B se, e somente se, A B ou A = B. (f) A = B se, e somente se, nem A B nem B A. (g) Se A B, B C, então A C. (h) Se A B e B C, então A C. 8. Dados os conjuntos A = {1, 2}, B = {2, 3, 4}, C = {{1}, {2}} e D = {{1}, {2}, {1, 2}}, determine: (a) A B (b) A B (c) A C (d) B C (e) C D (f) C D (g) (B D) A (h) (A B) D (i) (A B) (C D) 9. Dados os conjuntos A = {1, 3, 5, 7}, B = {5, 7, 9} e C = {1, 3, 9}, determine o conjunto X tal que A X = A, B X = B e C X = A B. 10. Determine conjuntos A, B e C que satisfaçam simultaneamente as seguintes condições: A B C = {p, q, r, s, t, u, v, x, z} 3

4 A B = {r, s} B C = {s, x} A C = {s, t} A C = {p, q, r, s, t, u, v, x} A B = {p, q, r, s, t, x, z} 11. Dados os conjuntos A = {1, 5, 7, 8, 9}, B = {1, 8}, C = {1, 5, 8, 9} e D = {1, 7, 9}, determine: (B D) C, (D A) B e (C D) B. 12. Para os conjuntos dados a seguir, temos que A B C? A = {x N : o último algarismo de x é 0} B = {x N : o último algarismo de x é 5} C = {x N : x é múltiplo de 5} 13. Prove que, para todos x, y, z N, se x y ou x z, então x yz. 14. Verdadeiro ou falso? Justifique. Para todos os conjuntos A, B e C, temos: (a) A (A B) = A (b) (A B) C = A (B C) (c) A (B C) = (A B) (C B) (d) A (B C) = (A B) (B C) (e) A B se, e somente se, A B = A. (f) Se A B e A C, então A B C. (g) A B A. (h) A A B. (i) A (B C) (A B) (A C). (j) (A B) (A C) A (B C). (k) A (A B) = A. (l) A (A B) = A. (m) A (B C) = (A B) (A C). 4

5 (n) A (B C) = (A B) (A C). (o) A B se, e somente se, A B ou A = B. (p) se A B, então B A. (q) A A =. (r) A. (s) U A A. (t) A (B C) (A B) C. (u) A (B C) = (A B) (A C). (v) A (B C) = (A B) (C A). (w) A (B C) = (A B) (A C). (x) A B = B A. (y) (A B) C = A (B C). (z) B (B A) = A. 15. Refaça os exercícios anteriores, utilizando provas algébricas e provas por diagramas numerados, quando for adequado. 16. Apresente provas algébricas de que, para todos os conjuntos A, B e C, temos: (a) B A B. (b) A B. (c) A B B. (d) A B A B. (e) A B A B. (f) A B C = (A B) (A C). (g) (A B) B = A B. (h) A B (B C) = A B. (i) Se A B e A C, então A B C. (j) Se A C e B C, então A B C. (k) A B se, e somente se, A B = A. (l) A B se, e somente se, A B = B. (m) A (B C) = (A B) (A C). (n) A (B C) = (A B) (A C). (o) A B A. 5

6 (p) A A =. (q) A = A. (r) A =. (s) (A B) C A (B C). (t) A B = B A se, e somente se, A = B. 17. Prove por indução que, para qualquer natural n: (a) n = n (n + 1)/2. (b) n 2 = n (n + 1) (2n + 1)/6. (c) n = 2 (n+1) 1. (d) n 3 = (n (n + 1)/2) 2. (e) 1/(1 2) + 1/(2 3) + + 1/(n (n + 1)) = n/(n + 1), com n 1. (f) n = (3 n+1 1)/2. (g) n (n + 1) = n (n + 1) (n + 2)/3. (h) n (n + 1) (n + 2) = n (n + 1) (n + 2) (n + 3)/4. (i) n 3 = ( n) 2. (Neste item, você pode usar o resultado do item a). (j) n 3 = n 2 (n + 1) 2 /4, com n 1. (k) n 2 > n + 1, com n 2. (l) 2n + 1 < n 2, com n 3. (m) n 2 < 2 n, com n 5. (Neste item, você pode usar o resultado do item anterior). (n) (n + 1) 2 5n 1, com n 1. (o) n! > n 2, com n 4. (p) n! > 3 n, com n 7. (q) n 2 + n é divisível por 2. (r) n 4 4n 2 é divisível por 3. (s) n 3 n é divisível por 6. (t) 13 n 6 n é divisível por 7, com n 1. (u) 3 2n n+2 é divisível por 7. (v) 2 2n 1 3 n é divisível por 11. (w) 9 n 8n 1 é divisível por 64. 6

7 (x) 4 n + 6n 1 é divisível por 9. (y) 3 divide n 4 4n 2. (z) n (n + 1) (n + 2) é múltiplo de 3, com n > Sejam A = {2n + 2 n N } e B = {2n + 1 n N }. (a) Prove por indução em n que todos os números do conjunto A são pares. (b) Prove por indução em n que todos os números do conjunto B são ímpares. 19. Considere que Q = {p/q : q 0 e p/q é fração irredutível}. Seja f : Q Q uma função tal que ( ) p f = p q. q Prove por indução em n que, para todo n N, temos que f(n) é um número negativo. 20. Dado α R tal que α > 1, prove por indução em n que (Desigualdade de Bernoulli). 21. Prove por indução em n que, n N, α R, α 1. (1 + α) n 1 + nα, n N 1 + α + α 2 + α α n 1 = αn 1 α 1, 22. Prove que todo número natural maior ou igual a 2 pode ser escrito como produto de números primos. 23. Determine o conjunto das partes de cada conjunto a seguir: A = {a, b}, B = {3}, C = {{x}, y, z}, D = e E = { }. 24. Verdadeiro ou falso, justifique. Para A = {, 1, 2, {1}}, temos: (a) { } P (A). (b) {1, {1}} P (A). (c) {1, {1}} P (A). (d) {{ }} P (A). (e) {{ }} P (A). (f) {{, 1}} P (A). 7

8 (g) {, {1}, 2} P (A). (h) {, { }} P (A). (i) {, { }} P (A). 25. Dado o conjunto E = {1, 2, {1, 2}}, determine E P (E). 26. Prove que, para todos os conjuntos A, B e C, temos: (a) P (A). (b) A P (A). (c) P (A B) = P (A) P (B). (d) P (A) P (B) P (A B). 27. Prove que não é verdade que, para todos os conjuntos A e B, temos: (a) P (A B) P (A) P (B). (b) P (A B) = P (A) P (B). 28. Dados A = {1, 2, 5, 7}, B = {1, 3, 4}, C = {2, 3, 9} e D = {1, 3, 7}, determine: (a) (A B) (C D) (b) (A B) (D C) (c) ((B C) D) (A D) 29. Verdadeiro ou falso, justifique. Para todos os conjuntos A, B e C: (a) A (B C) = (A B) (A C) (b) (A B) C = (A C) (B C) (c) A (B C) = (A B) (A C) (d) (A B) (A B) = (A A) (B B) (e) (A B) (A B) = (A B) (B A) (f) A B = B A se, e somente se, A = ou B = ou A = B. (g) A B = se, e somente se, A = ou B =. (h) Se A B, então A C B C e C A C B. (i) Se A e A B A C, então B C. (j) Se A e B A C A, então B C. 30. Prove que, para quaisquer relações R, S, T, T 1 e T 2, temos que: (a) Se R S, então R 1 S 1. 8

9 (b) (R S) 1 = R 1 S 1. (c) (R S) 1 = R 1 S 1. (d) (R S) 1 = R 1 S 1. (e) (R S) 1 = S 1 R 1. (f) Se R T 1 e S T 2, então R S T 1 T 2. (g) (R S) T = R (S T ). (h) R (S T ) = (R S) (R T ). (i) R (S T ) (R S) (R T ). (j) R =. (k) (R S) (R T ) R (S T ). (l) Se A e B são conjuntos, então (A B) 1 = B A. (m) Se A e B são conjuntos, então (A B) (A B) A B. 31. Verdadeiro ou falso? Justifique. Para qualquer conjunto A e quaisquer relações R e S em A, temos que: (a) Se R é simétrica e S é simétrica, então R S é simétrica. (b) Se R é reflexiva, então R S é reflexiva. (c) Se R é reflexiva e S é reflexiva, então R S é reflexiva. (d) Se R é antissimétrica e S é antissimétrica, então R S é anti-simétrica. (e) Se R é antissimétrica e S é antissimétrica, então R S é antissimétrica. (f) Se R é transitiva e S é transitiva, então R S é transitiva. (g) Se R é transitiva e S é transitiva, então R S é transitiva. (h) Se R é simétrica, então R 1 é simétrica. (i) Se R é antissimétrica, então R 1 é antissimétrica. (j) Se R é reflexiva, então R R 1. (k) Se R é simétrica, então R R Refaça os exercícios anteriores, utilizando o cálculo com grafos, quando for adequado. 9

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco

MATEMÁTICA MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA. Professor Matheus Secco MATEMÁTICA Professor Matheus Secco MÓDULO 8 DIVISIBILIDADE E CONGRUÊNCIA 1. DIVISIBILIDADE Definição: Sejam a, b inteiros com a 0. Diz-se que a divide b (denota-se por a b) se existe c inteiro tal que

Leia mais

Matemática Discreta 11/12 Soluções

Matemática Discreta 11/12 Soluções Matemática Discreta 11/1 Soluções Lógica 1. (a) Não é proposição. (b) Proposição verdadeira. (c) Proposição falsa. (d) Não é proposição. (e) Proposição falsa. (f) Não é proposição.. (a) + 4 5 e. (c) A

Leia mais

AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO

AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO AGRUPAMENTO DE ESCOLAS D. JOSÉ I 2015/16 MATEMÁTICA 5.º ANO Nome N º Turma 1. Observe os números seguintes: 12, 14 e 15. a) Determine os divisores de 14 e de 15 Divisores de 14: Divisores de 15: b) Escreva

Leia mais

CENTRO EDUCACIONAL GIRASSOL TD de Matemática Prof.: Tiago Rodrigues

CENTRO EDUCACIONAL GIRASSOL TD de Matemática Prof.: Tiago Rodrigues CENTRO EUCACIONAL GIRASSOL T de Matemática Prof.: Tiago Rodrigues proftiagorodrigues@gmail.com IVISIBILIAE E RESTO. Introdução O assunto divisibilidade no Conjunto dos Inteiros ( ) é extremamente importante

Leia mais

Critérios de Divisibilidade

Critérios de Divisibilidade Critérios de Divisibilidade Divisibilidade por 2: Um número natural n é divisível por 2 se, e somente se, terminar em 0, ou 2, ou 4, ou 6, ou 8. 15638748 é divisível por 2, pois termina em 8. 6749029876539871375986

Leia mais

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011

Matemática Discreta. Introdução à Teoria de Números - Exercícios 1 o ano /2011 Lic. em Ciências da Computação Matemática Discreta Introdução à Teoria de Números - Exercícios 1 o ano - 2010/2011 1. Determine o quociente e o resto na divisão de: (a) 310156 por 197; (b) 32 por 45; (c)

Leia mais

MÚLTIPLOS DE UM NÚMERO NATURAL

MÚLTIPLOS DE UM NÚMERO NATURAL PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ======================================================================== MÚLTIPLOS DE UM NÚMERO NATURAL Para

Leia mais

Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES. Prof.: Marcelo Maraschin de Souza

Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES. Prof.: Marcelo Maraschin de Souza Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES Prof.: Marcelo Maraschin de Souza marcelo.maraschin@ifsc.edu.br Considere o conjunto S={1,2,3}, descreva o conjunto dos pares ordenados

Leia mais

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08

MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 MA14 - Unidade 1 Divisibilidade Semana de 08/08 a 14/08 Neste curso, consideraremos o conjunto dos números naturais como sendo o conjunto N = {0, 1, 2, 3,... }, denotando por N o conjunto N \ {0}. Como

Leia mais

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco MATEMÁTICA 1 Professor Matheus Secco MÓDULO 2 Divisibilidade 1. DIVISIBILIDADE 1.1 DEFINIÇÃO: Dizemos que o inteiro a é divisível pelo inteiro b (ou ainda que a é múltiplo de b) se existe um inteiro c

Leia mais

Introdução aos números inteiros

Introdução aos números inteiros Introdução aos números inteiros Laura Goulart UESB 19 de Dezembro de 2017 Laura Goulart (UESB) Introdução aos números inteiros 19 de Dezembro de 2017 1 / 18 Adição Laura Goulart (UESB) Introdução aos números

Leia mais

5. De um bloco formado por cubos retiraram-se alguns cubos como mostra a figura. Quantos cubos foram retirados?

5. De um bloco formado por cubos retiraram-se alguns cubos como mostra a figura. Quantos cubos foram retirados? AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 014/1 NOME N.º Turma Nas questões 1 a, assinale com x a opção correta. 1. O valor de 4 : 4 10. A soma de dois números negativos é um número: Positivo

Leia mais

Relações Binárias, Aplicações e Operações

Relações Binárias, Aplicações e Operações Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 19 de outubro de 2018 Pouya Mehdipour 19 de outubro de 2018 1 / 7 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 1. Números Naturais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 01 Lista 1 Números Naturais 1. Demonstre por indução as seguintes fórmulas: (a) (b) n (j 1) = n (soma dos n primeiros ímpares).

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2015/I Tópico: Produto Cartesiano 1. Dados os conjuntos M = {1, 3, 5} e N = {2, 4},

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Pato Branco ENGENHARIA DE COMPUTAÇÃO. Prova Parcial 1 Matemática Discreta para Computação Prova Parcial 1 2011-2 Aluno(a): Data: 08/09/2011 1. (3p) Usando regras de inferência, prove que os argumentos são válidos. Use os símbolos proposicionais indicados: a. A Rússia era uma potência superior,

Leia mais

Roteiro da segunda aula presencial - ME

Roteiro da segunda aula presencial - ME PIF Enumerabilidade Teoria dos Números Congruência Matemática Elementar Departamento de Matemática Universidade Federal da Paraíba 29 de outubro de 2014 PIF Enumerabilidade Teoria dos Números Congruência

Leia mais

Roteiro da aula. MA091 Matemática básica. Simplificação por divisões sucessivas. Divisores. Aula 4 Divisores e múltiplos. MDC. Operações com frações

Roteiro da aula. MA091 Matemática básica. Simplificação por divisões sucessivas. Divisores. Aula 4 Divisores e múltiplos. MDC. Operações com frações Roteiro da aula MA091 Matemática básica Aula Divisores e múltiplos. MDC. Operações com frações 1 Francisco A. M. Gomes UNICAMP - IMECC Março de 016 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática

Leia mais

Resolução dos Exercícios 31/05-09/06.

Resolução dos Exercícios 31/05-09/06. Resolução dos Exercícios 31/05-09/06. 1. Seja A um domínio de integridade. Mostre que todo subgrupo finito de U(A) é cíclico. Seja K o corpo de frações de A. Então A é um subanel de K (identificado com

Leia mais

DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: TURNO: NOTURNO

DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: TURNO: NOTURNO DISCIPLINA: MATEMÁTICA DISCRETA I PROFESSOR: GISLAN SILVEIRA SANTOS CURSO: SISTEMAS DE INFORMAÇÃO SEMESTRE: 2018-2 TURNO: NOTURNO ALUNO a): 1ª Lista de Exercícios - Introdução à Lógica Matemática, Teoria

Leia mais

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn 4 Relações 4.1 Preliminares Definição 4.1. Sejam A e B conjuntos. Uma relação binária, R, de A em B é um subconjunto de A B. (R A B) Dizemos que a A está relacionado com b B sss (a, b) R. Notação: arb.

Leia mais

9,43 9,40 7,77 9,28 5,20 3,63 6,08 3,02 2,05 4,59 2,45 5,83 9,42 8,52 4,41 3,30 3,52

9,43 9,40 7,77 9,28 5,20 3,63 6,08 3,02 2,05 4,59 2,45 5,83 9,42 8,52 4,41 3,30 3,52 RELATORIO MA11 Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 1,0 1,0 1,0 1,0 1,0 1,0 0,5 0,5 1,0 1,0 1,0 NOTA 9,43 9,40 7,77 9,28 5,20 3,63 6,08 3,02 2,05 4,59 2,45 5,83 9,42 8,52 4,41 3,30 3,52 %

Leia mais

DIVISÃO NOS INTEIROS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II

DIVISÃO NOS INTEIROS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II Sumário DIVISÃO NOS INTEIROS Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 18 de agosto de 2017 Sumário 1 Divisibilidade 2 Divisão Euclidiana

Leia mais

Janeiro M A T E M Á T I C A CONJUNTOS TEORIA DOS CONJUNTOS. Sejam bem-vindos ao nosso primeiro dia de Cronograma.

Janeiro M A T E M Á T I C A CONJUNTOS TEORIA DOS CONJUNTOS. Sejam bem-vindos ao nosso primeiro dia de Cronograma. VEST Janeiro @vestmapamental M A T E M Á T I C A CONJUNTOS TEORIA DOS CONJUNTOS Sejam bem-vindos ao nosso primeiro dia de Cronograma. Iniciando pela Matemática, uma disciplina exata, que requer muito compromisso,

Leia mais

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 03 ATIVIDADE 01 (a) Sejam u = (a b)/(a + b), v = (b c)/(b + c) e w = (c a)/(c

Leia mais

UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO

UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA 1 a LISTA DE EXERCÍCIOS PERÍODO UFPB - CCEN - DEPARTAMENTO DE MATEMÁTICA ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA a LISTA DE EXERCÍCIOS PERÍODO 0 Os exercícios 0 8 trazem um espaço vetorial V e um seu subconjunto W Sempre que W for um subespaço

Leia mais

EXERCÍCIOS DE APOIO AO ESTUDO EM MATEMÁTICA 3º TRIMESTRE. 1) Relacione as colunas e marque a alternativa correta, respectivamente.

EXERCÍCIOS DE APOIO AO ESTUDO EM MATEMÁTICA 3º TRIMESTRE. 1) Relacione as colunas e marque a alternativa correta, respectivamente. EXERCÍCIOS DE APOIO AO ESTUDO EM MATEMÁTICA 3º TRIMESTRE Nome: nº: Ano: 6º E.F. Data: / / 2018 Professor: Carlos 1) Relacione as colunas e marque a alternativa correta, respectivamente. 2 I de 35 ( ) 28

Leia mais

Universidade Federal de Viçosa Departamento de Matemática III LISTA DE MAT INTRODUÇÃO À ÁLGEBRA

Universidade Federal de Viçosa Departamento de Matemática III LISTA DE MAT INTRODUÇÃO À ÁLGEBRA Universidade Federal de Viçosa Departamento de Matemática III LISTA DE MAT 131 - INTRODUÇÃO À ÁLGEBRA 1. Seja A = {1, 3, 5, 7, 11}. Verifique quais das seguintes proposições são verdadeiras ou falsas.

Leia mais

UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática

UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática UDESC - Universidade do Estado de Santa Catarina CCT - Centro de Ciências Tecnológicas DMAT - Departamento de Matemática Segunda Lista de Exercícios de ITN: Números Inteiros Prof. Marnei Luis Mandler Segundo

Leia mais

AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 5.º ANO 2015/16

AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 5.º ANO 2015/16 AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 5.º ANO 2015/16 Ficha 4 Números naturais (revisão) NOME Turma Data 1. Considere os números 15, 25 e 30. a) Determine os divisores de 15, 25 e 30. b) A

Leia mais

EXERCÍCIOS DO CAPÍTULO 1

EXERCÍCIOS DO CAPÍTULO 1 EXERCÍCIOS DO CPÍTULO 1 1) Escreva em notação simbólica: a) a é elemento de b) é subconjunto de c) contém d) não está contido em e) não contém f) a não é elemento de ) Enumere os elementos de cada um dos

Leia mais

Elementos de Matemática Finita

Elementos de Matemática Finita Elementos de Matemática Finita Exercícios Resolvidos - Princípio de Indução; Algoritmo de Euclides 1. Seja ( n) k n! k!(n k)! o coeficiente binomial, para n k 0. Por convenção, assumimos que, para outros

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Texto de apoio às aulas. Amélia Bastos, António Bravo Dezembro 2010 Capítulo 1 Números reais As propriedades do conjunto dos números reais têm por base um conjunto restrito

Leia mais

Índice. Números naturais. Isometrias do plano. Figuras geométricas planas. Representação e interpretação de dados. Relações e regularidades

Índice. Números naturais. Isometrias do plano. Figuras geométricas planas. Representação e interpretação de dados. Relações e regularidades Índice Números naturais Isometrias do plano. Números primos e números compostos. Decomposição de um número em fatores primos 6. Mínimo múltiplo comum e máximo divisor comum 8. Potências de expoente natural

Leia mais

Matemática para Ciência dos Computadores 30 de Dezembro, Docente: Luís Antunes & Sandra Alves

Matemática para Ciência dos Computadores 30 de Dezembro, Docente: Luís Antunes & Sandra Alves Matemática para Ciência dos Computadores 30 de Dezembro, 2003 Docente: Luís Antunes & Sandra Alves Mais exercícios de MCC 1. Sejam p, q, r e p 1, p 2, p 3 as seguintes afirmações primitivas e premissas

Leia mais

Inteiros. Inteiros. Congruência. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006.

Inteiros. Inteiros. Congruência. Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006. Inteiros Inteiros. Congruência. Referência: Capítulo: 4 Discrete Mathematics with Graph Theory Edgar Goodaire e Michael Parmenter, 3rd ed 2006 1 Números reais A relação binária em R é uma ordem parcial

Leia mais

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE

Indução Matemática. George Darmiton da Cunha Cavalcanti CIn - UFPE Indução Matemática George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Qual é a fórmula para a soma dos primeiros n inteiros ímpares positivos? Observando os resultados para um n pequeno, encontra-se

Leia mais

Números Naturais Operações Fundamentais com Números Naturais *Adição; Subtração; Multiplicação e Divisão Exercícios

Números Naturais Operações Fundamentais com Números Naturais *Adição; Subtração; Multiplicação e Divisão Exercícios Curso de Elétrica... Matemática Básica Curso de Elétrica... Matemática Básica Sumário 1_Números Inteiros Números Naturais Operações Fundamentais com Números Naturais *Adição; Subtração; Multiplicação e

Leia mais

GABARITO DO CADERNO DE RECUPERAÇÃO 1º SEMESTRE 6º ANO MATEMÁTICA

GABARITO DO CADERNO DE RECUPERAÇÃO 1º SEMESTRE 6º ANO MATEMÁTICA GABARITO DO CADERNO DE RECUPERAÇÃO 1º SEMESTRE 6º ANO MATEMÁTICA 01) Represente cada multiplicação por meio de uma potenciação. a) 2 5 b) 10 5 c) 5 12 d) 3 6 e) a 5 f) b 7 g) 45 4 h) 68 6 i) 89 3 j) 1

Leia mais

AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 2014/15 Ficha A1 Números Naturais

AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 2014/15 Ficha A1 Números Naturais AGRUPAMENTO DE ESCOLAS D. JOSÉ I - VRSA MATEMÁTICA 6.º ANO 014/15 Ficha A1 Números Naturais NOME N.º Turma Nas questões 1 a 5, assinale com x a opção correta sem apresentar qualquer justificação. 1. A

Leia mais

MATEMÁTICA. A partir dessas informações, quantas pessoas foram entrevistadas?

MATEMÁTICA. A partir dessas informações, quantas pessoas foram entrevistadas? MATEMÁTICA 1 Um estudante fez uma pesquisa com um grupo de universitários para obter um panorama a respeito da utilização de três redes sociais. Ao computar as informações fornecidas pelas pessoas entrevistadas,

Leia mais

ORIENTAÇÕES PARA ESTUDOS DE RECUPERAÇÃO ANUAL MATEMÁTICA 6º ANO

ORIENTAÇÕES PARA ESTUDOS DE RECUPERAÇÃO ANUAL MATEMÁTICA 6º ANO ORIENTAÇÕES PARA ESTUDOS DE RECUPERAÇÃO ANUAL MATEMÁTICA 6º ANO Caro aluno O material que você está recebendo objetiva auxiliá-lo em seus estudos em Matemática deste ano letivo. Resolva atentamente os

Leia mais

1 Números Reais. 1. Simplifique as seguintes expressões (definidas nos respectivos domínios): b) x+1. d) x 2, f) 4 x 4 2 x, g) 2 x2 (2 x ) 2, h)

1 Números Reais. 1. Simplifique as seguintes expressões (definidas nos respectivos domínios): b) x+1. d) x 2, f) 4 x 4 2 x, g) 2 x2 (2 x ) 2, h) Números Reais. Simplifique as seguintes expressões (definidas nos respectivos domínios): x a), x b) x+ +, x c) +x + x +x, d) x, e) ( x ), f) 4 x 4 x, g) x ( x ), h) 3 x 6 x, i) x x +, j) x x+ x, k) log

Leia mais

ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011

ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011 Uma Resolução ELEMENTOS DE MATEMÁTICA DISCRETA Exame de Segunda Data 18/01/2011 1. Seleccione e transcreva para a sua folha de exame a única opção correcta: A fórmula proposicional (p q) (p q) é a) logicamente

Leia mais

Tópicos de Matemática Elementar

Tópicos de Matemática Elementar Tópicos de Matemática Elementar 2 a série de exercícios 2004/05. A seguinte prova por indução parece correcta, mas para n = 6 o lado esquerdo é igual a 2 + 6 + 2 + 20 + 30 = 5 6, enquanto o direito é igual

Leia mais

01. D e m o n s t r a r q u e s e. 02. Mostre que se a 1 a2

01. D e m o n s t r a r q u e s e. 02. Mostre que se a 1 a2 Série Professor(a) Aluno(a) Rumo ao ITA Marcelo Mendes Sede Turma Turno Data N / / Ensino Pré-Universitário TC Matemática Revisão de Álgebra OSG.: 85/0 Exercícios de Fixação 0. Encontre os valores das

Leia mais

Resposta: b) Quais são os números divisíveis por 3? Justifique sua resposta. Resposta:

Resposta: b) Quais são os números divisíveis por 3? Justifique sua resposta. Resposta: NOME: TURMA: UNIDADE: NOTA: DATA DE ENTREGA: 14 / 06 / 2017 1. (1,2) Observe os números abaixo e responda. 11820 1000 14649 72048 1980 6930 42345 14214 16664 3924 1500 a) Quais são os números divisíveis

Leia mais

MATEMÁTICA. Aula 4. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Aula 4. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Aula 4 Professor : Dêner Rocha Monster Concursos 1 Divisibilidade Critérios de divisibilidade São critérios que nos permite verificar se um precisarmos efetuar grandes divisões. número é divisível

Leia mais

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2

g) 2 x2 (2 x ) 2, 6 x i) x 2 x + 2, j) k) log ( 1 l) log ( 2x 2 + 2x 2) + log ( x 2 Números Reais. Simplifique as seguintes epressões (definidas nos respectivos domínios): a), b) + +, c) + + +, d), e) ( ), f) 4 4, g) ( ), h) 3 6, i) +, j) +, k) log ( ) + log ( ), l) log ( + ) + log (

Leia mais

Agrupamento de Escolas Joaquim Inácio da Cruz Sobral

Agrupamento de Escolas Joaquim Inácio da Cruz Sobral Agrupamento de Escolas Joaquim Inácio da Cruz Sobral Escola Básica e Secundária de Sobral de Monte Agraço FICHA DE TRABALHO DE MATEMÁTICA 7ºAno Nome: N.º Turma: Data: Trabalho de Casa: Números Inteiros

Leia mais

Enunciados Atômicos, Conectivos e Enunciados Moleculares

Enunciados Atômicos, Conectivos e Enunciados Moleculares Lógica para Ciência da Computação I Lógica Matemática Texto 3 Enunciados Atômicos, Conectivos e Enunciados Moleculares Sumário 1 Enunciados atômicos 2 1.1 Observações................................ 2

Leia mais

MÚLTIPLOS DE UM NÚMERO NATURAL

MÚLTIPLOS DE UM NÚMERO NATURAL PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== MÚLTIPLOS DE UM NÚMERO NATURAL Para

Leia mais

Lista de Exercícios 8: Soluções Relações

Lista de Exercícios 8: Soluções Relações UFMG/ICEx/DCC DCC111 Matemática Discreta Lista de Exercícios 8: Soluções Relações Ciências Exatas & Engenharias 2 o Semestre de 2016 Definição 1 [Composição de relações]. Seja R uma relação do conjunto

Leia mais

CONJUNTO DOS NÚMEROS INTEIROS

CONJUNTO DOS NÚMEROS INTEIROS Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTO DOS NÚMEROS INTEIROS Os números inteiros formam um conjunto, que notaremos por, no qual estão definidas duas operações, que chamaremos de adição

Leia mais

BANCO. por: a) 2; b) 5; c) por 2? a) 78. b) 110. c) 65. d) 51 R.: R.: c) divisível por Responda: Por quê? R.: R.

BANCO. por: a) 2; b) 5; c) por 2? a) 78. b) 110. c) 65. d) 51 R.: R.: c) divisível por Responda: Por quê? R.: R. PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES MATEMÁTICA 6º ANO ENSINO FUNDAMENTAL = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

Leia mais

Conceitos básicos de Teoria da Computação

Conceitos básicos de Teoria da Computação Folha Prática Conceitos básicos de 1 Conceitos básicos de Métodos de Prova 1. Provar por indução matemática que para todo o número natural n: a) 1 + 2 + 2 2 + + 2 n = 2 n+1 1, para n 0 b) 1 2 + 2 2 + 3

Leia mais

Soluções dos Exercícios do Capítulo 2

Soluções dos Exercícios do Capítulo 2 A MATEMÁTICA DO ENSINO MÉDIO Volume 1 Soluções dos Exercícios do Capítulo 2 2.1. Seja X = {n N; a + n Y }. Como a Y, segue-se que a + 1 Y, portanto 1 X. Além disso n X a + n Y (a + n) + 1 Y n + 1 X. Logo

Leia mais

19 AULA. Princípio da Boa Ordem LIVRO. META Introduzir o princípio da boa ordem nos números naturais e algumas de suas conseqüências.

19 AULA. Princípio da Boa Ordem LIVRO. META Introduzir o princípio da boa ordem nos números naturais e algumas de suas conseqüências. LIVRO Princípio da Boa Ordem META Introduzir o princípio da boa ordem nos números naturais e algumas de suas conseqüências. OBJETIVOS Ao fim da aula os alunos deverão ser capazes de: Aplicar o princípio

Leia mais

NÚMEROS ESPECIAIS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II

NÚMEROS ESPECIAIS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II Sumário NÚMEROS ESPECIAIS Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 27 de outubro de 2017 Sumário 1 Primos de Fermat, de Mersenne e em

Leia mais

Extensivo Matemática A VOL 2

Extensivo Matemática A VOL 2 Extensivo Matemática VOL 2 01) N = {0, 1, 2, 3, 4,...} Conjunto dos números naturais B = {x N/ 2 x 7} a) V: 7 B = {2, 3, 4, 5, 6, 7} b) F: 5 é um elemento de B c) F: x, com x N, tal que 2 x 7. d) F: os

Leia mais

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard CONJUNTOS NUMÉRICOS Aulas 01 a 08 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2019 Sumário CONJUNTOS NUMÉRICOS... 2 Conjunto dos números Naturais... 2 Conjunto dos números

Leia mais

Polos Olímpicos de Treinamento. Aula 7. Curso de Teoria dos Números - Nível 2. Aula de Revisão e Aprofundamento. Prof.

Polos Olímpicos de Treinamento. Aula 7. Curso de Teoria dos Números - Nível 2. Aula de Revisão e Aprofundamento. Prof. Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 7 Aula de Revisão e Aprofundamento Observação 1. É recomendável que o professor instigue seus alunos a pensarem

Leia mais

Relações Binárias, Aplicações e Operações

Relações Binárias, Aplicações e Operações Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 6 de dezembro de 2018 Pouya Mehdipour 6 de dezembro de 2018 1 / 24 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,

Leia mais

Um conjunto é uma coleção de objetos. Esses objetos podem ser qualquer coisa. Costumamos chamar esses objetos de elementos do conjuntos.

Um conjunto é uma coleção de objetos. Esses objetos podem ser qualquer coisa. Costumamos chamar esses objetos de elementos do conjuntos. Capítulo 1 Conjuntos 1.1 Noção de conjuntos Um conjunto é uma coleção de objetos. Esses objetos podem ser qualquer coisa. Costumamos chamar esses objetos de elementos do conjuntos. 1. Uma coleção de revista

Leia mais

Funções - Primeira Lista de Exercícios

Funções - Primeira Lista de Exercícios Funções - Primeira Lista de Exercícios Vers~ao de 0/03/00 Recomendações Não é necessário o uso de teoremas ou resultados complicados nas resoluções. Basta que você tente desenvolver suas idéias. Faltando

Leia mais

Lista de Exercícios 05 Álgebra Matricial

Lista de Exercícios 05 Álgebra Matricial Lista de Exercícios 05 Álgebra Matricial - 016.1 1. Determine a quantidade desconhecida em cada uma das expressões: ( ) ( ) ( ) T 0 3 x + y + 3 3 w (a) 3.X = (b) = 6 9 4 0 6 z. Uma rede de postos de combustíveis

Leia mais

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê)

Matemática- 2008/ Se possível, dê exemplos de: (no caso de não ser possível explique porquê) Matemática- 00/09. Se possível, dê exemplos de (no caso de não ser possível explique porquê) (a) Uma matriz do tipo ; cujos elementos principais sejam 0. (b) Uma matriz do tipo ; cujo elemento na posição

Leia mais

Números Primos, MDC e MMC. O próximo teorema nos diz que os primos são as peças fundamentais dos números inteiros:

Números Primos, MDC e MMC. O próximo teorema nos diz que os primos são as peças fundamentais dos números inteiros: Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula 4 Números Primos, MDC e MMC. Definição 1. Um inteiro p > 1 é chamado número primo se não possui um divisor d

Leia mais

Percursos em um grafo

Percursos em um grafo Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira

Leia mais

MATEMÁTICA. ÍNDICE Conjuntos Numéricos... 2

MATEMÁTICA. ÍNDICE Conjuntos Numéricos... 2 MATEMÁTICA ÍNDICE Conjuntos Numéricos... 2 1 1 Matemática 2 Conjuntos Numéricos 00 Introdução Os conjuntos numéricos mostram a evolução do homem no decorrer do tempo mostrando que, de acordo com suas necessidades,

Leia mais

Análise Matemática I 1 o Semestre de 2002/03 LEBM, LEFT, LMAC Exercícios para as aulas práticas

Análise Matemática I 1 o Semestre de 2002/03 LEBM, LEFT, LMAC Exercícios para as aulas práticas Análise Matemática I o Semestre de 2002/03 LEBM LEFT LMAC Eercícios para as aulas práticas I Elementos de Lógica e Teoria dos Conjuntos (30/9/2002-4/0/2002) (Eercício 2 de [3]) Prove que quaisquer que

Leia mais

INSTITUTO GEREMARIO DANTAS. COMPONENTE CURRICULAR: Matemática 1

INSTITUTO GEREMARIO DANTAS. COMPONENTE CURRICULAR: Matemática 1 INSTITUTO GEREMARIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 8º Ano Nº Professora: Maria das Graças COMPONENTE CURRICULAR: Matemática

Leia mais

Álgebra A - Aula 01 Algoritmo da divisão de Euclides e Algoritmo Euclideano estendido

Álgebra A - Aula 01 Algoritmo da divisão de Euclides e Algoritmo Euclideano estendido Álgebra A - Aula 01 Algoritmo da divisão de Euclides e Algoritmo Euclideano estendido Elaine Pimentel Departamento de Matemática, UFMG, Brazil 2 o Semestre - 2010 Introdução Objetivo: estudar o método

Leia mais

Primos, LTE e Outras Histórias

Primos, LTE e Outras Histórias Primos, LTE e Outras Histórias Semana Olímpica 09 Rafael Filipe - rafaelfilipedoss@gmailcom O objetivo desse material é apresentar algumas ideias recentes que tem aparecido nos problemas de Teoria dos

Leia mais

Matemática Discreta para Computação: Prova 1 06/09/2017

Matemática Discreta para Computação: Prova 1 06/09/2017 Matemática Discreta para Computação: Prova 1 06/09/2017 Aluno(a): 1. Considere as premissas: Se o universo é finito, então a vida é curta., Se a vida vale a pena, então a vida é complexa., Se a vida é

Leia mais

MA14 - Aritmética Lista 1. Unidades 1 e 2

MA14 - Aritmética Lista 1. Unidades 1 e 2 MA14 - Aritmética Lista 1 Unidades 1 e 2 Abramo Hefez PROFMAT - SBM 05 a 11 de agosto 2013 Unidade 1 1. Mostre, por indução matemática, que, para todo n N {0}, a) 8 3 2n + 7 b) 9 10 n + 3.4 n+2 + 5 2.

Leia mais

n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS

n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS Uma relação é um conjunto de pares ordenados, ou seja, um subconjunto de A B. Utilizando pares ordenados podemos definir relações por meio da linguagem de conjuntos.

Leia mais

Projeto Lógico Automatizado de Sistemas Digitais Seqüenciais 2 - Fundamentação Teórica

Projeto Lógico Automatizado de Sistemas Digitais Seqüenciais 2 - Fundamentação Teórica Pontifícia Universidade Católica do Rio Grande do Sul Instituto de Informática (II-PUCRS) Grupo de Apoio ao Projeto de Hardware - GAPH Projeto Lógico Automatizado de Sistemas Digitais Seqüenciais 2 - Fundamentação

Leia mais

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que:

é uma proposição verdadeira. tal que: 2 n N k, Φ(n) = Φ(n + 1) é uma proposição verdadeira. com n N k, tal que: Matemática Discreta 2008/09 Vítor Hugo Fernandes Departamento de Matemática FCT/UNL Axioma (Princípio da Boa Ordenação dos Números Naturais) O conjunto parcialmente (totalmente) ordenado (N, ), em que

Leia mais

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Teoria Elementar dos Conjuntos Prof Clezio 04 de Junho de 2010 Curso de Ciência da Computação Noções básicas Um conjunto designa-se geralmente por uma letra latina maiúscula:

Leia mais

OPEMAT. Olimpíada Pernambucana de Matemática

OPEMAT. Olimpíada Pernambucana de Matemática OPEMAT Olimpíada Pernambucana de Matemática - 206 Nível. O ano de 206 está acabando, vamos ver se você conhece bem esse número. Para isso, julgue os itens a seguir: (V) (F) A maior potência de 2 que divide

Leia mais

Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta..

Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta.. This is page i Printer: Opaque this 1 Lógica Este material se compõe de exercícios de Lógica relacionadas as disciplinas de Fundamentos de Matemática e Matemática Discreta.. 1.1 Tabela Verdade 1. (FM-2003)

Leia mais

Matemática Discreta Parte 11

Matemática Discreta Parte 11 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta Parte 11 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br - www.univasf.edu.br/~jorge.cavalcanti

Leia mais

Instituto de Matemática e Estatística, UFF Março de 2011

Instituto de Matemática e Estatística, UFF Março de 2011 Instituto de Matemática e Estatística, UFF Março de 2011 Sumário.... Venn Matemático inglês. Levou os diagramas a sério. John Venn (1834 1923) Dados: Letras maiúsculas: A, B, C,..., A 1, B 1, C 1,...,

Leia mais

Lista de Exercícios Nº 02 Tecnologia em Mecatrônica Prof.: Carlos Bezerra

Lista de Exercícios Nº 02 Tecnologia em Mecatrônica Prof.: Carlos Bezerra TEXTO PARA A PRÓXIMA QUESTÃO (Ufba 96) Na(s) questão(ões) a seguir escreva nos parenteses a soma dos itens corretos. 1. Sendo m = x + 1, n = x - x, p = x - 1, pode-se afirmar: (01) m = n. p (02) m + n

Leia mais

Referências e materiais complementares desse tópico

Referências e materiais complementares desse tópico Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:

Leia mais

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 2º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 2º

Leia mais

Percursos em um grafo

Percursos em um grafo Percursos em um grafo Definição Um percurso ou cadeia é uma seqüência de arestas sucessivamente adjacentes, cada uma tendo uma extremidade adjacente à anterior e a outra a subsequente (à exceção da primeira

Leia mais

Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática

Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática Universidade do Estado de Santa Catarina - UDESC Centro de Ciências Tecnológicas - CCT Licenciatura em Matemática 2014 Na teoria dos conjuntos três noções são aceitas sem denição (noção primitiva):: Conjunto;

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS NUMÉRICOS

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 CONJUNTOS NUMÉRICOS CONJUNTO DOS NÚMEROS NATURAIS... 2 RETA NUMERADA... 2 CONJUNTO DOS NÚMEROS INTEIROS... 4 SUBCONJUNTOS DE Z... 5 NÚMEROS OPOSTOS... 5 VALOR ABSOLUTO DE UM NÚMERO INTEIRO... 6 CONJUNTO DOS NÚMEROS RACIONAIS...

Leia mais

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Teoria Elementar dos Conjuntos Prof Clezio 19 de Agosto de 2018 Curso de Ciência da Computação Relações Binárias Sejam A e B dois conjuntos. Definição: Chama-se relação binária

Leia mais

Abril Educação Divisibilidade Aluno(a): Número: Ano: Professor(a): Data: Nota:

Abril Educação Divisibilidade Aluno(a): Número: Ano: Professor(a): Data: Nota: Abril Educação Divisibilidade Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 Numa seqüência de 500 dias, se o primeiro for uma 3ª. Feira, que dia da semana será o último dia? Questão 2 A afirmação

Leia mais

Aula 4 - Números Primos, MDC e MMC

Aula 4 - Números Primos, MDC e MMC Polos Olímpicos de Treinamento Intensivo (POTI) Curso de Teoria dos Números - Nível Aula 4 - Números Primos, MDC e MMC Prof. Samuel Feitosa Arquivo Original 1 1 Documento:...gaia/educacional/matematica/teoria

Leia mais

Decomposição de um número composto. Todo número composto pode ser decomposto em fatores primos Ex: = 2 2 X 3 X 5 X 7

Decomposição de um número composto. Todo número composto pode ser decomposto em fatores primos Ex: = 2 2 X 3 X 5 X 7 Decomposição de um número composto Todo número composto pode ser decomposto em fatores primos Ex: 420 2 210 2 105 3 35 5 7 7 1 420= 2 2 X 3 X 5 X 7 Determinação do número de divisores de um número natural

Leia mais

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.

a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par. Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um

Leia mais

Teste de Matemática A 2015 / 2016

Teste de Matemática A 2015 / 2016 Teste de Matemática A 2015 / 2016 Teste N.º 2 Matemática A Duração do Teste: 90 minutos 10.º Ano de Escolaridade Nome do aluno: Turma: Grupo I Os cinco itens deste grupo são de escolha múltipla. Em cada

Leia mais