Equações Diferenciais Ordinárias de 1 a ordem - II AM3D

Tamanho: px
Começar a partir da página:

Download "Equações Diferenciais Ordinárias de 1 a ordem - II AM3D"

Transcrição

1 20 2 Equações Diferenciais Ordinárias de a ordem - II AM3D EDOs de a ordem lineares Definição Uma equação diferencial ordinária de a ordem diz-se linear se for da forma y (x)+p(x)y(x) = b(x). Se p(x) = p R, a equação diz-se linear de coeficientes constantes. Se b(x) = 0, a equação diz-se linear homogénea. Por exemplo, v (t) = 0 2v(t) v (t)+2v(t) = 0 é linear não homogénea de coeficientes constantes. Como podemos resolver analiticamente esta equação? Multiplicando por e 2t obtém-se a equação equivalente e 2t v (t)+2e 2t v(t) = 0e 2t (e 2t v(t)) = 0e 2t e 2t v(t) = 5e 2t +C. Obtemos a solução geral v(t) = 5+Ce 2t. Confirmamos pois que a solução de equilíbrio v = 5 é estável, uma vez que lim v(t) = 5. t + Este método de resolução aplica-se na verdade a qualquer equação linear y (x)+p(x)y(x) = b(x). Supondo que as funções p e b são por exemplo contínuas, e denotando por P(x) uma qualquer primitiva de p(x), y (x)+p(x)y(x) = b(x) y (x)e P(x) +e P(x) p(x)y(x) = e P(x) b(x) (e P(x) y(x)) = e P(x) b(x). Obtemos assim a solução geral y(t) = e P(x) e P(x) b(x)dx. Ao factor µ(x) = e P(x) chama-se factor integrante.

2 Como todas as primitivas de e P(x) b(x) diferem de uma constante, fica claro que se p e b são contínuas em R, o problema de valores iniciais y (x)+p(x)y(x) = b(x) possui uma única solução global. Exemplo y = xy ou seja, y(x 0 ) = y 0, y (x) = xy(x) e x2 2 y (x) e x2 2 xy(x) = 0 ( e x2 2 y(x) ) = 0, y(x) = Ce x2 2, C R. Confirmámos que as soluções já conhecidas eram de facto as únicas. Exemplo xy +2y = 4x 2 Começamos por colocar esta equação na forma canónica y + 2 y = 4x. O factor integrante é x dado por 2dx µ(x) = e x = e 2ln x = x 2. Assim, y + 2 x y = 4x x2 y +2xy = 4x 3 (x 2 y) = 4x 3 x 2 y = x 4 +C y = x 2 + C x2, C R. Note que para C 0, as soluções são válidas para x I =]0;+ [ ou x I 2 =] ;0[. A equação admita ainda (C = 0) uma solução válida em R: y = x 2. Figura : Algumas soluções da EDO xy +2y = 4x 2 2

3 Equações diferenciais separáveis Soluções implícitas Muitas vezes apenas podemos resolver equações diferenciais de forma implícita, ou seja, conhecemos uma relação H(x,y(x)) = C entre x e y(x), apesar de não conseguirmos exprimir esta segunda quantidade em função da primeira. Vejamos um exemplo: y = 2xy x 2 +e y. Trata-se de uma equação diferencial não linear muito complexa. À partida, pouco mais podemos fazer do que traçar o seu campo de direcções: Observemos no entanto o seguinte: Figura 2: Campo de direções v = ( ) 2xy, x 2 +e y y = 2xy x 2 +e y x2 y +y e y +2xy = 0 (x 2 y +e y ) = 0 x 2 y +e y = C, C R. Sabemos agora que as soluções da equação diferencial verificam a equação H(x,y) = x 2 y(x)+e y(x) = C, C R, não parecendo no entanto possível exprimir explicitamente y(x) em função. Diremos então que H(x,y) = C é uma solução implícita da equação diferencial y = 2xy x 2 +e y. É possível, com a ajuda de um computador, traçar os pontos (x,y) que verificam H(x,y) = C. Vemos então aparecer as curvas integrais do campo anterior: 3

4 Figura 3: H(x,y) = C para C = 0,20,30,50. Uma importante família de equações diferenciais que podem ser resolvidas implicitamente são as equações diferenciais separáveis: Definição 2, Uma equação diferencial ordinária de primeira ordem diz-se separável se for do tipo y = M(x) N(y), o que, se N(y) 0, é equivalente a y N(y) = M(x). Notação à físico Escrevendo y = dy, podemos escrever esta equação diferencial na forma dx N(y)dy = M(x)dx. Chama-se a esta formulação a forma diferencial da equação diferencial. Tem, como veremos, uma grande utilidade. É desta escrita que vem o termo separável, já que de um lado da igualdade apenas temos a variável dependente y e do outro lado a variável independente x. Como se obtém facilmente uma solução implícita de uma equação diferencial separável? Se Ñ é uma primitiva de N e M é uma primitiva de M, então pelo que (Ñ(y(x)) M(x)) = y (x)ñ (y(x)) M (x) = y (x)m(y(x)) N(x), y (x)n(y(x)) M(x) = 0 Ñ(y(x)) M(x) = C, C R. 4

5 Por outras palavras, H(x,y) = Ñ(y) M(x) = C é uma solução ímplicita da equação y N(y) M(x) = 0. Exemplo y 2 y = e 3x. Podemos começar por traçar o campo de direcções associado. Em vez de tomar v(x,y) = (, e3x ), é preferível, para ultrapassar a dificuldade dos pontos y2 em que y = 0, escolher v(x,y) = (y 2,e 3x ). Figura 4: Campo de direcções v(x,y) = (y 2,e 3x ). Vamos agora obter a solução implícita. Aqui, N(y) = y 2 e M(x) = e 3x. Tomando as primitivas Ñ(y) = 3 y3 e M(x) = 3 e3x, obtemos a solução implícita y 3 e 3x = 3C. 5

6 Figura 5: y 3 e 3x = 3C para C =,4,6,0,2,20,30. Contrariamente ao nosso primeiro exemplo, nesta situação é possível exibir soluções explícitas: y(x) = 3 3C +e 3x, C R. Utilizando as notações à físico, torna-se ainda mais prático resolver esta equação diferencial: y 2 y = e 3x y 2 dy = e 3x dx y 2 dy = e 3x dx 3 y3 = 3 e3x +C y 3 = e 3x +3C. Caso se pretenda resolver um problema de valores iniciais, y(y 0 ) = x 0 : Pode determinar-se a constante C a partir desta nova condição: de onde se obtém y(x) = 3 e 3x e 3x 0 +y 3 0. y0 3 = e 3x 0 +3C C = y3 0 e3x 0, 3 Uma outra possibilidade é, utilizando o método à físico, integrar directamente as variáveis x e y nos intervalos [x 0 ;x] e [y 0 ;y(x)] directamente: y 2 y = e 3x y 2 dy = e 3x dx y(x) y 0 y 2 dy = o que fornece naturalmente a mesma solução. x x 0 e 3x dx 3 (y3 y 3 0) = 3 (e3x e 3x 0 ) Exemplo: Lei de Torricelli Figura 3: Lei de Torricelli. Um depósito de secção S tem um pequeno buraco de secção s. Pretende-se saber como evolui a altura h do líquido em função do tempo. A lei de Torricelli afirma que a água é ejectada à velocidade que teria adquirido uma gota de àgua após uma queda de h, ou seja, 2 mv2 = mgh v = 2gh. 6

7 Durante um curto instante dt, a equação de continuidade (a quantidade de líquido é constante) escreve-se Sdh = sv(t)dt. Obtemos assim a equação diferencial separável h h + s 2g S = 0. Com a condição inicial h(0) = h 0. Obtém-se assim dh = s 2g h(t) h S dt dh t s 2g = h 0 h 0 S dt 2( h(t) h 0 ) = s 2g S t h(t) = 4 ( h0 s ) 2 2g S t. Equações homogéneas Mudanças de variáveis Definição 3 Uma equação diferencial de primeira ordem da forma ( y y = φ(x,y) = f. x) diz-se equação diferencial homogénea. Note que neste caso, para todo α 0, φ(αx,αy) = f ( αy ) ( y = f = φ(x,y) αx x) pelo que esta poderá ser uma boa forma de reconhecer equações homogéneas. As equações homogéneas podem ser transformadas em equações separáveis pela mudança da variável dependente v(x) = y(x) x. Isto significa que a partir da equação diferencial verificada por y(x) vamos deduzir uma equação diferencial equivalente verificada por v(x). Depois de resolvida, poderemos recuperar as soluções da equação inicial fazendo simplesmente y(x) = xv(x). 7

8 Tem-se y (x) = xv (x)+v(x) pelo que ( y y = f x) o que é uma equação separável. Exemplo y = y2 x 2 2xy Fazendo a mudança de variáveis anunciada, xv +v = f(v) f(v) v v = x, Obtemos a equação separável xv +v = x2 v 2 x 2 2x 2 v = v2 2v = 2 v 2v. xv = 2 v 2v = v 2 + 2vdv 2 v v 2 + = dx x. Integrando, vem Voltando às variáveis iniciais, ln(v 2 +) = ln x +C v 2 + = C x, C = ±e C R. y 2 +x 2 C x = 0 ) 2 (X C +y 2 = C Trata-se de uma solução implícita: as curvas integrais do campo são circunferências centradas nos pontos do eixo das abcissas e que passam pela origem. Figura 4: Algumas curvas integrais da equação y = y2 x 2 2xy. 8

9 Equações de Bernoulli Definição 4 Uma equação de Bernoulli é uma equação diferencial da forma y +p(x)y = q(x)y n. Quando n = 0, trata-se simplesmente de uma equação linear, e quando n = de uma equação linear homogénea. Para n 2, mediante a mudança de variável v = y n, estas equações tornam-se lineares: v = y n v = ( n)y y n. Multiplicando a equação inicial por y n obtém-se n v +p(x)v = q(x) v +( n)p(x)v = ( n)q(x). Exemplo Curva logística y = ry ky 2, r,k > 0, constantes positivas fixas. Fazendo a mudança de variável v = y, v = y (y 0): y2 y = ry ky 2 y y 2 = r y k v = rv +k. O factor integrante é e rx, calculando-se assim a solução geral (ve rx ) = ke rx v(x) = k r +Ce rx, ou em termos de y, y(x) = k r +Ce rx. Figura 5: Curvas logísticas 9

10 Equações Exactas Definição 5 Uma equação diferencial da forma diz-se exacta se M e N são de classe C e N(x,y)y +M(x,y) = 0 M y = N x. Por outras palavras, o campo vectorial (M(x,y),N(x,y) é fechado. Dado um ponto (x 0,y 0 ) R 2 e uma vizinhança V simplesmente conexa, (por exemplo uma região rectangular), o campo é conservativo em V, pelo que existe uma função F C (V) tal que Temos então o seguinte resultado: M(x,y) = F F (x,y) e N(x,y) = x y (x,y). Propriedade As soluções da equação diferencial exacta N(x,y)y +M(x,y) = 0 são dadas implicitamente por F(x,y(x)) = C, C R. De facto, basta observar que F(x,y(x)) = F x (x,y)+y (x) F y (x,y) = M(x,y)y (x)+n(x,y) = 0. Exemplo 2xyy +y 2 +2x = 0 Aqui, N(x,y) = 2xy e M(x,y) = y 2 +2x são de classe C (R 2 ) e M N (x,y) = 2y = y x (x,y). Vamos então determinar F, o potencial do campo (M(x,y),N(x,y)) pelo método habitual: F F (x,y) = M(x,y) x x (x,y) = y2 +2x F(x,y) = xy 2 +x 2 +φ(y). 0

11 Diferenciando em ordem a y, 2xy = N(x,y) = F x (x,y) = 2xy +φ (y) pelo que φ (y) = 0: φ(y) = C R. Finalmente, obtemos a solução implícita F(x,y(x)) = xy 2 +x 2 = C, C R. Nesta situação, é possível fornecer as soluções explicitamente (em intervalos convenientes:) Factores integrantes y(x) = x C x 2, C R. Definição 6 Seja uma equação diferencial, N.M C. Se µ(x,y) C for tal que N(x,y)y +M(x,y) = 0 µ(x,y)n(x,y)y +µ(x,y)m(x,y) = 0 é exacta, µ diz-se um factor integrante da equação diferencial. É por vezes possível determinar um factor integrante e assim resolver a respectiva equação diferencial pelo método das equações exactas que acabámos de ver. A função µ é um factor integrante se x (µn) = y (µm), ou seja, se µ verifica a Equação de Derivadas Parciais N µ x M µ y + ( N x M y ) µ = 0. Esta equação é em geral mais difícil de resolver do que a equação diferencial original. No entanto, se µ apenas depender de uma variável (digamos x), esta equação é então uma EDO linear homogénea. É pois interessante obter um critério que permita determinar a existência de factores integrantes que apenas dependem de uma variável.

12 Propriedade 2 Seja N(x,y)y +M(x,y) = 0 uma equação diferencial, N.M C. Se ( M N y N ) = ψ(x) x depende apenas da variável x, então a equação diferencial admite um factor integrante µ(x) que verifica µ (x) ψ(x)µ(x) = 0. Basta observar que, em geral, µ x M µ N y N Exemplo (x 2 +xy)y +(3xy +y 2 ) = 0 Tem-se ( ) M N (x,y) N(x,y) y x (x,y) = Assim, existe um factor integrante µ(x) que verifica ( M y N ) µ = 0. x µ (x) µ(x) = 0. x x 2 +xy (3x+2y 2x y) = x. Resolvendo por exemplo para x > 0, o factor integrante desta equação é e dx x = x : Assim, a equação x µ (x) x 2µ(x) = ( ) µ(x) = 0 : µ(x) = x. x(x 2 +xy)y +x(3xy +y 2 ) = 0 é exacta. Pelo método estudado. as suas soluções são dadas implicitamente por F(x,y(x)) = x 3 y + 2 x2 y 2 = C, C R. x 2

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

EDO I. por Abílio Lemos. 16 e 18 de outubro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT EDO I por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2017 16 e 18 de outubro de 2017 Definição 1 Uma equação diferencial é qualquer relação entre uma função e suas derivadas.

Leia mais

3xy +y 2 +(x 2 +xy) dy dx = 0 (1)

3xy +y 2 +(x 2 +xy) dy dx = 0 (1) 2. Determine um factor integrante da forma µ(x). 3xy +y 2 +(x 2 +xy) dy (1) 3. Determine a solução da equação que verifica y(1) = 1. Sendo tem-se M(x,y) = 3xy +y 2 e N(x,y) = x 2 +xy M/ y = 3x+2y e N/

Leia mais

xy + y = 0. (1) Portanto a solução geral de (1) é a família de hipérboles y = C x,

xy + y = 0. (1) Portanto a solução geral de (1) é a família de hipérboles y = C x, Seção 4: Equações Exatas Fator Integrante Introduzimos a idéia de equação exata, através de dois exemplos simples. Note que nesses dois exemplos, além de exata, a EDO também é separável, podendo alternativamente

Leia mais

d [xy] = x cos x. dx y = sin x + cos x + C, x

d [xy] = x cos x. dx y = sin x + cos x + C, x Instituto de Matemática e Estatística da USP MAT2455 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - 2o. Semestre 2011-21/11/2011 Turma A Questão 1. a) (1,0 ponto) Determine a solução geral

Leia mais

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec

Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec Análise Complexa e Equações Diferenciais 2 o Semestre 2013/14 Cursos: LEAN, MeMec M Paluch Aulas 28 33 7 23 de Abril de 2014 Exemplo de uma equação diferencial A Lei de Newton para a propagação de calor,

Leia mais

depende apenas da variável y então a função ṽ(y) = e R R(y) dy

depende apenas da variável y então a função ṽ(y) = e R R(y) dy Formulario Equações Diferenciais Ordinárias de 1 a Ordem Equações Exactas. Factor Integrante. Dada uma equação diferencial não exacta M(x, y) dx + N(x, y) dy = 0. ( ) 1. Se R = 1 M N y N x depende apenas

Leia mais

7 Equações Diferenciais. 7.1 Classificação As equações são classificadas de acordo como tipo, a ordem e a linearidade.

7 Equações Diferenciais. 7.1 Classificação As equações são classificadas de acordo como tipo, a ordem e a linearidade. 7 Equações Diferenciais Definição: Uma equação diferencial é uma equação em que as incógnitas são funções e a equação envolve derivadas dessas funções. : = 5x + 3 4 d3 3 + (sen x) d2 2 + 5x = 0 2 t 2 4

Leia mais

EXAMES DE ANÁLISE MATEMÁTICA III

EXAMES DE ANÁLISE MATEMÁTICA III EXAMES DE ANÁLISE MATEMÁTICA III Jaime E. Villate Faculdade de Engenharia Universidade do Porto 22 de Fevereiro de 1999 Resumo Estes são alguns dos exames e testes da disciplina de Análise Matemática III,

Leia mais

Equações Diferenciais Noções Básicas

Equações Diferenciais Noções Básicas Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (variáveis independentes), envolvendo

Leia mais

Equações Diferenciais Noções Básicas

Equações Diferenciais Noções Básicas Equações Diferenciais Noções Básicas Definição: Chama-se equação diferencial a uma equação em que a incógnita é uma função (variável dependente) de uma ou mais variáveis (independentes), envolvendo derivadas

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV

MAT Cálculo Diferencial e Integral para Engenharia IV MAT456 - Cálculo Diferencial e Integral para Engenharia IV Parte A: Equações Diferenciais de 1 a Ordem o Semestre de 018-3 a Lista de exercícios 1) Os gráficos de duas soluções de y = x + y podem se cruzar

Leia mais

d [xy] = x arcsin x. dx + 4x

d [xy] = x arcsin x. dx + 4x Instituto de Matemática e Estatística da USP MAT456 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - o. Semestre 01-6/11/01 Turma A Questão 1. a (1,0 ponto Determine a solução geral da equação

Leia mais

Secção 2. Equações diferenciais de primeira ordem

Secção 2. Equações diferenciais de primeira ordem . Equações diferenciais de primeira ordem Secção. Equações diferenciais de primeira ordem (Farlow: Sec..,.) Vamos nesta secção analisar como podem ser resolvidos diferentes tipos de EDOs de primeira ordem.

Leia mais

Polinômios de Legendre

Polinômios de Legendre Seção 5: continuação do método de resolução por séries de potências Na Seção foi exposto informalmente, através de exemplos, o método de resolução de equações diferenciais ordinárias por séries de potências.

Leia mais

ANÁLISE MATEMÁTICA IV EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ESCALARES E FORMAS CANÓNICAS DE JORDAN. tet + t

ANÁLISE MATEMÁTICA IV EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ESCALARES E FORMAS CANÓNICAS DE JORDAN. tet + t Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 4 EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ESCALARES E FORMAS CANÓNICAS DE JORDAN () Determine

Leia mais

Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32

Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / a LISTA DE MAT-32 1 Instituto Tecnológico de Aeronáutica / Departamento de Matemática / 2 o Fund / 2012. 1 a LISTA DE MAT-32 Nos exercícios de 1 a 9, classi car e apresentar, formalmente, solução (ou candidata a solução)

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

Equações Ordinarias 1ªOrdem - Lineares

Equações Ordinarias 1ªOrdem - Lineares Nome: Nº Curso: Licenciatura em Matemática Disciplina: Equações Diferenciais Ordinárias 7ºPeríodo Prof. Leonardo Data: / /2018 Equações Ordinarias 1ªOrdem - Lineares 1. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017 Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0

Leia mais

Exercícios. de Equações Diferenciais Ordinárias. Tatiana Tchemisova Cordeiro Vera Kharlamova Adelaide Valente Freitas

Exercícios. de Equações Diferenciais Ordinárias. Tatiana Tchemisova Cordeiro Vera Kharlamova Adelaide Valente Freitas Exercícios de Equações Diferenciais Ordinárias Tatiana Tchemisova Cordeiro Vera Kharlamova Adelaide Valente Freitas Departamento de Matemática UNIVERSIDADE DE AVEIRO 2 Prefácio A presente publicação tem

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV o Teste do 1 o semestre de 04/05 cursos: LEAm, LEBl, LEQ, LQ, LEIC, LEM, LEMat, LEGM, LEAN e LEC

Leia mais

2 ō Semestre 2015/2016

2 ō Semestre 2015/2016 Análise Complexa e Equações Diferenciais ō Semestre 15/16 ō Teste, versão A (Cursos: LEIC-A, MEAmbi, MEBiol, MEQ) 1 (a) Resolva o problema de valor inicial 8 de Maio de 16, 11h 3m Duração: 1h 3m y +6x+4xy

Leia mais

Instituto Universitário de Lisboa

Instituto Universitário de Lisboa Instituto Universitário de Lisboa Departamento de Matemática Exercícios de Equações Diferenciais Ordinárias 1 Exercícios 1.1 EDO de Variáveis Separáveis Diz-se que uma equação diferencial ordinária (EDO)

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I EQUAÇÕES DIFERENCIAIS ORDINÁRIAS - Lista I 1. Desenhe um campo de direções para a equação diferencial dada. Determine o comportamento de y quando t +. Se esse comportamento depender do valor inicial de

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista MAT 146 - Cálculo I 218/I APLICAÇÃO DE DERIVADAS: OTIMIZAÇÃO Otimização é outra aplicação de derivadas. Em

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Prof. Guilherme Jahnecke Wemar AULA 03 Equações diferenciais de primeira ordem Equações separáveis Fonte: Material Daniela Buske, Boce, Bronson, Zill, diversos internet

Leia mais

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014

Análise Complexa e Equações Diferenciais 2 ō Semestre 2013/2014 Análise Complexa e Equações Diferenciais 2 ō Semestre 213/21 Cursos: 2 ō Teste, versão A LEIC, MEEC, LEMat, MEAer, MEBiol, MEQ, MEAmbi 31 de Maio de 21, 11h3 [1,5 val. 1. Considere a equação diferencial

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM

EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM EQUAÇÕES DIFERENCIAIS LINEARES SEGUNDA ORDEM 02/04/2014 Prof. Geraldine Revisão de Álgebra Linear Definição de conjunto Linearmente Independente Dizemos que as funções f ( x), f ( x) são LI, em um 1 2

Leia mais

CÁLCULO III - MAT Encontre as soluções das seguintes equações com condições iniciais:

CÁLCULO III - MAT Encontre as soluções das seguintes equações com condições iniciais: UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO III - MAT0021 7 a Lista de exercícios

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

Edo s de Primeira Ordem

Edo s de Primeira Ordem Capítulo 3 Edo s de Primeira Ordem 3.1 Introdução Neste capítulo estamos interessados em obter e analisar as soluções das edo s de primeira ordem. Isto é, edo s que podem ser escritas na forma: F(y, y,

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t).

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t). Análise Complexa e Equações Diferenciais 2 o Semestre 206/207 3 de junho de 207, às 9:00 Teste 2 versão A MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat [,0 val Resolva os seguintes problemas

Leia mais

Trabalho de Equações Diferenciais Ordinárias

Trabalho de Equações Diferenciais Ordinárias Universidade Tecnológica Federal do Paraná Diretoria de Graduação e Educação Prossional Departamento Acadêmico de Matemática Trabalho de Equações Diferenciais Ordinárias Data de Entrega: 16/12/2015 Nome:

Leia mais

Frações Parciais e Crescimento Logístico

Frações Parciais e Crescimento Logístico UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Frações Parciais e

Leia mais

Departamento de Matemática da Universidade de Aveiro. Cálculo II. - Texto de Apoio - Alexandre Almeida

Departamento de Matemática da Universidade de Aveiro. Cálculo II. - Texto de Apoio - Alexandre Almeida Departamento de Matemática da Universidade de Aveiro Cálculo II - Texto de Apoio - Alexandre Almeida fevereiro de 2017 Nota prévia Este texto foi escrito com o propósito de apoiar as aulas de Cálculo II

Leia mais

Sessão 1: Generalidades

Sessão 1: Generalidades Sessão 1: Generalidades Uma equação diferencial é uma equação envolvendo derivadas. Fala-se em derivada de uma função. Portanto o que se procura em uma equação diferencial é uma função. Em lugar de começar

Leia mais

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas.

Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Capítulo 6 Definição (6.1): Definimos equação diferencial como uma qualquer relação entre uma função e as suas derivadas. Definição (6.2): Seja e uma função real incógnita definida num intervalo aberto.

Leia mais

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS

Leia mais

LISTA dy dx y x + y3 cos x = y = ky ay 3. dizemos que F (x, y) é homogênea de grau 0. Neste caso a equação diferencial y =

LISTA dy dx y x + y3 cos x = y = ky ay 3. dizemos que F (x, y) é homogênea de grau 0. Neste caso a equação diferencial y = MAT 01167 LISTA Equações Diferenciais Resolva: 1. y = y x + x y, y ( ) 1 8 =. (1 x ) dy dx (1 + x) y = y. dy dx y x + y cos x = 0 4. y = ky ay. Se uma função F (x, y) satisfaz a condição F (t x, t y) =

Leia mais

Introdução às Equações Diferenciais e Ordinárias

Introdução às Equações Diferenciais e Ordinárias Introdução às Equações Diferenciais e Ordinárias - 017. Lista - EDOs lineares de ordem superior e sistemas de EDOs de primeira ordem 1 São dadas trincas de funções que são, em cada caso, soluções de alguma

Leia mais

g(s, X n s )ds + t f (s, X s ) 2 ds <, P-q.s. t f (s, X s )db s, t 0.

g(s, X n s )ds + t f (s, X s ) 2 ds <, P-q.s. t f (s, X s )db s, t 0. CHAPTER 3. INTEGRAIS ESTOCÁSTICOS 88 2. Quais são as propriedades destas soluções? 3. Como podemos resolver uma dada equação? O método usual para provar a existência de uma solução da equação diferencial

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

2 Equações Diferenciais Ordinárias (EDOs)

2 Equações Diferenciais Ordinárias (EDOs) 2 Equações Diferenciais Ordinárias (EDOs) 2.1 Introdução Neste capítulo vamos tratar de um dos tópicos da Matemática mais usados na resolução de certos problemas de engenharia e de ciências (incluindo

Leia mais

1 Definição de uma equação diferencial linear de ordem n

1 Definição de uma equação diferencial linear de ordem n Equações diferenciais lineares de ordem superior 1 1 Definição de uma equação diferencial linear de ordem n Equação diferencial linear de ordem n é uma equação da forma: a n (x) dn y dx n + a n 1(x) dn

Leia mais

Equações Diferenciais: Um Curso para Engenharias, Física, Matemática e Química

Equações Diferenciais: Um Curso para Engenharias, Física, Matemática e Química Notas de Aula da Disciplina Cálculo 3 Equações Diferenciais: Um Curso para Engenharias, Física, Matemática e Química André Luiz Galdino Departamento de Matemática do Campus Catalão da Universidade Federal

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS Uma equação diferencial é aquela em que a função incógnita aparece sob a forma da sua derivada. Havendo uma só variável independente as derivadas são ordinárias e a equação é denominada

Leia mais

Equações Diferenciais Ordinárias Lineares de Segunda Ordem

Equações Diferenciais Ordinárias Lineares de Segunda Ordem Universidade Federal de Mato Grosso do Sul Departamento de Ciências Exatas - Câmpus de Três Lagoas Programa de Mestrado Profissional em Rede Nacional - PROFMAT WESLEN XAVIER DE MORAES Solução em Série

Leia mais

Análise Complexa e Equações Diferenciais Guia 8 João Pedro Boavida. 16 a 23 de Novembro

Análise Complexa e Equações Diferenciais Guia 8 João Pedro Boavida. 16 a 23 de Novembro Análise Complexa e Equações Diferenciais Guia 8 Este guia explica como resolver os problemas do guia 7 Explica também vários aspectos mais técnicos sobre equações lineares em R n, com os quais eu prefiro

Leia mais

32 a Aula AMIV LEAN, LEC Apontamentos

32 a Aula AMIV LEAN, LEC Apontamentos 32 a Aula 2429 AMIV LEAN, LEC Apontamentos (RicardoCoutinho@mathistutlpt) 32 Fórmula da variação das constantes Temos então pela fórmula dos da variação das constantes (para sistemas de equações - Teorema

Leia mais

EDO III. por Abílio Lemos. 07, 09 e 14 de novembro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

EDO III. por Abílio Lemos. 07, 09 e 14 de novembro de Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT EDO III por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 07, 09 e 14 de novembro de 2018 Teorema (D Alembert): Sejam y 1 (x) uma solução, não nula, da EDO y + p(x)y

Leia mais

Métodos Matemáticos 2012 Notas de Aula Equações Diferenciais Ordinárias II. A C Tort. 25 de setembro de y (x) + p(x)y(x) = g(x).

Métodos Matemáticos 2012 Notas de Aula Equações Diferenciais Ordinárias II. A C Tort. 25 de setembro de y (x) + p(x)y(x) = g(x). Métodos Matemáticos 2012 Notas de Aula Equações Diferenciais Ordinárias II A C Tort 25 de setembro de 2012 1 O fator integrante Suponha que a EDO de primeira ordem seja da forma: Multiplicando a EDO por

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda@fcav.unesp.br CONSIDERAÇÕES INICIAIS Considere a função f x : R R tal que y = f(x). Então: Derivada: Mede a taxa de variação de

Leia mais

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2

Curso: Engenharia Ambiental. Disciplina: Equações Diferenciais Ordinárias. Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 Curso: Engenharia Ambiental Disciplina: Equações Diferenciais Ordinárias Professora: Dr a. Camila N. Boeri Di Domenico NOTAS DE AULA 2 11. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE 2º ORDEM y (x) = f (x,y,y

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

Análise Complexa e Equações Diferenciais

Análise Complexa e Equações Diferenciais Análise Complexa e Equações Diferenciais Exame - 9 de Janeiro de 8 MEC Resolução. A imagem da região { z C : Rz < e 3 8 < Iz < 8} por z e z é { z C : < z < e 3 } 4 < argz

Leia mais

7- Equações Diferenciais Ordinárias de 1 a Ordem Redutíveis

7- Equações Diferenciais Ordinárias de 1 a Ordem Redutíveis 7- Equações Diferenciais Ordinárias de 1 a Ordem Redutíveis 7.1-Equação de Bernoulli A equação de Bernoulli é uma equação diferencial de primeira ordem do tipo: onde é uma constante sendo e e e quaisquer

Leia mais

3 Equacões de Bernoulli e Riccati Equação de Bernoulli Equação de Riccati Exercícios... 24

3 Equacões de Bernoulli e Riccati Equação de Bernoulli Equação de Riccati Exercícios... 24 Conteúdo 3 Equacões de Bernoulli e Riccati 18 3.1 - Equação de Bernoulli.................... 18 3.2 - Equação de Riccati..................... 20 3.3 - Exercícios.......................... 24 1 Equações

Leia mais

LEEC Exame de Análise Matemática 3

LEEC Exame de Análise Matemática 3 LEEC Exame de Análise Matemática 3 5 de Fevereiro de 005 Justifique cuidadosamente todas as respostas Não é permitida a utiliação de máquina de calcular O tempo para a realiação desta prova é de horas

Leia mais

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Patrícia Nunes da Silva Este livro está registrado no EDA da Fundação Biblioteca Nacional/MinC sob número 350.448, Livro 646, folha 108. i PREFÁCIO As equações diferenciais

Leia mais

Séries e Equações Diferenciais Lista 04 EDO s de Primeira Ordem e Aplicações

Séries e Equações Diferenciais Lista 04 EDO s de Primeira Ordem e Aplicações Séries e Equações Diferenciais Lista 04 EDO s de Primeira Ordem e Aplicações Professor: Daniel Henrique Silva Introdução às Equações Diferenciais 1) Defina equação diferencial. 2) Seja f(x; y) uma função

Leia mais

21 de Junho de 2010, 9h00

21 de Junho de 2010, 9h00 Análise Complexa e Equações Diferenciais ō Semestre 009/00 ō Teste \ ō Exame - Versão A (Cursos: Todos) de Junho de 00, 9h00 Duração: Teste - h 30m, Exame - 3h INSTRUÇÕES Não é permitida a utilização de

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia

Leia mais

Derivada de ordem n. Equação da recta tangente e da recta normal. Polinómio de Taylor

Derivada de ordem n. Equação da recta tangente e da recta normal. Polinómio de Taylor Equação da recta tangente e da recta normal Como já vimos este ano a equação de uma recta na forma reduzida édadapor y y 0 = m(x x 0 ) Também sabemos que o declive da recta tangente ao gráfico de f no

Leia mais

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV E FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ( Seja f a função definida

Leia mais

MÉTODOS MATEMÁTICOS. Prof. Dr. Paulo H. D. Santos.

MÉTODOS MATEMÁTICOS. Prof. Dr. Paulo H. D. Santos. MÉTODOS MATEMÁTICOS Prof. Dr. Paulo H. D. Santos psantos@utfpr.edu.br AULA 1 10/03/2015 Apresentação do Plano de Ensino; EDOs de 1ª Ordem Parte 1. Sumário Conteúdo Programático Metodologia Avaliação Critério

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

QUADRADO DA SOMA DE DOIS TERMOS

QUADRADO DA SOMA DE DOIS TERMOS Lista 8 ano Observe: (a + b)² = ( a + b). (a + b) = a² + ab+ ab + b² = a² + 2ab + b² QUADRADO DA SOMA DE DOIS TERMOS Conclusão: (primeiro termo)² + 2.(primeiro termo). (segundo termo) + (segundo termo)²

Leia mais

MAP2310. Análise Numérica e Equações Diferenciais I. 1 Equações Diferenciais Ordinárias

MAP2310. Análise Numérica e Equações Diferenciais I. 1 Equações Diferenciais Ordinárias MAP2310 14/03/2005 Análise Numérica e Equações Diferenciais I 1 o Semestre de 2005 1 1 Equações Diferenciais Ordinárias 1.1 Introdução Equações envolvendo uma variável independente real t, uma função desconhecida

Leia mais

Continuidade e Limite

Continuidade e Limite Continuidade e Limite Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 20 de maio de 2013 1 Remoção da indeterminação 0 0 2 3 Propriedades da derivada Derivada

Leia mais

Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas equivalentes: (i) FORMA NORMAL:

Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas equivalentes: (i) FORMA NORMAL: 5. EDO DE PRIMEIRA ORDEM SÉRIES & EDO - 2017.2 5.1. :::: :::::::::::::::::::::::::::: FUNDAMENTOS GERAIS Uma Equação Diferencial Ordinária (abrevia-se EDO) de primeira ordem se apresenta sob duas formas

Leia mais

Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015

Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015 Análise Complexa e Equações Diferenciais 2 o Semestre 2014/2015 (Cursos: 2 o Teste, versão A LEAN, LEGM, LMAC, MEBiom, MEC, MEFT, MEMec) 30 de Maio de 2015, 9h Duração: 1h 30m INSTRUÇÕES Não é permitida

Leia mais

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências.

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências. LIVRO Métodos de Representação de Funções em Séries de AULA META Apresentar os principais métodos de representação de funções em séries de potências. OBJETIVOS Representar funções em séries de potências.

Leia mais

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010

Gabarito da Prova Final Unificada de Cálculo IV Dezembro de 2010 Gabarito da Prova Final Unificada de Cálculo IV Dezembro de a Questão: (5 pts) Dentre as três séries alternadas abaixo, diga se convergem absolutamente, se convergem condicionalmente ou se divergem Justifique

Leia mais

EQUAÇÕES DIFERENCIAIS PARA FÍSICOS E ENGENHEIROS

EQUAÇÕES DIFERENCIAIS PARA FÍSICOS E ENGENHEIROS EQUAÇÕES DIFERENCIAIS PARA FÍSICOS E ENGENHEIROS Paulo Sérgio Costa Lino EQUAÇÕES DIFERENCIAIS PARA FÍSICOS E ENGENHEIROS Universidade Aberta do Brasil - UAB Licenciatura em Física Paulo Sérgio Costa Lino

Leia mais

IST-TAGUS PARQUE-2007/08-2 o SEMESTRE ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EXERCÍCIOS DE REVISÃO

IST-TAGUS PARQUE-2007/08-2 o SEMESTRE ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EXERCÍCIOS DE REVISÃO IST-TAGUS PARQUE-007/08- o SEMESTRE ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EXERCÍCIOS DE REVISÃO EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM. Diga, justi cando, se as seguintes

Leia mais

Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes

Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Seção 15: Sistema de Equações Diferenciais Lineares Homogêneas com Coeficientes Constantes Muitos problemas de física envolvem diversas equações diferenciais. Na seção 14, por exemplo, vimos que o sistema

Leia mais

Diferenciabilidade de funções reais de várias variáveis reais

Diferenciabilidade de funções reais de várias variáveis reais Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas

Leia mais

( x)(x 2 ) n = 1 x 2 = x

( x)(x 2 ) n = 1 x 2 = x Página 1 de 7 Instituto de Matemática - IM/UFRJ Gabarito prova final unificada - Escola Politécnica / Escola de Química - 10/12/2009 Questão 1: (.0 pontos) (a) (1.0 ponto) Seja a função f(x) = x, com x

Leia mais

EDP: Método das Características

EDP: Método das Características EDP: Método das Características Lucio S. Fassarella DMA/CEUNES/UFES August 27, 2018 Contents 0 Introdução 1 0.1 Denições, Terminologia e Notação................................. 2 1 Método das Características

Leia mais

Capítulo 1.1: Modelos Matemáticos Básicos; Campo de Direções

Capítulo 1.1: Modelos Matemáticos Básicos; Campo de Direções Capítulo 1.1: Modelos Matemáticos Básicos; Campo de Direções As Equações Diferenciais são equações que contêm derivadas. Os seguintes exemplos são fenômenos físicos que envolvem taxas de variação: Movimento

Leia mais

Cálculo Infinitesimal II / Cálculo II - Apontamentos de Apoio Capítulo 3 - Funções de n Variáveis

Cálculo Infinitesimal II / Cálculo II - Apontamentos de Apoio Capítulo 3 - Funções de n Variáveis Cálculo Infinitesimal II / Cálculo II - Apontamentos de Apoio Capítulo 3 - Funções de n Variáveis Neste capítulo vamos estender as noções do cálculo diferencial a funções que dependem de mais de uma variável

Leia mais

Primitivação de funções reais de variável real

Primitivação de funções reais de variável real Capítulo 3 Sugere-se a seguinte bibliografia adicional que completa o estudo a efectuar nas aulas teóricas e nas aulas práticas: Maria Aldina C. Silva e M. dos Anjos F. Saraiva. Primitivação. Edições Asa,

Leia mais

Equações Diferenciais A. Prof. Paulo Cupertino de Lima Departamento de Matemática - UFMG

Equações Diferenciais A. Prof. Paulo Cupertino de Lima Departamento de Matemática - UFMG Equações Diferenciais A Prof. Paulo Cupertino de Lima Departamento de Matemática - UFMG Sumário Motivação e Algumas Definições 6 Equações Diferenciais de Primeira Ordem. Equações Diferenciais Lineares...............................

Leia mais

Cálculo Diferencial e Integral II 2012/13 1 o semestre

Cálculo Diferencial e Integral II 2012/13 1 o semestre Cálculo Diferencial e Integral II 212/13 1 o semestre Modelo do 1 o Teste LEIC-TP, LEGI, LERC, LEE 6 de Novembro de 212 Justifique adequadamente todas as respostas. 1. Calcule V y dx dy dz em que V = {(x,

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 1 NÚMEROS E FUNÇÕES COMPLEXAS (1) Calcule i, i e i e represente estes números geometricamente.

Leia mais

24 a Aula AMIV LEAN, LEC Apontamentos

24 a Aula AMIV LEAN, LEC Apontamentos 24 a Aula 2004.11.10 AMIV LEAN, LEC Apontamentos (Ricardo.Coutinho@math.ist.utl.pt) 24.1 Método de Euler na aproximação de EDO s Métodos numéricos para a determinação de soluções de EDO s podem ser analisados

Leia mais

Cálculo Numérico P2 EM33D

Cálculo Numérico P2 EM33D Cálculo Numérico P EM33D 8 de Abril de 03 Início: 07h30min (Permanência mínima: 08h40min) Término: 0h00min Nome: GABARITO LER ATENTAMENTE AS OBSERVAÇÕES, POIS SERÃO CONSIDERADAS NAS SUA AVALIAÇÃO ) detalhar

Leia mais

MAP2223 Introdução às Equações Diferenciais Ordinárias e Aplicações

MAP2223 Introdução às Equações Diferenciais Ordinárias e Aplicações MAP3 Introdução às Equações Diferenciais Ordinárias e Aplicações Lista 1 o semestre de 18 Prof. Claudio H. Asano 1 Classificação das Equações Diferenciais 1.1 Classifique as equações diferenciais a seguir.

Leia mais

Introdução Generalização

Introdução Generalização Cálculo 2 - Capítulo 2.9 - Derivação implícita 1 Capítulo 2.9 - Derivação implícita 2.9.1 - Introdução 2.9.3 - Generalização 2.9.2 - Derivação implícita Veremos agora uma importante aplicação da regra

Leia mais

Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9

Índice. AULA 5 Derivação implícita 3. AULA 6 Aplicações de derivadas 4. AULA 7 Aplicações de derivadas 6. AULA 8 Esboço de gráficos 9 www.matematicaemexercicios.com Derivadas Vol. 2 1 Índice AULA 5 Derivação implícita 3 AULA 6 Aplicações de derivadas 4 AULA 7 Aplicações de derivadas 6 AULA 8 Esboço de gráficos 9 www.matematicaemexercicios.com

Leia mais

z = y 1 n. (3) Conclusão. A equação de Bernoulli (1) se transforma em uma equação linear através da 1 n, y = 1 1 n z 1

z = y 1 n. (3) Conclusão. A equação de Bernoulli (1) se transforma em uma equação linear através da 1 n, y = 1 1 n z 1 Seção 6: Equação de Bernoulli Definição. Uma equação de Bernoulli é uma equação diferencial ordinária de a ordem da forma y + fx) y = gx) y n, ) onde n é um número real não precisa ser inteiro nem positivo).

Leia mais

Equações Diferenciais A. Prof. Paulo Cupertino de Lima Departamento de Matemática - UFMG

Equações Diferenciais A. Prof. Paulo Cupertino de Lima Departamento de Matemática - UFMG Equações Diferenciais A Prof. Paulo Cupertino de Lima Departamento de Matemática - UFMG Sumário Equações Diferenciais Ordinárias 6 2 Equações Diferenciais de Primeira Ordem 2 2. Equações Diferenciais Lineares..............................

Leia mais

Modelagem Computacional. Parte 8 2

Modelagem Computacional. Parte 8 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LICENCIATURA EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES. Apontamentos das Aulas Teóricas

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LICENCIATURA EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES. Apontamentos das Aulas Teóricas FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO LICENCIATURA EM ENGENHARIA ELECTROTÉCNICA E DE COMPUTADORES Análise Matemática 3 Equações Diferenciais Apontamentos das Aulas Teóricas Maria do Rosário

Leia mais

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Matemática 2. Teste Final. Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas. Matemática 2 Lic. em Economia, Gestão e Finanças Data: 4 de Julho de 2017 Duração: 1H Teste Final Atenção: Esta prova deve ser entregue ao fim de 1 Hora. Deve justificar detalhadamente todas as suas respostas.

Leia mais

SEGUNDA CHAMADA CALCULO 2 2/2017

SEGUNDA CHAMADA CALCULO 2 2/2017 9/11/017 SEGUNDA CHAMADA CALCULO /017 PROF: RENATO FERREIRA DE VELLOSO VIANNA Questão 1,5 pontos). Resolva os problemas de valor inicial: y + 4y + 4y = e x {, y = xyy + 4), a) = y0) = 0, b) = y0) = 5.

Leia mais