Universidade da Beira Interior Departamento de Matemática

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Universidade da Beira Interior Departamento de Matemática"

Transcrição

1 Universidade da Beira Interior Departamento de Matemática ESTATÍSTICA Ano lectivo: 2007/2008 Curso: Ciências do Desporto Folha de exercícios nº4: Distribuições de probabilidade. Introdução à Inferência Estatística: Intervalos de confiança 1. Um estudante que não teve tempo para se preparar para a 1ª frequência de Estatística, em que cada questão (de escolha múltipla) tinha 6 respostas possíveis (e uma só correcta), decide responder ao acaso. Tendo a frequência 18 questões, determine: a) Qual a probabilidade de responder certo a uma questão? b) Qual o nº esperado de respostas certas que o estudante espera obter? c) Qual a probabilidade de responder certo a 3 ou 4 questões? 2. Determinada empresa comercializa uma bebida isotónica em garrafas de 1 litro. Supõe-se no entanto que 40% dessas garrafas contém na realidade menos do que a quantidade indicada no rótulo. Tendo adquirido 6 dessas garrafas, qual a probabilidade de: a) Duas delas conterem menos de 1 litro? b) No máximo 2 conterem menos de 1 litro? c) Pelo menos duas conterem menos de 1 litro? d) Todas conterem menos de um litro? e) Todas conterem o volume indicado no rótulo? f) Nas 100 garrafas existentes num supermercado, haver não mais de 30 com volume inferior ao indicado no rótulo? 3. Qual a probabilidade de, em 10 lançamentos de um dado perfeito, se obter: a) Cinco faces par. b) Cinco faces superiores a Suponha que X é uma variável aleatória que segue uma distribuição binomial com parâmetros n e p. Sabendo que E(X)=5 e var(x)=4, encontre os valores de n e p. 5. A variável aleatória X segue distribuição Normal com valor médio μ=20 e desvio padrão =3. Determine as seguintes probabilidades: a) P(X 23); P(X 19) b) P(X<14); P(X>21) c) P(21,5 X 25); P(16,2 X 18,8) 6. Relativamente ao exercício anterior, determinar os valores de a tais que: a) P(X a)=0,9332; P(X a)=0,1788 b) P(X>a)=0,9989; P(X>a)=0,0062 ESTATÍSTICA Ficha de exercícios 4 1

2 7. Seja X uma variável aleatória com distribuição Normal de parâmetros μ e. Qual a probabilidade contida nos intervalos: a) [μ- ;μ+ ] b) [μ-2 ;μ+2 ] c) [μ-3 ;μ+3 ] 8. Calcule o valor médio e o desvio padrão da variável X, com distribuição N(μ, ), sabendo que P(X 3)=0,8413 e P(X 9)=0, O tempo, em minutos, que um desportista leva a concluir uma determinada minimaratona é uma variável aleatória com distribuição Normal. Sabe-se que a probabilidade de o desportista demorar mais de 120 minutos é de 0,0668, e a de demorar menos do que 70 minutos é de 0,1587. a) Calcule o tempo médio requerido para completar a mini-maratona e o respectivo desvio padrão. b) Calcule a probabilidade do desportista demorar entre 83 e 101 minutos. 10. Existem num determinado clube desportistas de três nacionalidades: portuguesa (A), brasileira (B) e queniana (C). No início de época, após uma semana de treino específico, pretende-se estudar a concentração de triglicéridos (CT) no sangue, relativamente a cada nacionalidade. Assume-se que a referida concentração (expressa em mg/dl) dos indivíduos de cada nacionalidade segue uma distribuição Normal com os seguintes parâmetros: Valor médio (mg/dl) Variância (mg/dl) 2 A B C Nestas condições: a) Que proporção de indivíduos de nacionalidade B tem CT inferior a 290 mg/dl? b) Sabe-se que o valor da CT para indivíduos de nacionalidade A tem probabilidade igual a 0.95 de não exceder um certo valor. Determine esse valor. c) Determine o mesmo valor pretendido da alínea anterior supondo que a referida probabilidade é igual a 10%. d) Qual a probabilidade de, considerando três indivíduos quaisquer de nacionalidades diferentes, a soma das respectivas CT estar compreendida no intervalo [680;750]? 11. No Fê-Quê-Pê, duas maratonistas, A e B, treinam em separado. Diariamente, o número total de kilómetros que A e B correm é aleatório, seguindo distribuições Normais de parâmetros μ A =12km, A =2,8km, μ B =10km e B =1,1km. Qual a probabilidade de: a) Num mês (23 dias úteis), a desportista A percorrer uma distância superior a 270km? b) Num dia, A e B realizarem em conjunto menos que 18km? c) Num dia, a desportista B percorrer uma maior distância que a desportista A? ESTATÍSTICA Ficha de exercícios 4 2

3 12. Um fisioterapeuta pretende reduzir a carga diária de trabalho para 6 horas. Os casos que este trata requerem um tempo de tratamento que segue distribuição aproximadamente Normal N(32,12), em minutos. Determine o número máximo de casos a tratar por dia, de forma a que a probabilidade do tempo total de trabalho ser inferior a 6 horas seja de, pelo menos, 95%. 13. Um professor de natação tem 20 alunos de alta competição. Supõe-se que o tempo (em segundos) que um desportista qualquer leva a fazer 100 metros no estilo mariposa tem distribuição Normal, com valor médio de 45 segundos e variância de 25 segundos 2. O treinador afirmou que só fica satisfeito se a probabilidade da média de tempos obtida pelos seus alunos ser inferior a 40 segundos for superior a 80%. Diga, justificando, se o referido professor terá razões para realmente ficar satisfeito com o seu trabalho. 14. Na selecção nacional, dois futebolistas (A e B) lesionados treinam separadamente e, com esperança de virem a ser utilizados por Scolari, fazem diariamente bastante corrida. Considere que o número total de kilómetros que A e B correm diariamente é aleatório, seguindo distribuições Normais de parâmetros μ A =5km, A =0,5km, μ B =6km e B =1,3km. a) Qual a probabilidade de, numa semana (7 dias), o futebolista A percorrer uma distância superior a 40km? b) Calcule a probabilidade de, num dia, o futebolista A correr uma maior distância que B. c) Calcule qual o valor da distância percorrida pelo futebolista B num dia, sabendo que a probabilidade de B exceder esse valor é de d) Suponha que o valor médio da distância percorrida por A é desconhecido (mas A =0,5km continua a ser um dado adquirido). Determine um intervalo de confiança para μ A com um coeficiente de confiança de 90%, a partir da informação de uma amostra recolhida ao longo de 9 dias em que A correu uma média de 4.8km. e) Relativamente à alínea anterior, qual o nº de dias de observação do futebolista A necessário para obter um intervalo de confiança de 90% com uma incerteza de 0,1? f) Comente os resultados obtidos em a) e b) quanto à amplitude dos intervalos de confiança em questão. 15. Duas maratonistas (A e B) treinam isoladamente. Considere que o número total de horas que A e B correm diariamente é aleatório, seguindo distribuições Normais de parâmetros μ A =3,2h, A =0,5h, μ B =3h e B =0,3h. a) Calcule a probabilidade da maratonista A correr entre 3 e 3,4h diariamente. b) Determine a probabilidade de, numa semana (7 dias), a maratonista A correr mais tempo que B. c) Calcule durante quanto tempo a maratonista A correu num dia, sabendo que a probabilidade de A exceder esse valor é de d) Suponha que μ B é desconhecido (mas B =0,3h continua a ser um dado adquirido). Determine um intervalo de confiança para μ B com um coeficiente de confiança de 99%, a partir da informação de uma amostra recolhida ao longo de 16 dias em que B correu uma média de 3,1h por dia. e) Relativamente à alínea anterior, qual o nº de dias de observação do futebolista B necessário para obter um intervalo de confiança de 99% com uma incerteza de 0,05h? f) Comente os resultados obtidos em a) e b) quanto à amplitude (ou incerteza) dos intervalos de confiança em questão. ESTATÍSTICA Ficha de exercícios 4 3

4 16. Considere que na equipa de rugby do Benfica, numa jornada qualquer, a probabilidade de um jogador partir um dedo é de 10%. Sabendo que numa equipa há 15 jogadores em campo e supondo que numa determinada jornada não houve substituições, calcule a probabilidade de nessa equipa ter havido: a) No máximo, dois jogadores com um dedo partido. b) Pelo menos um jogador com um dedo partido, sabendo que, no máximo, dois jogadores partiram um dedo. 17. Seja X uma variável aleatória que representa a altura dos alunos do 1.º ano de um curso de Estatística. As alturas encontram-se distribuídas normalmente cuja variância é 2 2 conhecida: = 0,051m. Admita-se que foi recolhida uma amostra aleatória com dimensão n = 25 alunos e calculada a respectiva média amostral, tendo-se obtido x = 1,70m. Determine um intervalo de confiança (com coeficiente de confiança de 95%) para o valor esperado da altura dos alunos. 18. Um treinador, ao medir o tempo de reacção de um indivíduo a determinado acontecimento, tem razões para acreditar que o desvio padrão é de 0,05 segundos. Sabendo que o erro da sua estimativa não é superior a 0,01 segundos, determine a dimensão da amostra que se deve recolher para se obter um intervalos de confiança para o valor médio do tempo de reacção com coeficiente de confiança igual a 95%. Repita o exercício para 99%. Como relaciona os resultados obtidos? 19. Sobre uma amostra aleatória de 26 indivíduos mediu-se a pressão sanguínea tendo-se obtido uma média x = 130 mm. Sabendo que = 10 mm indique o intervalo de confiança a 95% para o parâmetro μ, admitindo a normalidade da pressão sanguínea, variável X. 20. Para estudar a auto-estima dos alunos, um centro de investigação aplicou um determinado teste a uma amostra aleatória de 100 alunos. Obtiveram-se os seguintes resultados: x = 20 e s = 4. Calcule: a) O intervalo de confiança de 95% para o valor médio da auto-estima. b) Os limites de confiança para o valor médio da auto-estima, usando um coeficiente de confiança de 0, Determine o intervalo de confiança de 90% para o valor médio de uma distribuição normal com desvio padrão 3, a partir da amostra: (3,3; -0,3; -0,6; -0,9) 22. Assume-se que a distância percorrida (em quilómetros) por um nadador diariamente, segue uma distribuição Normal N(μ, ), com 2 =0,04Km 2. Durante 10 dias de observação, verificou-se que a distância média percorrida pelo desportista foi de 5Km. a) Determine um intervalo de confiança para μ, com um coeficiente de confiança de 99%. b) Indique, aproximadamente, o nº de dias de observação necessário para que, com um coeficiente de confiança de 99%, a incerteza de um intervalo de confiança para μ seja igual a 0,05Km. ESTATÍSTICA Ficha de exercícios 4 4

5 c) Justifique a diferença entre os resultados obtidos nas alíneas a) e b), relativamente às amplitudes dos diferentes intervalos obtidos. d) Suponha que o desportista é observado ao longo de 25 dias, durante os quais a distância média percorrida foi de 6Km. Calcule o coeficiente de confiança com que μ pertence ao intervalo [5,608; 6,392]. 23. Têm sido apresentadas queixas, a um instituto para a defesa do consumidor, no sentido de que as embalagens de determinada bebida isotónica têm menos que 33cl, conforme indicado nas embalagens. Supõe-se que a quantidade de bebida (expressa em cl) em cada embalagem segue uma distribuição Normal, com valor médio (μ) desconhecido mas com =0.8cl Uma recolha aleatória de 40 destas embalagens revelou uma média de 32.7cl. a) Determine um intervalo de confiança para μ, com um coeficiente de confiança de 95%. A marca da bebida deverá ser processada? b) Quantas embalagens devem ser examinadas, de forma a obter uma estimação intervalar de valores de μ com uma incerteza inferior a 0.01cl, com um coeficiente de confiança de 95%. c) Compare os resultados obtidos nas alíneas a) e b) relativamente às amplitudes dos diferentes intervalos obtidos. 24. Suponha que X, variável aleatória que representa a distância atingida (em metros) no salto em comprimento pelos participantes numa prova internacional, tem distribuição Normal N(μ, ). O desvio padrão é conhecido: =0.5m. Foi recolhida uma amostra de 20 valores do comprimento do salto, cuja média é x = 7, 1m. Determine: a) Um intervalo de confiança de 99% para μ. b) Quantas observações são necessárias para que a incerteza sobre μ seja inferior a 0.1, com um coeficiente de confiança de 95%. Comente o resultado. ESTATÍSTICA Ficha de exercícios 4 5

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Introdução às Probabilidades

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº3: Introdução às Probabilidades Ano lectivo: 2007/2008 Universidade da Beira Interior Departamento de Matemática ESTATÍSTICA Ficha de exercícios nº3: Introdução às Probabilidades Curso: Ciências do Desporto 1. Considere a experiência

Leia mais

Amostragem e distribuições por amostragem

Amostragem e distribuições por amostragem Amostragem e distribuições por amostragem Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Contabilidade e Administração População, amostra e inferência estatística

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

Estatística II. Intervalo de Confiança Lista de Exercícios

Estatística II. Intervalo de Confiança Lista de Exercícios Estatística II Intervalo de Confiança Lista de Exercícios 1. IC da Média com a Variância Populacional Desconhecida De 50.000 válvulas fabricadas por uma companhia, retira-se uma amostra de 400 válvulas,

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques e Nuno Bastos (DepMAT) Intervalos de Confiança 2010/2011 1 / 33 Introdução

Leia mais

Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva

Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva Inferência Estatística: Prof.: Spencer Barbosa da Silva Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos

Leia mais

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas.

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas. 1. Inferência Estatística Inferência Estatística é o uso da informção (ou experiência ou história) para a redução da incerteza sobre o objeto em estudo. A informação pode ou não ser proveniente de um experimento

Leia mais

Inferência Estatística:

Inferência Estatística: Inferência Estatística: Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos Estimação É um processo que

Leia mais

Ministério da Educação. Nome:... Número:

Ministério da Educação. Nome:... Número: Ministério da Educação Nome:...... Número: Unidade Lectiva de: Introdução às Probabilidades e Estatística Ano Lectivo de 2003/2004 Código1334 Teste Formativo Nº 2 1. Considere que na selecção de trabalhadores

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Probabilidades e Estatística Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº2: Distribuição Binomial, Poisson, Normal e Lognormal 1. A probabilidade de encontrar um insecto

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) 2a AULA 02/03/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 2a aula (02/03/2015) MAE229 1 / 16

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

i. f Y (y, θ) = 1/θ... 0 y θ 0... y < 0 ou y > θ Se a amostra selecionada foi ( ), qual será a estimativa para θ?

i. f Y (y, θ) = 1/θ... 0 y θ 0... y < 0 ou y > θ Se a amostra selecionada foi ( ), qual será a estimativa para θ? Fundação Getulio Vargas Curso: Graduação Disciplina: Estatística Professor: Moisés Balassiano Lista de Exercícios Inferência. Seja (Y, Y 2,..., Y n ) uma amostra aleatória iid, de tamanho n, extraída de

Leia mais

Inferência Estatística:

Inferência Estatística: Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Princípios de Bioestatística decidindo na presença de incerteza Aula 8: Intervalos

Leia mais

Fundamentos de Estatística 2010/2011 Ficha nº 3

Fundamentos de Estatística 2010/2011 Ficha nº 3 Escola Superior de Tecnologia de Viu Fundamentos de Estatística 00/0 Ficha nº 3 Considere os casais que têm 3 filhos e a eperiência estatística em que regista o o de cada um dos 3 filhos por ordem crescente

Leia mais

Ano Lectivo 2006/2007 Ficha nº5

Ano Lectivo 2006/2007 Ficha nº5 Instituto Superior Politécnico de Viseu Departamento de Matemática da Escola Superior de Tecnologia Estatística Aplicada Engenharia Mecânica e Gestão Industrial Ano Lectivo 2006/2007 Ficha nº5 1. Usando

Leia mais

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

INSTITUTO POLITÉCNICO DE VISEU ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Cientifica Curso Matemática Engenharia Electotécnica Curricular Folha Nº7. Considere uma fábrica que produz cabos eléctricos cujos diâmetros são normalmente distribuídos com média µ e desvio padrão

Leia mais

Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: inferência Nome: GABARITO

Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: inferência Nome: GABARITO Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: inferência Nome: GABARITO GRR: Observação: em todos os problemas que envolvem teste de hipótese, é necessário

Leia mais

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES

Leia mais

Medidas de Dispersão 1

Medidas de Dispersão 1 Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Dispersão 1 Introdução Uma breve reflexão sobre as medidas de tendência central permite-nos concluir que elas não

Leia mais

Intervalos Estatísticos para uma única Amostra - parte I

Intervalos Estatísticos para uma única Amostra - parte I Intervalos Estatísticos para uma única Amostra - parte I Intervalo de confiança para média 14 de Janeiro Objetivos Ao final deste capítulo você deve ser capaz de: Construir intervalos de confiança para

Leia mais

Teorema central do limite e es/mação da proporção populacional p

Teorema central do limite e es/mação da proporção populacional p Teorema central do limite e es/mação da proporção populacional p 1 RESULTADO 1: Relembrando resultados importantes Seja uma amostra aleatória de tamanho n de uma variável aleatória X, com média µ e variância

Leia mais

ESTIMAÇÃO POR INTERVALO DE CONFIANÇA. Profª Sheila Oro 1

ESTIMAÇÃO POR INTERVALO DE CONFIANÇA. Profª Sheila Oro 1 ESTIMAÇÃO POR INTERVALO DE CONFIANÇA Profª Sheila Oro 1 DEFINIÇÃO Um itervalo de confiança (ou estimativa intervalar) é uma faixa (ou um intervalo) de valores usada para se estimar o verdadeiro valor de

Leia mais

Probabilidades e Estatística - LEIC + LERCI + LEE 2 o semestre 2004/05

Probabilidades e Estatística - LEIC + LERCI + LEE 2 o semestre 2004/05 Departamento de Matemática Secção de Estatística e Aplicações - IST Probabilidades e Estatística - LEIC + LERCI + LEE 2 o semestre 2004/05 3 o Teste 4/6/2005 9h O Teste que vai realizar tem a duração total

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Científica Matemática Probabilidades e Estatística Curso Engenharia do Ambiente º Semestre º Ficha n.º: Probabilidades e Variáveis Aleatórias. Lançam-se ao acaso moedas. a) Escreva o espaço de resultados

Leia mais

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL Aula 6 META Estudar o comportamento e aplicação das Variáveis Aleatórias Contínuas, bem como da Distribuição Normal. OBJETIVOS Ao final

Leia mais

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Noções básicasb de Inferência Estatística descritiva inferencial População - Parâmetros desconhecidos (reais) Amostra

Leia mais

FICHA DE TRABALHO N. O 9

FICHA DE TRABALHO N. O 9 FICHA DE TRABALHO N. O 9 ASSUNTO: Modelos de probabilidade: probabilidade condicional 1. Sejam A e B dois acontecimentos tais que: P (A) = 0,3 e P (B ) = 0,7 Determine P (A B ), sabendo que: 1.1 Os acontecimentos

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

ESTATÍSTICA II Ficha de Revisões - 1

ESTATÍSTICA II Ficha de Revisões - 1 Um dos objectivos da Estatística Indutiva é permitir conhecer o valor dos parâmetros populacionais de uma variável a partir de estatísticas descritivas calculadas numa amostra retirada da população. Este

Leia mais

ESCOLA SECUNDÁRIA JAIME MONIZ Matemática Aplicada às Ciências Sociais 10º ano

ESCOLA SECUNDÁRIA JAIME MONIZ Matemática Aplicada às Ciências Sociais 10º ano ESCOLA SECUNDÁRIA JAIME MONIZ Matemática Aplicada às Ciências Sociais 10º ano Ficha de Trabalho: Revisão Estatística Univariada e Bivariada. 2009/2010 Nos arredondamentos que efectuar, conserve sempre

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Variáveis aleatórias discretas

Variáveis aleatórias discretas Probabilidades e Estatística + Probabilidades e Estatística I Colectânea de Exercícios 2002/03 LEFT + LMAC Capítulo 3 Variáveis aleatórias discretas Exercício 3.1 Uma caixa contém 6 iogurtes dos quais

Leia mais

PARTE 2. Profª. Drª. Alessandra de Ávila Montini

PARTE 2. Profª. Drª. Alessandra de Ávila Montini PARTE 2 Profª. Drª. Alessandra de Ávila Montini Conteúdo Introdução a Probabilidade Conceito de Experimento Conceito de Espaço Amostral Conceito de Variável Aleatória Principais Distribuições de Probabilidade

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

EXAME DE ESTATÍSTICA / ESTATÍSTICA I

EXAME DE ESTATÍSTICA / ESTATÍSTICA I INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE EAME DE ESTATÍSTICA / ESTATÍSTICA I Cursos: Licenciatura em Enfermagem e Licenciaturas Bi-etápicas em Fisioterapia e em Terapia da Fala Época de

Leia mais

6.3 Valor Médio de uma Variável Aleatória

6.3 Valor Médio de uma Variável Aleatória 6. 3 V A L O R M É D I O D E U M A V A R I Á V E L A L E A T Ó R I A 135 1. Considere uma urna contendo três bolas vermelhas e cinco pretas. Retire três bolas, sem reposição, e defina a v.a. X igual ao

Leia mais

Os votos em branco ou nulos não foram considerados como votos validamente expressos. Tabela 1

Os votos em branco ou nulos não foram considerados como votos validamente expressos. Tabela 1 1. Na Nova Zelândia, o método aplicado para a conversão de votos em mandatos é o método de Saint-Laguë. Na Tabela 1, estão indicados os números de votos, validamente expressos, obtidos pelas listas de

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº 5: Testes Paramétricos Probabilidades e Estatística 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 9 Modelos Probabilísticos Variável Contínua Vamos ver como criar um modelo probabilístico, o que é uma função densidade de probabilidade (fdp), e como calcular probabilidades no caso de variáveis

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Capítulo 3 Introdução à Probabilidade e à Inferência Estatística INTERVALOS DE CONFIANÇA: Diferentes pesquisadores, selecionando amostras de uma mesma

Leia mais

Estatística (MAD231) Turma: IGA. Período: 2016/2

Estatística (MAD231) Turma: IGA. Período: 2016/2 Estatística (MAD231) Turma: IGA Período: 2016/2 Aula #02 de Inferência Estatística: 28/11/2016 1 Intervalos de Confiança Vamos começar com um exemplo. Suponha que se deseja estimar a média µ de uma população

Leia mais

FATEC GT/FATEC SJC. Prof. MSc. Herivelto Tiago Marcondes dos Santos [LISTA 2]

FATEC GT/FATEC SJC. Prof. MSc. Herivelto Tiago Marcondes dos Santos [LISTA 2] FATEC GT/FATEC SJC Prof. MSc. Herivelto Tiago Marcondes dos Santos [LISTA 2] 1. O tempo necessário para um medicamento contra dor fazer efeito foi modelado de acordo com a densidade Uniforme no intervalo

Leia mais

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC

4ª LISTA DE EXERCÍCIOS - LOB1012. Variáveis Aleatórias Contínuas, Aproximações e TLC 4ª LISTA DE EXERCÍCIOS - LOB1012 Variáveis Aleatórias Contínuas, Aproximações e TLC Assunto: Função Densidade de Probabilidade Prof. Mariana Pereira de Melo 1. Suponha que f(x) = x/8 para 3

Leia mais

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades

Aula de Estatística 13/10 à 19/10. Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades Aula de Estatística 13/10 à 19/10 Capítulo 4 (pág. 155) Distribuições Discretas de Probabilidades 4.1 Distribuições de probabilidades Variáveis Aleatórias Geralmente, o resultado de um experimento de probabilidades

Leia mais

UNIVERSIDADE DA BEIRA INTERIOR. Verde Castanho Vermelho Azul Branco Total

UNIVERSIDADE DA BEIRA INTERIOR. Verde Castanho Vermelho Azul Branco Total UNIVERSIDADE DA BEIRA INTERIOR Probabilidades e Estatística 2008/2009 GESTÃO E ECONOMIA FICHA DE TRABALHO 6: Teste de Ajustamento. 1. Uma máquina de lavar a roupa é vendida em cinco cores: verde, castanho,

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

Inferência Estatística

Inferência Estatística Metodologia de Diagnóstico e Elaboração de Relatório FASHT Inferência Estatística Profa. Cesaltina Pires cpires@uevora.pt Plano da Apresentação Duas distribuições importantes Normal T- Student Estimação

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Escola Superior de Tecnologia de Viseu. Fundamentos de Estatística 2006/2007 Ficha nº 3

Escola Superior de Tecnologia de Viseu. Fundamentos de Estatística 2006/2007 Ficha nº 3 Escola Superior de Tecnologia de Viu Fundamentos de Estatística 006/007 Ficha nº 3. Os valores admissíveis de uma variável aleatória discreta X são: 0,,. Sabe- que E(X)=0.8 e que E(X )=.4. a) Defina a

Leia mais

Resolução do Exame de Matemática Aplicada às Ciências Sociais 10 ọ /11 ọ Ano 2012 (2 ạ Fase)

Resolução do Exame de Matemática Aplicada às Ciências Sociais 10 ọ /11 ọ Ano 2012 (2 ạ Fase) Resolução do Exame de Matemática Aplicada às Ciências Sociais 10 ọ /11 ọ Ano 01 ( ạ Fase) 1. 1.1. No método de Hondt divide-se o número de votos de cada lista por 1,,, 4, 5, 6, 7, 8, 9, etc: Divisores

Leia mais

Escola Superior de Tecnologia de Viseu. Fundamentos de Estatística 2006/2007 Ficha nº 3

Escola Superior de Tecnologia de Viseu. Fundamentos de Estatística 2006/2007 Ficha nº 3 Escola Superior de Tecnologia de Viu Fundamentos de Estatística 006/007 Ficha nº 3. Os valores admissíveis de uma variável aleatória discreta X são: 0,,. Sabe- que E(X)=0.8 e que E(X )=.4. a) Defina a

Leia mais

Intervalos de Confiança - Amostras Pequenas

Intervalos de Confiança - Amostras Pequenas Intervalos de Confiança - Amostras Pequenas Teste de Hipóteses para uma Média Jorge M. V. Capela, Marisa V. Capela, Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2016

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

Estimação e Testes de Hipóteses

Estimação e Testes de Hipóteses Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas

Leia mais

Princípios de Modelagem Matemática Aula 10

Princípios de Modelagem Matemática Aula 10 Princípios de Modelagem Matemática Aula 10 Prof. José Geraldo DFM CEFET/MG 19 de maio de 2014 1 Alguns resultados importantes em estatística A distribuição normal tem importante papel em estatística pois

Leia mais

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017 padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016.

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016. de Matemática Financeira e Estatística do ISS Teresina, aplicada em 8/08/016. 11 - (ISS Teresina 016 / FCC) Joana aplicou todo seu capital, durante 6 meses, em bancos ( e Y). No Banco, ela aplicou 37,5%

Leia mais

Exame de Segurança Estrutural Mestrado em Estruturas de Engenharia Civil Duração: 2horas 15/04/1998

Exame de Segurança Estrutural Mestrado em Estruturas de Engenharia Civil Duração: 2horas 15/04/1998 Exame de Segurança Estrutural Mestrado em Estruturas de Engenharia Civil Duração: horas 5/04/998 De acordo com a nomenclatura corrente os métodos de verificação da segurança estrutural com base probabilística

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística - CCEN Professora: Tatiene C. de Souza

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística - CCEN Professora: Tatiene C. de Souza UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística - CCEN Professora: Tatiene C. de Souza Lista de Exercícios - Pesquisa Aplicada à Estatística João Pessoa, 23 de fevereiro de 2016 1. A v.a. X

Leia mais

UNIVERSIDADE DOS AÇORES CURSO DE SOCIOLOGIA INTRODUÇÃO À ESTATÍSTICA Ficha de Exercícios nº 3- Variáveis Aleatórias

UNIVERSIDADE DOS AÇORES CURSO DE SOCIOLOGIA INTRODUÇÃO À ESTATÍSTICA Ficha de Exercícios nº 3- Variáveis Aleatórias UNIVERSIDADE DOS AÇORES CURSO DE SOCIOLOGIA INTRODUÇÃO À ESTATÍSTICA Ficha de Exercícios nº 3- Variáveis Aleatórias. Seja uma variável aleatória discreta cuja função massa de probabilidade é dada por x

Leia mais

1073/B - Introdução à Estatística Econômica

1073/B - Introdução à Estatística Econômica Lista de exercicios 2 Prof. Marcus Guimaraes 1073/B - Introdução à Estatística Econômica Ciências Econômicas 1) Suponha um espaço amostral S constituido de 4 elementos: S={a 1,a2,a3,a4}. Qual das funções

Leia mais

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36 1 Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico

Leia mais

Exercícios de programação

Exercícios de programação Exercícios de programação Estes exercícios serão propostos durante as aulas sobre o Mathematica. Caso você use outra linguagem para os exercícios e problemas do curso de estatística, resolva estes problemas,

Leia mais

Estatística para Cursos de Engenharia e Informática

Estatística para Cursos de Engenharia e Informática Estatística para Cursos de Engenharia e Informática BARBETTA, Pedro Alberto REIS, Marcelo Menezes BORNIA, Antonio Cezar MUDANÇAS E CORREÇOES DA ª EDIÇÃO p. 03, após expressão 4.9: P( A B) = P( B A) p.

Leia mais

Bioestatística F. Modelo Binomial. Enrico A. Colosimo

Bioestatística F. Modelo Binomial. Enrico A. Colosimo Bioestatística F Modelo Binomial Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/~enricoc 2011 1 / 1 Variável aleatória discreta Definição Uma

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Probabilidades e Estatística Curso Engenharia do Ambiente 2º Semestre 1º Ficha n.º1: Probabilidades e Variáveis Aleatórias 1. Lançam- ao acaso 2 moedas. a) Escreva o espaço de resultados

Leia mais

EXAME DE ESTATÍSTICA / ESTATÍSTICA I

EXAME DE ESTATÍSTICA / ESTATÍSTICA I INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE EAME DE ESTATÍSTICA / ESTATÍSTICA I Cursos: Licenciatura em Enfermagem e Licenciaturas Bi-etápicas em Fisioterapia e em Terapia da Fala Época de

Leia mais

ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época de Recurso Duração: 2 horas. 1. a Parte Teórica N. o de Exame: abcde

ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época de Recurso Duração: 2 horas. 1. a Parte Teórica N. o de Exame: abcde ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época de Recurso Duração: 2 horas 1. a Parte Teórica N. o de Exame: abcde 27.01.2015 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação:

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Estimativas e Tamanhos de Amostras

Estimativas e Tamanhos de Amostras Estimativas e Tamanhos de Amostras 1 Aspectos Gerais 2 Estimativa de uma Média Populacional: Grandes Amostras 3 Estimativa de uma Média Populacional: Pequenas Amostras 4 Tamanho Amostral Necessário para

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Distribuições Importantes. Distribuições Discretas

Distribuições Importantes. Distribuições Discretas Distribuições Importantes Distribuições Discretas Distribuição de Bernoulli Definição Prova ou experiência de Bernoulli é uma experiência aleatória que apenas tem dois resultados possíveis: A que se designa

Leia mais

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p INFERÊNCIA ESTATÍSTICA ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir

Leia mais

AULA 02 Distribuição de Probabilidade Normal

AULA 02 Distribuição de Probabilidade Normal 1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Les Estatística Aplicada II AMOSTRA E POPULAÇÃO

Les Estatística Aplicada II AMOSTRA E POPULAÇÃO Les 0407 - Estatística Aplicada II AMOSTRA E POPULAÇÃO AULA 1 04/08/16 Prof a Lilian M. Lima Cunha Agosto de 2016 Estatística 3 blocos de conhecimento Estatística Descritiva Levantamento e resumo de dados

Leia mais

b) Qual é a diferença entre as partes que ambos pintaram? c) Que parte da parede o Paulo pintou a mais que o Pedro?

b) Qual é a diferença entre as partes que ambos pintaram? c) Que parte da parede o Paulo pintou a mais que o Pedro? Adição e subtração de números racionais Exemplos. O Paulo e o Pedro estão a pintar uma parede no seu quintal. O Paulo já pintou da parede e o Pedro. 4 6 a) Qual foi a parte que ambos pintaram em conjunto?

Leia mais

7 Teste de Hipóteses

7 Teste de Hipóteses 7 Teste de Hipóteses 7-1 Aspectos Gerais 7-2 Fundamentos do Teste de Hipóteses 7-3 Teste de uma Afirmação sobre a Média: Grandes Amostras 7-4 Teste de uma Afirmação sobre a Média : Pequenas Amostras 7-5

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

6. Amostragem e estimação pontual

6. Amostragem e estimação pontual 6. Amostragem e estimação pontual Definição 6.1: População é um conjunto cujos elementos possuem qualquer característica em comum. Definição 6.2: Amostra é um subconjunto da população. Exemplo 6.1: Um

Leia mais

Lista Estimação Pontual Estatística Aplicada à Engenharia de Produção Prof. Michel H. Montoril

Lista Estimação Pontual Estatística Aplicada à Engenharia de Produção Prof. Michel H. Montoril Exercício 1. (Kokoska, 2013) Estudos indicam que residências canadenses desperdiçam, aproximadamente, de 389 a 513 quilowatts-hora de eletricidade por ano. Esse desperdício é causado por aparelhos eletrônicos

Leia mais

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Modelos básicos de distribuição de probabilidade

Modelos básicos de distribuição de probabilidade Capítulo 6 Modelos básicos de distribuição de probabilidade Muitas variáveis aleatórias, discretas e contínuas, podem ser descritas por modelos de probabilidade já conhecidos. Tais modelos permitem não

Leia mais

Métodos Quantitativos para Ciência da Computação Experimental

Métodos Quantitativos para Ciência da Computação Experimental Métodos Quantitativos para Ciência da Computação Experimental Revisão Virgílio A. F. Almeida Maio de 2008 Departamento de Ciência da Computação Universidade Federal de Minas Gerais FOCO do curso Revisão

Leia mais

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011

Distribuição Normal. Prof a Dr a Alcione Miranda dos Santos. Abril, 2011 Distribuição Normal Prof a Dr a Alcione Miranda dos Santos Universidade Federal do Maranhão Programa de Pós-Graduação em Saúde Coletiva email:alcione.miranda@gmail.com Abril, 2011 1 / 18 Sumário Introdução

Leia mais

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional Métodos Estatísticos Métodos Estatísticos Estatística Descritiva Inferência Estatística Estimação Teste de Hipóteses TESTE

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Esperança e Variância 06/14 1 / 19 Nos modelos matemáticos aleatórios parâmetros podem ser

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Amostragem Aleatória e Descrição de Dados - parte I

Amostragem Aleatória e Descrição de Dados - parte I Amostragem Aleatória e Descrição de Dados - parte I 2012/02 1 Amostra e População 2 3 4 Objetivos Ao final deste capítulo você deve ser capaz de: Calcular e interpretar as seguintes medidas de uma amostra:

Leia mais

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses PODER DO TESTE Poder do Teste e Tamanho de Amostra para Testes de Hipóteses 1 Tipos de erro num teste estatístico Realidade (desconhecida) Decisão do teste aceita H rejeita H H verdadeira decisão correta

Leia mais

Aula 10 Estimação e Intervalo de Confiança

Aula 10 Estimação e Intervalo de Confiança Aula 10 Estimação e Intervalo de Confiança Objetivos da Aula Fixação dos conceitos de Estimação; Utilização das tabelas de Distribuição Normal e t de Student Introdução Freqüentemente necessitamos, por

Leia mais

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48) Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro

Leia mais