UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" CAMPUS DE GUARATINGUETÁ Colégio Técnico Industrial de Guaratinguetá

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" CAMPUS DE GUARATINGUETÁ Colégio Técnico Industrial de Guaratinguetá"

Transcrição

1 UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" CAMPUS DE GUARATINGUETÁ Colégio Técnico Industrial de Guaratinguetá APOSTILA DE COMANDOS HIDRÁULICOS E PNEUMÁTICOS CURSOS : 3ª A - MECÂNICA 3ª B - ELETRÔNICA 3ª C - INFORMÁTICA INDUSTRIAL 3ª D - ELETROELETRÔNICA CAPÍTULO I - P N E U M Á T I C A AUTOR : Prof. EDUARDO SILVA SANTOS 2006 S U M Á R I O 1 - I N T R O D U Ç Ã O P N E U M Á T I CA / H I D R Á U L I C A...2

2 2 3 - H I S T Ó R I C O SISTEMA PNEUMÁTICO P R E S S Ã O PRESSÃO ATMOSFÉRICA COMPRESSIBILIDADE ELASTICIDADE EXPANSIBILIDADE LEI GERAL DOS GASES PERFEITOS DISPOSITIVO DE MEDIÇÃO DE PRESSÃO ATUADORES PNEUMÁTICOS VÁLVULAS DIRECIONAIS PNEUMÁTICAS PREPARAÇÃO DO AR COMPRIMIDO PARA ACIONAMENTO DE ATUADORES VÁLVULA REDUTORA DE FLUXO VARIÁVEL COM RETENÇÃO VÁLVULA LIMITADORA DE PRESSÃO VÁLVULA ALTERNADORA (FUNÇÃO LÓGICA "OU") ACIONAMENTO DE ATUADORES PNEUMÁTICOS FLUXO DE AR COMPRESSORES DE AR RESERVATÓRIO DE AR COMPRIMIDO REDE DE DISTRIBUIÇÃO DO AR COMPRIMIDO SIMBOLOGIA PNEUMÁTICA BIBLIOGRAFIA I N T R O D U Ç Ã O O homem moderno NÃO quer mais usar sua força física para movimentar mais nada. Hoje em dia, ele já é dependente do controle remoto e quer conforto total que vai desde mudar o canal de uma tv até controlar uma máquina à distância. Trocar de canal é 2

3 3 muito simples pois não necessita de uma força considerável no seletor da tv, entretanto nas máquinas a coisa é mais complicada pois, às vezes, precisa-se de força de várias toneladas para movimentar o equipamento da máquina. Comandos Hidráulicos e Pneumáticos, são SISTEMAS DE CONTROLE DE FORÇA E MOVIMENTO, modernos e de alta tecnologia, utilizados para geração das forças que movimentam as máquinas,. A Hidráulica e a Pneumática sobressaem-se dos demais sistemas de geração de energia, pela sua SIMPLICIDADE, FACILIDADE DE MANUTENÇÃO, CONFORTO E SEGURANÇA que proporciona ao homem moderno. Os robôs industriais, a direção e freio dos carros e aviões, os laboratórios de manufaturas industriais, as ferramentas automáticas, os laboratórios odontológicos, os guindastes e retroescavadeiras são alguns exemplos de mecanismos que usam a força pneumática/hidráulica para movimentar e realizar tarefas totalmente automáticas, de acordo com a programação dos computadores. As Portas Automáticas dos ônibus, o motorzinho e o sugador dos dentistas, o Trem de pouso e os Comandos de Vôo dos aviões, a Betoneira e o caminhão do lixo que compacta os resíduos na carroceria dos caminhões, a Furadeira, a Parafusadeira, a Prensa e inúmeras outras máquinas portáteis são também exemplos práticos da utilização da força pneumática e hidráulica. Em virtude do exposto acima, há necessidade de que todos alunos do CTIG, com formação voltada à automação industrial, dominem a técnica de Comandos Hidráulicos e Pneumáticos, que é o mais moderno e eficaz sistema de geração de força e movimento que se tem notícia no momento. Portanto, todos que estão envolvidos na área indústrial precisam conhecer hidráulica/pneumática pois ela faz parte da vida cotidiana, neste mundo globalizado. 2- P N E U M Á T I CA / H I D R Á U L I C A Pneumática é a ciência que estuda as propriedades físicas do ar e dos gases em geral. O termo pneumática é derivado grego pneumos ou pneuma, que significa respiração, sopro, e é definido como o segmento da física que se ocupa da dinâmica e dos fenômenos físicos relacionados com os gases e com o vácuo, bem como estuda a conversão de energia produzida pelo ar em energia mecânica, através de seus elementos de trabalho. PNEUMÁTICA É O RAMO DA FÍSICA QUE TRATA DAS PROPRIEDADES MECÂNICAS DOS GASES. Como o próprio nome indica, Pneumática trabalha com Ar Comprimido, Hidráulica com óleo. Os Circuitos Hidráulicos e Pneumáticos são muito semelhantes e funcionam de maneira parecida, a única diferença é que dentro deles corre o Ar comprimido a baixa pressão fornecido pelo Compressor, ou o Óleo Hidráulico com alta pressão enviado pelas Bombas Hidráulicas. Podemos dizer que quando precisamos de uma pequena força para movimentar pequenos objetos, leves, usamos a Pneumática, enquanto que quando precisamos fazer uma grande força para movimentar grandes objetos, pesados, usamos a Hidráulica. O resultado final da aplicação da força é resultante da baixa pressão encontrada nos circuitos pneumáticos e da alta pressão encontrada nos circuitos hidráulicos. Precisamos estar sempre cientes, que tanto a pneumática quanto a hidráulica são Sistemas de Controle de Força e Movimento. 3 - H I S T Ó R I C O No século III a.c., na Alexandria, o grego KTESÍBIOS fundou a Escola de Mecânicos, tornando-se o precursor da técnica de comprimir o ar para realizar um trabalho mecânico. Tem-se registros de uma sua invenção, que tinha a finalidade de pressurizar o ar para tocar um órgão musical, tal invento por falta de recursos na época e 3

4 4 por não existirem materiais adequados à sua construção (metalurgia), foram esquecidos ao longo do tempo, até que na primeira Revolução Industrial JAMES WATT inventou a máquina à vapor, dando início a produção industrial de inúmeros equipamentos pneumáticos que aumentam a cada dia por força dos beneficios da automação. Há pouco mais de duas décadas atrás, um técnico industrial precisava ser muito habilidoso e mesmo assim sempre corria o risco de perder o dedo ou se acidentar numa máquina. Hoje, tudo que ele tem a fazer é preparar os acessórios da ferramenta, fazer a programação, ajustar os controles, apertar os botões e aguardar o produto final. Todas as operações são realizadas automaticamente, com grande precisão, velocidade e o mais importante, com repetibilidade. Se preciso, consertar ele mesmo, o equipamento que apresentar defeito. A escolaridade dos operários melhorou, todas grandes indústrias do Vale do Paraíba, exigem pelo menos o 2º grau técnico ao seu quadro de funcionários. Um contraste: nas linhas de montagem das fábricas, basta procurar que é possível encontrar até engenheiros e economistas apertando parafusos. Eles se atualizaram nas áreas da moderna tecnologia de automação pneumática, informática, elétrica, eletrônica, hidráulica, mecatrônica, robótica e não conseguiram empregos melhores com seus diplomas universitários. As fábricas se modernizaram e cortaram empregos daqueles que não acompanharam a evolução tecnológica. SEJA VOCÊ TAMBÉM UM ESPECIALISTA HABILITADO, APRENDA HIDRÁULICA E PNEUMÁTICA E TENHA UM FUTURO BRILHANTE,COM BASTANTE$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$. 4 - SISTEMA PNEUMÁTICO É um mecanismo que funciona com ar comprimido. É composto de tubulações e válvulas cuja função é transformar a pressão do fluido ali confinado, em força mecânica para transmitir movimento controlado. Os circuitos pneumáticos geralmente são utilizados para transmitir movimento em equipamentos que não necessitam de grande esforço de operação, pois sua principal característica é trabalhar com baixa pressão e pouca força de movimentação. Exemplos de atuação da força pneumática: máquinas de manufaturas, abertura e fechamento da porta de ônibus, ferramentas pneumáticas (brocas de dentista, martelo, furadeira, aparafusadeira, britadeira, dosadora, lixadeira, soldadora, freio à ar, atuadores lineares e rotativos, motores pneumáticos, válvulas de controle, injetoras, prensas de impacto, sistemas de pintura, robótica e outras infindáveis aplicações. CENTRAL DE COMANDO E COMPUTAÇÃO COMPRESSOR DE AR VÁLVULAS ELETROPNEUMÁTICAS CILINDROS ATUADORES PARA TRANSMITIR FORÇA SENSORES Figura 1 Diagrama em bloco do circuito eletropneumático 5 - P R E S S Ã O Pressão é o termo que define quanta força é aplicada numa certa área. A definição técnica de pressão é força por unidade de área. P = F / A. Pressão Absoluta é a pressão medida a partir de um ponto de referência zero ou completo vácuo. É usada para medir pressão atmosférica. Pressão Manométrica é a pressão contida em um circuito, não 4

5 5 levando em conta a pressão atmosférica. Pressão diferencial é a diferença entre duas pressões agindo em lados opostos a uma superfície. Unidades de medida de pressão pneumática encontrada nas máquinas industriais: Quilograma-força por centímetro quadrado (kgf/cm2), Libra-força por polegada quadrada (Lb/ pol2) que é igual a Pounds per Square Inch (PSI) no sistema Inglês, Pascal (pa), Bar (bar), Polegada de mercúrio ( Hg), Polegada de água ( H2O), Atmosfera (atm). Tabela de conversão de unidades: 1 Kgf/cm2 = 14,22 PSI ; 1 bar = 14,5 PSI ; 1PSI = 6894,76 pa ; 1 atm = 14,73 PSI = 29,92 Hg = 100 Kpa. 6 - PRESSÃO ATMOSFÉRICA É a massa de ar que envolve a Terra, cuja altitude dessa camada de ar se estende até aproximadamente 80 quilômetros. Sabemos que o ar ocupa lugar no espaço e tem peso, podemos comprovar isso comparando o peso uma bola de futebol vazia com uma cheia. A bola cheia é mais pesada pois contém ar no seu interior. Sem a existência do ar, não haveria vida em nosso planeta. Apesar de não possuir uma forma física, podemos notar sua presença em todos os lugares. Por ser elástico e compressível ocupa todo o espaço onde está contido. Sua composição principal é constituída por 78% de Nitrogênio (gás inerte e pode ser combinado com qualquer outro elemento, sem problemas, sendo usado com muita eficiência para encher pneus de veículos), 21 % de Oxigênio (gás muito ativo, elemento necessário à combustão e, se combinado com óleo, graxa ou sujeira pode provocar combustão espontânea e até mesmo explosão) e 1% de outros gases tais como Argônio, Neônio, Hélio, Hidrogênio, resíduos de Dióxido de Carbono, etc. A camada de ar atmosférico que envolve a Terra, por sua vez, que está sob efeito da ação da gravidade, faz com que próximo à superfície dos mares (parte mais baixa), haja um maior acúmulo de oxigênio e nitrogênio e por sua vez, uma maior quantidade de pressão. A medida que se afasta do nível do mar, subindo, a pressão atmosférica diminui. TORRICELLI em 1643 inventou o barômetro (aparelho para medir pressão atmosférica), por meio do qual demonstrou que a atmosfera exerce uma pressão capaz de suportar uma coluna de mercúrio, num tubo fechado, invertido sobre uma base. Com auxílio do barômetro podemos medir o valor da pressão atmosférica, que nos deu os valores da tabela a seguir: Altitude metros Pressão Kgf/cm2 Altitude metros Pressão Kgf/cm2 Altitude metros Pressão Kgf/cm2 Altitude metros Pressão Kgf/cm2 0 1, , , , , , , , , , , , , , , , , , , ,279 Figura 2 Tabela Altitude X Pressão O ser humano está acostumado a sobreviver em altitudes abaixo de pés, pois acima dessa altitude, devido à diminuição de pressão, falta-lhe oxigênio para respiração. Quando a seleção brasileira de futebol vai jogar em La Paz na Bolívia, que é acima dessa altitude, os jogadores cansam-se rapidamente e falta-lhes ar para continuar jogando. É um eterno sacrifício, o empate já é considerado uma vitória para os atletas. 5

6 6 Na setor aeronáutico a FAA FEDERAL AERONAUTIC ADMINISTRATION, órgão internacional que regulamenta a fabricação de aeronaves, limita a altitude das cabines de vôo para 2500 metros, independente da altitude de vôo do avião, neste caso um circuito eletropneumático mantém o ambiente refrigerado e pressurizado para conforto e segurança dos tripulantes e passageiros. Entretanto, um avião voando, por exemplo, a 6000 metros de altitude (P= 0,481 Kgf/cm2), com a cabine pressurizada com a pressão interna igual à do nível do mar (P= 1,033 Kgf/cm2), terá em toda sua estrutura uma PRESSÃO DIFERENCIAL de 0,552 Kgf/cm2. Esta pressão atuando na porta da aeronave, estará empurrando-a para abrir com uma FORÇA = PRESSÃO (0,552 Kgf/cm2) X ÁREA (200 cm altura X 100 cm largura) = 12,38 toneladas. Se a pressão romper a porta haverá forte explosão, alijando tudo na sua proximidade ao espaço, obrigando o avião baixar rapidamente para uma altitude de segurança, próxima ao nível do mar, caso contrário todos morrerão por falta de oxigênio e haverá ainda a perda do avião. Figura 3 - Coluna de pressão atmosférica 7 - COMPRESSIBILIDADE Um volume de ar, quando submetido por uma força exterior, como por exemplo um pistão pneumático (cilindro), seu volume inicial será reduzido, o ar fica preso no seu interior com maior pressão, retraindo o pistão, revelando uma de suas propriedades básicas: a compressibilidade, mostrado na figura a seguir : Força Aplicada e Pistão Comprimido FORÇA Figura 4 - Pistão comprimido 8 - ELASTICIDADE A propriedade da elasticidade faz com que uma vez desfeita a força da compressibilidade, a pressão do ar faz com que ele se expanda novamente e o pistão volta ao seu ponto inicial distendido, agora sem pressão nenhuma ou zero de pressão. 6

7 7 Força Solta e Pistão Distendido Figura 5 - Pistão distendido 9 - EXPANSIBILIDADE O ar ocupa o lugar onde ele é colocado. Por sua qualidade expansiva, seu volume é variável e ele facilmente se adapta a qualquer recipiente onde é colocado. Sua forma é adaptada de acordo com a pressão que nele é aplicada. Figura 6 - Expansibilidade do gás 10 LEI GERAL DOS GASES PERFEITOS É possível, como vimos anteriormente, reduzir o volume de um gás, aplicando-lhe uma certa pressão. O estado de um gás é determinado através das três grandezas: pressão, volume e temperatura. A relação para os gases ideais é descrita através das leis de Gay-Lussac, Charles e Boyle-Mariotte. A pressão contida em um gás é inversamente proporcional ao seu volume, sob temperatura constante. Temos: P1.V1 = P2 V2. Problema: Um recipiente contem 420 litros de ar à pressão de 1,5 kgf/cm2. Em seguida comprime-se o ar reduzindo seu volume para 70 litros. Calcular a pressão de compressão do ar? Resolução: P1V1=P2V2 então 420 l. 1,5 kgf/cm2 = 70 l. X temos X= 9 kgf/cm2 Resposta: A pressão de compressão do ar é de 9 kgf/cm2. Sabe-se entretanto que ao se comprimir um gás, eleva-se sua temperatura. Comprovamos isso ao encher o pneu da bicicleta, notando o aquecimento da bomba a medida que o pneu vai enchendo e, quanto maior é a pressão colocada no pneu, mais quente a bomba fica. Nos sistemas pneumáticos de aeronaves que necessitam de grande quantidade de ar comprimido, a temperatura do mesmo chega a atingir 200º centígrados. NOTA: quando o ar comprimido se expande, ao aliviarmos sua pressão, ocorre um forte resfriamento e é por este princípio que são construídos os sistemas de refrigeração da cabine dos aviões, que baixam a temperatura de 200 para 20º C. A equação geral do estado dos gases, levando em conta a variação de temperatura, deve ser aplicado com a seguinte fórmula P1.V1 = P2.V2 devido ao aumento ou diminuição da temperatura com a compressão/descompressão. T1 T2 Problema: Uma certa quantidade de vapor d água é introduzido numa seringa à uma temperatura de 500º K e ocupa um volume de 5 cm3. Fechada a entrada, o vapor d água exerce uma pressão de 4 atm nas paredes da seringa. Quando o êmbolo é solto, é empurrado pelo vapor fazendo seu volume chegar a 16 cm3 e a temperatura a 400º K. Determine a nova pressão no interior da seringa? 7

8 8 Resolução: P1.V1 = P2.V2 então 4 atm. 5 cm3 = P2. 16 cm3 temos P2 = 1,0 atm T1 T2 500º K 400º K Resposta: A nova pressão no interior da seringa é de 1,0 atmosfera DISPOSITIVO DE MEDIÇÃO DE PRESSÃO O valor da pressão é normalmente indicado com um manômetro, do qual existem diferentes dispositivos internos de comando, sendo mais usado o tipo tubo de bourdon que consiste de um tubo oco de forma elíptica que tende a se esticar quando lhe é aplicado pressão e, quando cessa esta pressão o tubo volta a sua posição inicial de repouso. Neste tubo é preso um ponteiro que ao se movimentar passa por uma escala graduada de indicação de pressão. Para evitar que os manômetros não sejam danificados por oscilações e choques abruptos de pressão, a pressão até ele é conduzida através de um estrangulamento na sua conexão de entrada. Também um amortecimento através de um fluido (glicerina), é muito usado. Figura 7 - Manômetro (símbolo) 12 - ATUADORES PNEUMÁTICOS São dispositivos que convertem a energia (pressão) contida no ar comprimido, em trabalho. Nos circuitos pneumáticos, os atuadores são ligados mecanicamente à carga a ser movimentada e assim, ao ser influenciado pelo ar comprimido, sua energia é convertida em força ou torque, que é transmitida à carga. São os cilindros, os motores pneumáticos. A energia pneumática será transformada, por cilindros pneumáticos, em movimentos retilíneos e pelos motores pneumáticos em movimentos rotativos. Na atuação linear encontramos na pneumática os seguintes tipos de cilindros : cilindro de ação simples (retorno por mola), cilindro de ação dupla com haste simples, cilindro de ação dupla com haste dupla e eventualmente algum outro tipo de cilindro semelhante à um destes citados, porém com alguma variação interna, como veremos mais adiante CLASSIFICAÇÃO DOS ATUADORES PNEUMÁTICOS Estão divididos em três grupos: -Os que produzem movimentos lineares: são constituídos de componentes que convertem a energia pneumática em movimento linear ou angular. São representados pelos Cilindros Pneumáticos. Dependendo da natureza dos movimentos, velocidade, força ou tipo, haverá um tipo adequado para cada função -Os que produzem movimentos rotativos: convertem a energia pneumática em energia mecânica, através de momento torsor (torque) contínuo. São representados pelos Motores Pneumáticos e as Turbinas Pneumáticas. -Os que produzem movimentos oscilantes: convertem energia pneumática em energia mecânica, através do movimento torsor (torque) limitado por um número de graus 8

9 9 ou movimentos. São representados pelos Osciladores Pneumáticos ou Atuadores Giratórios CRITÉRIOS PARA SELEÇÃO DE ATUADOR PNEUMÁTICO - Tipo de movimento a executar: rotativo ou linear - Sentido de rotação e inversão - Número de rotações e velocidade - Torque e Força a executar - Potência a desnvolver - Uniformidade da força e velocidade - Características em relação às influências ambientais internas e externas - Aspectos ergonométricos APARELHOS DA TÉCNICA PNEUMÁTICA ACIONAMENTOS FERRAMENTAS MANUAIS UNIDADE CONSTRUTIVA Movimento rotativo Motor Pneumático Unidirecional Motor Pneumático Bidirecional Movimento rotativo Furadeira Rosqueadeira Lixadeira Aparafusadeira Serra Tesoura para chapa Unidade de avanço Unidade de fixação Esteira transportadora Mesa giratória posicionadora Unidade furadora Unidade rosqueadora Aparafusadeira múltipla Oscilador Pneumático ou Atuador Giratório Movimento linear Cilindro de simples ação recuo Cilindro de simples ação avanço Cilindro de simples ação sem mola Movimento de percussão Martelo Britadeira Rebitadeira Estampo para gravação pregador Movimento Linear Macaco Pneumático Morsa Pneumática Prensa Pneumática Tesoura de Corte Cilindro de membrana Cilindro tipo fole Cilindro de dupla ação 9

10 1 Cilindro de dupla ação com haste passante Cilindro de dupla ação sem haste Cilindro de pressão diferencial Cilindro com trava Figura 8 - Tabela aparelhos da Técnica Pneumática EXERCÍCIOS SOBRE CILINDRO a- Um cilindro de dupla ação possui o diâmetro de êmbolo de 80 mm e o diâmetro de haste de 25 mm. A pressão de trabalho do cilindro é de 6 bar (60 N/cm2). Quais são as forças teóricas que ele desenvolve no curso de avanço e retorno? Solução: calcular as áreas maior e menor do cilindro A > = 3,14 x 80 x 80 = 50,3 cm2 4 A < = 3,14 x 25 x 25 = 45,4 cm2 4 Calcular a força exercida Força avanço = Pressão x área = 60 N/cm2 x 50,3 cm2 = 3018 N Força recuo = Pressão x área = 60 N/cm2 x 45,4 cm2 = 2724 N b - O atuador pneumático abaixo recebe, ao mesmo tempo, uma pressão de 142,2 PSI nos pontos a e b. Calcular a força de distensão, em kgf, do seu pistão, sabendo-se que os diâmetros de sua haste é de 2 cm e de seu êmbolo é de 20 cm. a b 0 Figura 9 Atuador pneumático com pressão nas duas áreas c- Uma bomba de encher pneu de bicicleta, figura abaixo, recebe uma força de 20 kgf na sua haste, cujo cilindro tem 3 cm de diâmetro, volume inicial de 10 cm3, isso numa temperatura ambiente de 30º C. Calcular a pressão final aplicada no pneu, em PSI, quando o pistão é comprimido até o volume de 2 cm3 e sua temperatura aumenta para 50º C. 1

11 1 Força = 20 lkgf haste BOMBA PNEUMÁTICA êmbolo Volume inicial = 10 cm3 Volume final = 2 cm3 Temperatura inical = 30º C Temperatura final = 50º C pneu Figura 10 Bomba pneumática 13 VÁLVULAS DIRECIONAIS PNEUMÁTICAS As válvulas pneumáticas são aparelhos de comando ou de regulagem de partida, parada e direção. Elas comandam também a pressão ou a vazão do meio de pressão armazenada em um reservatório ou movimentada por um compressor. A denominação "válvula"é válida, correspondendo à linguagem internacionalmente usada, para todos tipos de construção: registros, válvulas de esfera, válvulas de assento, válvulas direcionais, etc.. Esta validade é definida pela norma DIN , conforme recomendação da CETOP (Comissão Européia de Transmissões Óleo - Hidráulica e Pneumática). Esquemas pneumáticos usam símbolos para a descrição de válvulas, símbolos estes que não caracterizam o tipo de construção, mas somente a função das válvulas. As válvulas simbolizamse com quadrados e o número de quadrados unidos indica o número de posições que uma válvula pode assumir. A função e o número de vias são desenhados nos quadrados. As linhas indicam as vias de passagem, as setas a direção do fluxo. Fechamentos são indicados dentro dos quadrados com tracinhos transversais A denominação de uma válvula depende do número de vias (conexões) e do número das posições de comando. O primeiro número indica a quantidade de vias e o segundo número indica a quantidade das posições de comando da válvula. As conexões de pilotagem (comando da válvula por pressão) não são consideradas como vias. As válvulas direcionais pneumáticas são portanto os componentes dos circuitos pneumáticos que recebem nossos comandos, comandos do computador ou comandos do CLP, para acionar com isso os elementos de trabalho (atuadores). É através delas que damos partida nos atuadores e são elas que determinam o tempo que os atuadores permanecerão pressurizados ou acionados. Veremos a seguir a simbologia utilizada para identificação das válvulas direcionais nos circuitos: 13.1 NÚMERO DE POSIÇÕES DAS VÁLVULAS DIRECIONAIS A simbologia do número de posições das válvulas direcionais segue uma lógica de fácil entendimento e dão uma idéia de seu funcionamento real. Basicamente seus simbolos sõa em forma de quadradinhos, no mínimo dois, que significam o número de posições que a válvula poderá assumir. Uma válvula direcional simbolizada com dois quadradinhos significa que ele tem duas posições. Quando possuir três quadradinhos, três posições; quatro quadradinhos, quatro posições e assim por diante. Exemplos a seguir : 2 posições 3 posições Figura 11 Posições das válvulas direcionais 4 posições 13.2 NÚMERO VIAS DAS VÁLVULAS DIRECIONAIS 1

12 1 As vias das válvulas direcionais são as suas ligações de ar, conectadas através das tubulações provenientes dos mais diversos locais do circuito. São representadas externamente através de traços contínuos, onde serão conectados as mangueiras de ar. Internamente, são representadas através de setas direcionais que indicam o caminho seguido pelo ar, na posição (quadradinho) desenhada. Uma regra básica é que o ar segue sempre na direção da seta, nunca contra ela. Podemos encontrar, também, internamente o símbolo de bloqueio de ar que indica a NÃO passagem do mesmo na posição (quadradinho) desenhada. As letras ao lado das vias significam: P = pressão, A = utilização (alternada), B = utilização (alternada), S = escape. Exemplos: A A 2 vias/2 posições NF 2 vias/2 posições NA P P A 3 vias/2 posições NF A 3 vias/2 posições NA P S P S A B 4 vias/2 posições A B 4 vias/2 posições P S P S A B 5 vias/3 posições A B 5 vias/3 posições S P S A B S P S 5 vias/4 posições S P S Figura 12 Vias das válvulas direcionais 13.3 COMANDOS DAS VÁLVULAS DIRECIONAIS As válvulas direcionais são comandadas através de sinais elétricos ou mecânicos. A seguir veremos os tipos de comandos encontrados atualmente: 1

13 1 2/2 vias NF Botão com trava 2/2 vias NA Alavanca com trava 2/2 vias NF Botão/mola 2/2 vias NA Alavanca/mola 3/2 vias NF Piloto/mola 3/2 vias NA Bobina/mola 4/2 vias Dupla Bobina-servo/mola 3/2 vias NF Pedal/mola 3/2 vias NA Rolete/mola 5/2 vias Dupla Bobina-servo/mola 4/3 vias Dupla Bobina-servo/mola Centro-fechado 5/3 vias Dupla Bobina-servo/mola Centro-fechado Figura 13 Comandos das válvulas direcionais 14 - PREPARAÇÃO DO AR COMPRIMIDO PARA ACIONAMENTO DE ATUADORES Somente na prática é que encontramos exemplos onde se deve dar muito valor à qualidade do ar comprimido. Impurezas em forma de partículas de sujeira ou ferrugem, restos de óleo e umidade levam, em muitos casos à falha em instalações e avarias nos elementos pneumáticos. devido a isso, todo sistema pneumático deve possuir elementos que provoquem a filtragem e a devida limpeza do ar a ser utilizado. Na preparação do ar comprimido a ser utilizado no sistema, encontramos três elementos básicos: Filtro, Regulador de Pressão e Lubrificador FILTRO DE AR COMPRIMIDO Sua função é reter as partículas de impureza, bem como a água condensada presentes no ar que por ele passa. O ar comprimido ao entrar no copo do filtro, é forçado a um movimento de rotação por meio de "rasgos direcionais". Com isso, separam-se as impurezas maiores, bem como as gotículas de água, por meio da força centrífuga e depositam-se no fundo do copo. O líquido condensado acumulado no fundo do copo deve ser eliminado, o mais tardar ao atingir a marca do nível máximo, já que se isto não ocorrer, o líquido será arrastado novamente pelo ar que passa. Para tal prática, basta abrir o parafuso de dreno no fundo do copo indicador. Alguns filtros possuem dreno automático. As partículas sólidas, maiores que a porosidade do filtro, serão retidas por este. Com o tempo, o acúmulo destas partículas impede a passagem do ar. Portanto, o elemento filtrante deve ser limpo ou substituído a intervalos regulares. 1

14 1 Figura 14 Filtro REGULADOR DE PRESSÃO Tem por função manter constante a pressão de trabalho, independente da pressão fornecida pelo compressor de ar ou mesmo do consumo do ar nos pontos de trabalho. A pressão é regulada por meio de uma membrana. Uma das faces da membrana é submetida à pressão de trabalho, enquanto que do outro lado da membrana, atua uma mola cuja pressão é ajustável por meio de um parafuso de regulagem. Com o aumento da pressão na área de trabalho, a membrana se movimenta contra a força da mola. Com isso, a secção nominal de passagem do ar na sede da válvula diminui progressivamente, ou se fecha totalmente. Isto significa que a pressão é cortada para a linha de alimentação do sistema pneumático. Por ocasião do consumo do ar na linha de trabalho, a pressão diminui e a força da mola reabre a válvula, permitindo que o ar penetre no sistema pneumático novamente. Figura 15 - Regulador de pressão LUBRIFICADOR DE AR COMPRIMIDO O lubrificador tem a tarefa de abastecer suficientemente, com materiais lubrificantes, os elementos pneumáticos. Os materiais lubrificantes são necessários para garantir um desgaste mínimo dos elementos móveis, manter tão mínimos quanto possível as forças de atrito e proteger os aparelhos contra a corrosão. Lubrificadores de óleo trabalham, geralmente, segundo o princípio venturi. Segundo este princípio, a diminuição do diâmetro da tubulação por onde passa o ar acarreta um aumento de sua velocidade e por conseqüência acarreta uma queda de pressão na linha de diminuição de área. Com isso, o venturi lubrificador começa a funcionar automaticamente, quando houver fluxo, empurrando o óleo lubrificante para as linhas de utilização do trabalho. Figura 16 Lubrificador UNIDADE DE CONDICIONAMENTO A unidade de condicionamento é a combinação de um filtro de ar comprimido, um regulador de pressão de ar comprimido e de um lubrificador de ar comprimido, tudo num conjunto único o que facilita a manutenção dos três itens mais importantes para a operação de um sistema pneumático: a filtragem para manter o ar absolutamente limpo, a regulagem da pressão para limitar a carga de trabalho dos equipamentos e a lubrificação das partes móveis dos mecanismos, para manter seus movimentos livres e uniformes. Figura 17 - Unidade de codicionamento 15 - VÁLVULA REDUTORA DE FLUXO VARIÁVEL COM RETENÇÃO Também conhecida como "válvula reguladora de velocidade", nesta válvula a regulagem de fluxo é feita somente em uma direção. Uma válvula de retenção fecha a passagem numa direção e o ar pode fluir somente através da área regulada. Em sentido contrário, o ar passa livre através da 1

15 1 válvula de retenção aberta. Empregam-se estas válvulas para a regulagem da velocidade em cilindros ou motores pneumáticos. Regulagem da entrada do ar (regulagem primária) Nesta situação, a regulagem de fluxo é feita somente no sentido de pressão do ar para a unidade acionadora (cilindro pneumático). O retorno do ar é livre, através da válvula de retenção. Regulagem de Exaustão (regulagem secundária) A regulagem é feita na exaustão do ar que volta do cilindro pneumático. Na entrada da pressão, a válvula de retenção permite o fluxo livre. OBS. - a válvula reguladora de fluxo melhora em muito, a conduta do avanço dos cilindros pneumáticos, é comumente encontrada em suas linhas de atuação, e deve ser posicionada sempre na linha de exaustão do ar. Figura 18 - Válvula redutora de fluxo variável com retenção 16 VÁLVULA LIMITADORA DE PRESSÃO São as válvulas de alívio de pressão que limitam a pressão de ar do circuito pneumático, em caso de falha do regulador de pressão. Sua regulagem deverá estar sempre acima da pressão de trabalho do regulador e, em caso de falha deste, ela entrará em funcionameno limitando a pressão do circuito. O excesso de ar é enviado à atmosfera. Figura 19 - Válvula limitadora de pressão 17 - VÁLVULA ALTERNADORA (FUNÇÃO LÓGICA "OU") Também chamada "válvula de comando duplo ou válvula de dupla retenção". Esta válvula tem duas entradas, X e Y, e uma saída A. Entrando ar comprimido em X, a esfera fecha a entrada Y e o ar flui de X para A. Em sentido contrário, quando o ar flui de Y para A e a entrada X será fechada. Esta válvula também seleciona os sinais das válvulas pilotos provenientes de diversos pontos e evita o escape do ar através de uma segunda válvula. Ela é muito utilizada quando se precisa garantir o acionamento de um cilindro pneumático, por duas fontes distintas. Estando no caminho de atuação do cilindro, ela garante sempre seu acionamento por qualquer uma das fontes (muito útil em situações de emergências). Ver figura no final da apostila. Figura 20 Válvula alternadora OU 18 ACIONAMENTO DE ATUADORES PNEUMÁTICOS Os atuadores pneumáticos, cilindros ou motores, são sempre acionados pelas válvulas direcionais. Veremos a seguir uma série de acionamentos: 18.1 ACIONAMENTO DE ATUADORES PNEUMÁTICOS DE AÇÃO SIMPLES 1

16 1 Cilindro simples ação retorno por mola Cilindro simples ação avanço por mola Cilindro simples ação sem mola Motor pneumático unidirecional V. dir 3/2 vias botão/mola NF V. dir 3/2 vias botão c/ trava NA V. dir 3/2 vias alavanca/mola NF V. dir 3/2 vias pedal/mola NF 0 Compressor Unidade Válvula de bloqueio 90 PSI de 2/2 vias NF Condicionamento 70 PSI Figura 21 Acionamento de atuadores pneumáticos de ação simples 18.2 ACIONAMENTO DE ATUADORES PNEUMÁTICOS DE AÇÃO DUPLA Cilindro ação dupla Cilindro ação dupla haste passante Cilindro ação dupla sem haste Motor pneumático bidirecional V. Redutora fluxo unidirecional c/ restrição V. dir 4/2 vias alavanca/mola V. dir 5/2 vias duplo-piloto V. dir 5/3vias alavanca c/ trava 0 V. dir 3/2 vias botão/mola NF Compressor Unidade Válvula de bloqueio 90 PSI de 2/2 vias NF Condicionamento 70 PSI Figura 21 Acionamento de atuadores pneumáticos de ação dupla 18.3 CIRCUITO PNEUMÁTICO DE UMA PRENSA PNEUMÁTICA 1

17 1 0 V. dir 3/2 vias botão/mola NF Válvula de 2 pressões Cilindro simples ação retorno por mola Compressor 90 PSI Unidade de Condicionamento 70 PSI V. dir 3/2 vias botão/mola NF Figura 22 Ckt pneumático de uma prensa pneumática 19 - FLUXO DE AR O fluxo produz o movimento. Podemos visualizá-lo cada vez que abrimos uma torneira de água. O fluxo é o movimento do fluido causado pela diferença de pressão em dois pontos. A companhia de água cria uma pressão nos canos e, quando abrimos a torneira, a diferença de pressão força a água para fora. Nos circuitos pneumáticos, os compressores de ar criam a pressão que força o ar a executar um trabalho mecânico.temos duas formas de medir o fluxo: pela velocidade ou pela vazão. Velocidade do fluido é a velocidade média de suas partículas ao passar por um certo ponto. Ela é medida geralmente em metros por segundo (m/seg) ou metros por minuto (m/min) e também polegadas por minuto (pol/min) ou pés por minuto (feet/min) no sistema inglês. A vazão é o volume de fluido que passa por um ponto na unidade de tempo. Geralmente é dada em pés cúbicos por minutos ou metros cúbicos por minuto. Na aviação usa-se libras por minuto (PPM Pounds Per Minute). Poucos são os usuários que têm uma noção de quanto custa o ar comprimido. A maioria o considera uma fonte de energia barata, daí o engano desses usuários. O custo do ar comprimido é de aproximadamente U$ 0,30 para cada 1000 pés cúbicos por minuto ou 28 metros cúbicos por minuto de ar comprimido consumido, para tanto é necessário os técnicos na área estarem conscientes da utilização racional dos equipamentos de compressão de ar COMPRESSORES DE AR 20.1 DEFINIÇÃO Compressores são máquinas destinadas a elevar a pressão de um certo volume de ar admitido nas condições atmosféricas, até uma determinada pressão exigida na execução dos trabalhos dos atuadores pneumáticos COMPRESSORES DE DESLOCAMENTO POSITIVO Baseiam-se fundamentalmente na redução do volume do ar. O ar é admitido da atmosfera e enviado para uma câmara isolada do meio exterior, onde seu volume é gradualmente diminuído, processando-se a compressão. Quando a pressão ideal é atingida, para-se a admissão/compressão do ar ou, se não for possível parar a máquina, alivia-se o excesso de pressão para a atmosfera a fim de que a pressão não aumente muito e provoque a explosão devido à ruptura dos recepientes que encerram o ar comprimido. Encontramos os tipos: ROTATIVOS Root e Palheta ALTERNATIVO Diafragma e Pistão 20.3 COMPRESSORES DE DESLOCAMENTO DINÂMICO 1

18 1 Nestes compressores, a elevação de pressão é obtida por meio de conversão de energia cinética em energia de pressão, durante a passagem do ar através das palhetas do compressor. O ar admitido é colocado em contato com impulsores (rotor laminado) dotados de alta velocidade. Este ar é acelerado, atingindo velocidades elevadas e conseqüentemente os impulsores transmitem energia cinética ao ar. Posteriormente, seu escoamneto é retardado por meio de difusores, obrigando a uma elevação de pressão. Encontramos os tipos: EJETOR, RADIAL e DINÂMICO 20.4 TIPOS DE COMPRESSORES COMPRESSOR MONOESTÁGIO DE PISTÕES No compressor monoestágio de pistões, durante o curso de admissão, o ar é aspirado através da válvula de aspiração que abre a passagem do ar atmosférico, através de um filtro. A aspiração se dá durante todo o recuo do pistão. Com o avanço do pistão, o ar anteriormente succionado para dentro do pistão, será comprimido durante todo o curso de avanço do pistão. A compressão se dará durante o avanço do pistão, pelo princípio de diminuição de área. Haverá aí, além do aumento de pressão, um aumento de temperatura que deverá ser compensada com um sistema de refrigeração, operada por alhetas e ventilador. Este compressor é atualmente o mais usado e sua lubrificação é feita na parte inferior dos pistões, acionado por um eixo virabrequim que salpica o óleo nas partes móveis interiores. Figura 23 Compressor de pistão COMPRESSOR MULTIESTÁGIO DE PISTÕES Para a compressão a pressões mais elevadas, são necessários compressores com vários estágios. O ar aspirado será comprimido pelo primeiro êmbolo (pistão), refrigerado e novamente comprimido pelo próximo êmbolo. Na produção de altas pressões, faz-se necessária uma refrigeração intermediária pois cria-se alto aquecimento resultante da compressão das moléculas do ar que são altamente excitadas, alterando sua posição inicial de repouso. Figura 24 - Compressor pistão de 2 estágios COMPRESSOR DE MEMBRANA (DIAFRAGMA) 1

19 1 Este tipo pertence ao grupo de compressores de pistão. Mediante uma membrana, o pistão fica separado da câmara de sucção e compressão, quer dizer, o ar não terá contato com as partes deslizantes. Este ar, portanto, ficará sempre livre de resíduos de óleo. Estes compressores são os preferidos e mais empregados na indústria alimentícia, farmacêutica e química, devido não haver contato entre o ar produzido e as partes mecânics do compressor. Diafragma Pistão Figura 25 Compressor de membrana COMPRESSOR DE PARAFUSOS Os compressores de parafusos são compressores rotativos com dois eixos de rotação. Eles operam conforme o princípio do deslocamento e deslocam continuamente. Com isto não ocorrem golpes e oscilações de pressão. Uma vez que estes não possuem válvulas de aspiração e de pressão, eles têm baixa manutenção. São pequenos no tamanho e permitem alta rotação, no entanto o consumo de potência é mais alto que nos compressores de pistões. Os compressores de parafusos são construídos para operar à seco para ar comprimido isento de óleo, ou no caso normal com injeção de óleo para lubrificação, vedação e resfriamento. Figura 26 Compressor de parafusos COMPRESSOR DE PALHETAS Trata-se de um compressor rotativo, de um eixo que opera conforme o princípio de deslocamento. Em um compartimento cilíndrico, com aberturas de entrada e saída, gira um rotor alojado excentricamente, com palhetas ao seu redor. Neste compressor, se estreitam (diminuem) os compartimentos, a medida que as palhetas vão passando, comprimindo então o ar nos mesmos. Quando em rotação, as palhetas são, pela força centrífuga, forçadas contra a parede. Devido à excentricidade onde gira o rotor, há um aumento de área na sucção e uma diminuição na pressão. A vantagem deste compressor está na sua construção um tanto econômica em espaço, bem como em seu funcionamento contínuo e equilibrado e, no uniforme fornecimento de ar livre de qualquer pulsação. Sua lubrificação é feita por injeção de óleo. Figura 27 - Compressor palheta COMPRESSOR ROOT 1

20 2 Neste compressor, o ar é transportado de um lado para o outro sem alteração de volume. A compressão do ar efetua-se pelos cantos de duas células rotativas, cujo ar é forçado a passar para o outro lado do compressor, que eventualmente estará sendo enviado para uma câmara fechada a receber a pressão. Este compressor tem baixa capacidade de compressão, entretanto é capaz de enviar enorme carga (volume) de ar para ambientes de grandes necessidades de vazão do ar, como por exemplo cabines pressurizadas de aeronaves com grande número de passageiros. Através de um acionamento sincronizado das células, pode-se obter uma operação sem contato entre as células rotativas e a carcaça do compressor, não sendo necessária uma lubrificação no seu interior, apenas no rolamento do eixo rotativo das células. Figura 28 - Compressor roots COMPRESSOR AXIAL (TURBINA) Este compressor trabalha segundo o princípio de fluxo e é adequado para o fornecimento de grandes vazões de ar. O ar é colocado em movimento por uma ou mais turbinas, e esta energia de movimento é então transformada em energia de pressão.o ar movimenta-se em direção ao próprio sentido do eixo do compressor, axialmente, e dirige-se para o lado de saída com grande carga de volume e pressão. Se as turbinas forem colocadas em série, o poder de compressão e de fluxo serão enormes e poderão ser utilizados por um grande número de equipamentos. É o que encontramos nas grandes indústrias que necessitam de uma grande produção de ar para acionar numerosos equipamentos pneumáticos em paralelo. Figura 29 - Compressor axial COMPRESSOR RADIAL (CENTRÍFUGO) Este compressor também trabalha segundo o princípio de fluxo, adequado para o fornecimento de grande vazão de ar. Os compressores radiais são máquinas de fluxo como os compressores axiais., nos quais a energia cinética é convertida em pressão. Nesta a aspiração também ocorre no sentido axial sendo em seguida o ar conduzido no sentido radial (90º em relação ao eixo) para a saída. Também os compressores radiais são fabricados para grandes vazões, são de baixa manutenção, e para alcançar pressões maiores são necessários vários estágios de compressão. Ver figura na página seguinte 2

21 2 Figura 30 - Compressor Radial VAZÃO DE AR DOS COMPRESSORES A vazão de ar fornecido pelos compressores é a quantidade de ar que está sendo fornecido pelo compressor e é através da vazão fornecida que escolhemos o compressor ideal para operar nossos equipamentos pneumáticos. Uma grande indústria ou uma aeronave de grande porte que necessita de um enorme potencial de componentes pneumáticos, trabalha com compressores de fluxo tipo axial ou radial. Um pintor de veículos numa pequena oficina mecânica precisa apenas de um compressor tipo pistão monoestágio. A vazão fornecida depende da construção do compressor e é indicada como vimos anteriormente, em metros cúbicos por minuto, pés cúbicos por minuto ou libras/min. A pressão de regime é a pressão fornecida pelo compressor, bem como é a pressão do reservatório e a pressão na rede distribuidora até o consumidor. A pressão de trabalho é a pressão necessária nos pontos de trabalho. Um Sistema Pneumático Básico é constituído de um compressor, um reservatório e um ponto de trabalho REGULAGEM E ACIONAMENTO DOS COMPRESSORES O acionamento dos compressores, é conforme as necessidade do usuário, podendo ser por motor elétrico ou motor a explosão. Em instalações industriais, aciona-se na maioria dos casos, com motor elétrico. Tratando-se de uma estação móvel, emprega-se para o acionamento um motor a explosão (gasolina ou óleo diesel). Para combinar o volume de fornecimento com o consumo de ar, é necessária uma regulagem dos compressores. Dois valores limites são pré-estabelecidos: pressão Máxima e pressão Mínima, as quais influenciam no volume fornecido. Encontramos, teoricamente, diversas formas de regulagens que vão desde fechamento da sucção do ar até o fechamento do fornecimento de pressão, entretanto a maneira que é mais encontrada na prática é a regulagem intermitente que permite ao compressor funcionar em dois campos: fornecimento em carga e parada total. Na regulagem intermitente, o ar produzido pelo compressor ao atingir a pressão máxima regulada, tem seu motor elétrico desligado por um pressostato (interruptor elétrico sensível à pressão) e ele pára então de fornecer pressão, mantendo a carga já produzida no seu reservatório. A medida que a pressão do ar vai sendo consumida e baixa até um valor mínimo também préestabelecido, o pressostato liga novamente o motor elétrico e o compressor começa a trabalhar outra vez, fornecendo a pressão necessária para encher novamente o reservatório REFRIGERAÇÃO DOS COMPRESSORES O ar quente resultante da compressão aquece por demasia as paredes do cilindro que alojam o pistão de compressão. Torna-se necessário então, a refrigeração do cilindro para que ele permita o perfeito funcionamento do pistão. Em compressores de pequeno porte, serão suficientes palhetas de aeração para que o calor seja dissipado. Compressores maiores, estão equipados, ainda 2

22 2 mais, com um ventilador para dissipar o calor nas alhetas. Tratando-se de uma estação de compressores com uma elevada potência de acionamento, uma refrigeração a ar seria insuficiente, os compressores devem então ser equipados com refrigeração à água LUGAR DE MONTAGEM DOS COMPRESSORES A estação de compressores deve ser montada dentro de um ambiente fechado, com proteção acústica devido ao grande barulho por ele produzido. O mantenedor de funcionamento do compressor deve utilizar sempre um abafador nos ouvidos. O ambiente deve ter boa aeração e o ar sugado para o compressor deve ser fresco, seco e livre de poeira. Nas indústrias de grande porte, alarmes sonoros avisam os mantenedores, a falha de produção de um compressor. Compressor reserva é automaticamente acionado não parando a linha de produção MANUTENÇÃO DO COMPRESSOR Esta é uma tarefa importante dentro do setor industrial. É imprescindível seguir as instruções recomendadas pelo fabricante, que conhece os pontos vitais de manutenção. Um plano semanal de manutenção será previsto, e nele será programada uma verificação no nível de lubrificação, nos lugares apropriados e, particularmente nos mancais do compressor, motor e cárter. Neste mesmo prazo será prevista a limpeza do filtro de ar e a verificação experimental da válvula de segurança, para comprovação de seu real funcionamento. Será prevista, também, a verificação da tensão das correias. Periodicamente será verificada a fixação do volante sobre o eixo de manivelas. Drenar semanalmente a água acumulada no tanque do compressor e, quando seu uso é muito constante, drenar diariamente RESERVATÓRIO DE AR COMPRIMIDO O reservatório serve para a estabilização da distribuição do ar comprimido. Ele elimina as oscilações de pressão na rede distribuidora e, quando há momentaneamente alto consumo de ar, é uma garantia de reserva. A grande superfície do reservatório refrigera o ar suplementar, por isso se separa diretamente no reservatório, uma parte da umidade do ar com água. A água encontrada nos reservatórios de ar comprimido é resultante da condensação do ar quente de compressão(aspirado e comprimido com a umidade encontrada na atmosfera), resfriado pelo contato com o grande volume de ar fresco do reservatório. A água, mais pesada, repousa no fundo do tanque e deve ser, diariamente, eliminada por intervenção manual. Ver figura na página seguinte 2

23 2 Figura 31 - Reservatório de ar comprimido 22 - REDE DE DISTRIBUIÇÃO DO AR COMPRIMIDO Provocada pela sempre crescente racionalização e automatização das instalações industriais, a necessidade de ar nas fábricas está crescendo. Cada máquina e cada dispositivo requer sua quantidade de ar que está sendo fornecido pelo compressor, através da rede distribuidora. O diâmetro das tubulações deve ser capaz de alimentar cada ponto de distribuição e manter uma carga de ar necessária para manter em operação, cada ponto de utilização. A escolha do diâmetro da tubulação não é realizada por quaisquer fórmulas empíricas ou para aproveitar tubos por acaso existentes em depósito, mas sim considerando-se : - volume corrente (vazão) - comprimento da rede - queda de pressão admissível - pressão de trabalho - número de pontos de estrangulamento da rede REDE DE DISTRIBUIÇÃO EM CIRCUITO ABERTO Consiste de uma tubulação única fornecedora de pressão. O ar do compressor atua em toda extensão da tubulação, que possui em posições estratégicas, os pontos de distribuição do ar. As tubulações devem ser montadas com um declive de 1% a 2% na direção do fluxo e, por causa da formação de água condensada, é fundamental, em tubulações horizontais instalar os ramais de tomadas de ar na parte superior do tubo principal. Para interceptar e drenar a água condensada, devem ser instaladas derivações com drenos na parte inferior da tubulação principal. 2

24 2 Figura 32 - Rede de distribuição de ckt aberto REDE DE DISTRIBUIÇÃO EM CIRCUITO FECHADO Geralmente as tubulações principais são montadas em circuito fechado. Partindo da tubulação principal, são instaladas as ligações em derivação. Quando o consumo de ar é muito grande, consegue-se mediante este tipo de montagem, uma alimentação uniforme. O ar flui em ambas as direções. Figura 33 - Rede de distribuição de ckt fechado REDE DE DISTRIBUIÇÃO COMBINADA A rede combinada também é uma instalação em circuito fechado, a qual por suas ligações longitudinais e transversais, oferece a possibilidade de trabalhar com ar em qualquer lugar. Mediante válvulas de fechamento existe a possibilidade de fechar determinadas linhas de ar comprimido quando as mesmas não forem usadas ou quando for necessário pô-las fora de serviço por razões de reparação e manutenção. Também pode ser feito um controle de estanqueidade. Figura 34 Rede de distribuição combinada 2

25 SIMBOLOGIA PNEUMÁTICA A T U A D O R E S P N E U M Á T I C O S Cilindro atuador de ação simples com mola, recuo Cilindro atuador de ação simples com mola, avanço Cilindro atuador de ação simples sem mola Cilindro atuador de ação dupla Cilindro atuador de ação dupla com controle de velocidade Cilindro atuador de pressão diferencial Cilindro atuador de ação dupla e haste dupla Cilindro atuador de ação dupla, haste dupla com controle de velocidade Cilindro atuador de ação dupla sem haste, com controle de velocidade Cilindro atuador de ação dupla com trava, com controle de velocidade Cilindro atuador de ação simples tipo below Motor pneumático unidirecional Motor pneumático bidirecional Atuador pneumático giratório 2

26 2 V Á V U L A S D I R E C I O N A I S Válvula Direcional 2/2 vias Válvula Direcional 3/2 vias Válvula Direcional 4/2 vias Válvula Direcional 5/2 vias Bloqueio Passagem C O M A N D O S D A S V Á L V U L A S D I R E C I O N A I S Mola Botão Botão com trava Alavanca Alavanca com trava Pedal Piloto Rolete Escape L I N H A S P N E U M Á T I C A S Linha de pilotagem Linha de pressão V Á L V U L A S DE C O N T R O L E DE P R E S S Ã O 2

27 2 Regulador de pressão Válvula limitadora de pressão (v. de alívio) Válvula de seqüência Válvula de seqüência com válvula de retenção Unidade de condicionamento (filtro, regulador e lubrificador) V Á V U L A S D E F L U X O Válvula de retenção (v. unidirecional) Válvula de retenção pilotada Válvula de retenção pilotada Válvula redutora de fluxo fixa Válvula redutora de fluxo variável Válvula redutora de fluxo variável, com retenção Válvula de bloqueio 2 vias NA Válvula de bloqueio 2 vias NF Válvula de 2 pressões (válvula " E " ) Válvula alternadora ou seletora (válvula " OU " ) Válvula de escape rápido A C E S S Ó R I O S 2

Produção, Preparação, Armazenamento, Distribuição GUIA de ESTUDO

Produção, Preparação, Armazenamento, Distribuição GUIA de ESTUDO Produção, Preparação, Armazenamento, Distribuição GUIA de ESTUDO 1 Conteúdo Programático Compressores de ar comprimido Reservatórios de ar comprimido Secadores Estação de compressão Cálculo e dimensionamento

Leia mais

Fundamentos de Automação. Pneumática

Fundamentos de Automação. Pneumática Ministério da educação - MEC Secretaria de Educação Profissional e Técnica SETEC Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Sul Campus Rio Grande Fundamentos de Automação CURSO

Leia mais

É a parte da Física que se ocupa da dinâmica e dos fenômenos físicos relacionados com os gases ou vácuos. É também o estudo da conservação da energia

É a parte da Física que se ocupa da dinâmica e dos fenômenos físicos relacionados com os gases ou vácuos. É também o estudo da conservação da energia Fagner Ferraz É a parte da Física que se ocupa da dinâmica e dos fenômenos físicos relacionados com os gases ou vácuos. É também o estudo da conservação da energia pneumática em energia mecânica, através

Leia mais

Válvulas. 2

Válvulas.   2 www.iesa.com.br 1 Válvulas Quando unimos várias válvulas e pistões por meio de tubulações, a fim de realizar determinada tarefa, damos ao conjunto o nome de Circuito (podendo ser Pneumático ou Hidráulico).

Leia mais

Sistemas hidropneumáticos

Sistemas hidropneumáticos www.sttechboni.weebly.com O ar comprimido é uma das formas de energia mais antigas que o ser humano conhece. A pneumática é definida como a ciência aplicada do uso do ar comprimido e gases semelhantes

Leia mais

Válvulas e sensores pneumáticos

Válvulas e sensores pneumáticos Válvulas e sensores pneumáticos Aula 2 Prof. Dr. Emílio Carlos Nelli Silva Prof. Dr. Rafael Traldi Moura Válvula Pneumáticas As válvulas comandam e influenciam o fluxo do ar comprimido. Classificação Válvulas

Leia mais

Introdução. Aula 1. Prof. Dr. Emílio Carlos Nelli Silva Prof. Dr. Rafael Traldi Moura

Introdução. Aula 1. Prof. Dr. Emílio Carlos Nelli Silva Prof. Dr. Rafael Traldi Moura Introdução Aula 1 Prof. Dr. Emílio Carlos Nelli Silva Prof. Dr. Rafael Traldi Moura Introdução Os elementos da automação industrial são: Sensores; Controladores (comando e regulação); Atuadores (acionamento).

Leia mais

É a parte da Física que se ocupa da dinâmica e dos fenômenos físicos relacionados com os gases ou vácuos. É também o estudo da conservação da energia

É a parte da Física que se ocupa da dinâmica e dos fenômenos físicos relacionados com os gases ou vácuos. É também o estudo da conservação da energia Fagner Ferraz É a parte da Física que se ocupa da dinâmica e dos fenômenos físicos relacionados com os gases ou vácuos. É também o estudo da conservação da energia pneumática em energia mecânica, através

Leia mais

Aula 04 - Atuadores pneumáticos atuadores lineares e rotativos

Aula 04 - Atuadores pneumáticos atuadores lineares e rotativos Aula 04 - Atuadores pneumáticos atuadores lineares e rotativos 1 - INTRODUÇÃO Os atuadores pneumáticos são componentes que transformam a energia do ar comprimido em energia mecânica, isto é, são elementos

Leia mais

PNEUMÁTICA PNEUMÁTICA COMPARAÇÃO DESVANTAGENS VANTAGENS: Preparação; Compressibilidade; Potência; Escape de ar; Custo;

PNEUMÁTICA PNEUMÁTICA COMPARAÇÃO DESVANTAGENS VANTAGENS: Preparação; Compressibilidade; Potência; Escape de ar; Custo; PNEUMÁTICA PNEUMÁTICA É um sistema que torna possível a utilização do ar para geração de energia mecânica. SENAI CETEMP Mecânica Boa força Ótimas velocidades Ótima precisão Hidráulica Ótima força Baixas

Leia mais

Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Automação Pneumática

Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Automação Pneumática Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Automação Pneumática Heitor Medeiros Florencio Tecnologias de Automação Ótima força Elétrica Hidráulica

Leia mais

Válvulas e sensores pneumáticos

Válvulas e sensores pneumáticos Válvulas e sensores pneumáticos Aula 3 e 4 Prof. Dr. Emílio Carlos Nelli Silva Prof. Dr. Rafael Traldi Moura Introdução As válvulas comandam e influenciam o fluxo do ar comprimido. Elas podem ser: Válvulas

Leia mais

Atuadores e Sistemas Pneumáticos

Atuadores e Sistemas Pneumáticos Atuadores e Sistemas Pneumáticos Aula 3 e 4 Prof. Dr. Emílio Carlos Nelli Silva Prof. Dr. Rafael Traldi Moura Atuadores Pneumáticos Classificação Atuador Linear (Movimento Linear): Cilindro de Simples

Leia mais

Reservatório. 2

Reservatório.  2 www.iesa.com.br 1 Reservatório O reservatório serve para a estabilização da distribuição do ar comprimido. Ele elimina as oscilações de pressão na rede distribuidora. Quando há momentaneamente alto consumo

Leia mais

Simbologia dos componentes

Simbologia dos componentes Simbologia dos componentes 1. Símbolos básicos 2. Símbolos funcionais 3. Linhas de escoamento e conexões 4. Tipos de acionamento 2 L1 5. Unidades de conversão e armazenamento de energia L1 6. Distribuição

Leia mais

Fundamentos de Automação. Atuadores e Elementos Finais de Controle

Fundamentos de Automação. Atuadores e Elementos Finais de Controle Ministério da educação - MEC Secretaria de Educação Profissional e Técnica SETEC Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Sul Campus Rio Grande Fundamentos de Automação Atuadores

Leia mais

AFME MECATRÔNICA UNIDADE DE ACIONAMENTO HIDRÁULICO. Atividade 08

AFME MECATRÔNICA UNIDADE DE ACIONAMENTO HIDRÁULICO.   Atividade 08 AFME MECATRÔNICA Atividade 08 UNIDADE DE ACIONAMENTO HIDRÁULICO www.meccomeletronica.com Página 1 1. As mangueiras, assim como os tubos, são linhas utilizadas na hidráulica móbil e estacionária. Sua utilização

Leia mais

Fundamentos de Automação. Hidráulica

Fundamentos de Automação. Hidráulica Ministério da educação - MEC Secretaria de Educação Profissional e Técnica SETEC Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Sul Campus Rio Grande Fundamentos de Automação Hidráulica

Leia mais

SIMBOLOGIA PNEUMÁT ICA

SIMBOLOGIA PNEUMÁT ICA 1 SIMBOLOGIA PNEUMÁT ICA Neste item apresentaremos o resumo dos símbolos usuais empregados em diagramas pneumáticos e hidráulicos. A Tabela 1 apresenta alguns símbolos para os atuadores, conforme a norma

Leia mais

Cálculos envolvendo Atuadores Hidráulicos. Sistemas Hidropneumáticos I Hidráulica 04. Atuador hidráulico de dupla ação

Cálculos envolvendo Atuadores Hidráulicos. Sistemas Hidropneumáticos I Hidráulica 04. Atuador hidráulico de dupla ação UNIFEI Sistemas Hidropneumáticos I Hidráulica 04 Cálculos envolvendo tuadores Hidráulicos EME-26 ula 04 21-09-2009 Prof. José Hamilton Chaves Gorgulho Júnior tuador hidráulico de dupla ação tuador hidráulico

Leia mais

Porque utilizar Acionamentos Pneumáticos e Hidráulicos?

Porque utilizar Acionamentos Pneumáticos e Hidráulicos? www.iesa.com.br 1 Porque utilizar Acionamentos Pneumáticos e Hidráulicos? Existem situações em que somente a energia hidráulica e pneumática oferecem uma solução mais eficiente e de baixo custo. Em algumas

Leia mais

Válvulas Pneumáticas VÁLVULAS

Válvulas Pneumáticas VÁLVULAS VÁLVULAS Vimos que para os atuadores funcionarem é necessário que o ar comprimido chegue até eles. Ainda não explicamos como isso ocorre, porém não é difícil imaginar uma tubulação de aço, borracha ou

Leia mais

VÁLVULAS HIDRÁULICAS E PNEUMÁTICAS. 1 Introdução. 2 Válvulas de controle direcional

VÁLVULAS HIDRÁULICAS E PNEUMÁTICAS. 1 Introdução. 2 Válvulas de controle direcional VÁLVULAS HIDRÁULICAS E PNEUMÁTICAS 1 Introdução Os cilindros pneumáticos, componentes para máquinas de produção, para desenvolverem suas ações produtivas, devem ser alimentados ou descarregados convenientemente,

Leia mais

Mecânica dos Fluidos. Aula 18 Exercícios Complementares. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 18 Exercícios Complementares. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 18 Exercícios Complementares Tópicos Abordados Nesta Aula. Exercícios Complementares. 1) A massa específica de uma determinada substância é igual a 900kg/m³, determine o volume ocupado por uma massa

Leia mais

Página 1

Página 1 1. Analise as afirmativas a seguir sobre fluidos hidráulicos. I - É um meio de transmissão de energia, um lubrificante, um vedador e um veículo de transferência de calor. II - Quando formulado a partir

Leia mais

ATUADORES E VÁLVULAS

ATUADORES E VÁLVULAS ATUADORES E VÁLVULAS ATUADORES Esses mecanismos são denominados atuadores, pois sua função é aplicar ou fazer atuar energia mecânica sobre uma máquina, levando-a a realizar um determinado trabalho. Os

Leia mais

SEM0540 Elementos de Automação

SEM0540 Elementos de Automação SEM0540 Elementos de Automação Introdução a Sistemas Hidráulicos e Pneumáticos Prof. Dr. Thiago Boaventura tboaventura@usp.br Prof. Dr. José Guilherme Sabe equitron@equitron.com.br São Carlos, 19/06/18

Leia mais

Válvula Redutora de Pressão Modelo 42 LP (Ação Direta)

Válvula Redutora de Pressão Modelo 42 LP (Ação Direta) Válvula Redutora de Pressão Modelo 42 LP (Ação Direta) Reduz perdas por vazamentos Admite vazões extremamente baixas Possui filtro incorporado ao cartucho removível Apresenta baixos níveis de ruído Possui

Leia mais

Convecção natural. É o termo usado quando o movimento do fluido se dá devido às diferenças de densidade em um campo gravitacional.

Convecção natural. É o termo usado quando o movimento do fluido se dá devido às diferenças de densidade em um campo gravitacional. CAPÍTULO 6 - SISTEMA DE REFRIGERAÇÃO INTRODUÇÃO O Sistema de Refrigeração tem por objetivo impedir que os elementos mecânicos do motor atinjam uma temperatura muito elevada ao contato com os gases da combustão.

Leia mais

Industria de Equipamentos Pneumáticos LINHA DE PRODUTOS

Industria de Equipamentos Pneumáticos LINHA DE PRODUTOS Industria de Equipamentos Pneumáticos LINHA DE PRODUTOS LINHA DE PRODUTOS Cilindros ISO Série NCWE e CWU Fornecidos nos diâmetros de 32, 40, 50, 63, 80, 100, 125, 160, 200, 250 e 320, de acordo com as

Leia mais

1 Circuitos Pneumáticos

1 Circuitos Pneumáticos 1 Circuitos Pneumáticos Os circuitos pneumáticos são divididos em várias partes distintas e, em cada uma destas divisões, elementos pneumáticos específicos estão posicionados. Estes elementos estão agrupados

Leia mais

HIDRÁULICA 2/7/2007 1

HIDRÁULICA 2/7/2007 1 HIDRÁULICA 1 Introdução Vem se destacando e ganhando espaço como um meio de transmissão de energia nos mais variados segmentos do mercado. Áreas de automatização foram possíveis com a introdução da hidráulica

Leia mais

Introdução a Pneumática e a Hidráulica

Introdução a Pneumática e a Hidráulica Introdução a Pneumática e a Hidráulica Conteúdo adaptado de Treinamento Festo por Profa.Karla em 2-2015 DIDACTIC P110 Automação Pneumática 13/09/2015 1 Conteúdo Fundamentos e princípios físicos da pneumática.

Leia mais

Atuadores Pneumáticos Lineares

Atuadores Pneumáticos Lineares UNIFEI Sistemas Hidropneumáticos I Pneumática 02 Atuadores Pneumáticos Lineares EME-26/EME610 Aula 08 03-11-2009 Prof. José Hamilton Chaves Gorgulho Júnior Introdução Atuadores pneumáticos incluem cilindros

Leia mais

Sistemas Hidropneumáticos I Hidráulica 03

Sistemas Hidropneumáticos I Hidráulica 03 Símbolos UNIFEI Sistemas Hidropneumáticos I Hidráulica 03 EME-26 Aula 03 14-09-2008 Prof. José Hamilton Chaves Gorgulho Júnior Linhas de escoamento do fluido Símbolo das linhas de escoamento Cano Tubo

Leia mais

RESPOSTA TÉCNICA. Informações técnicas sobre desenvolvimento de projetos de rede de ar comprimido.

RESPOSTA TÉCNICA. Informações técnicas sobre desenvolvimento de projetos de rede de ar comprimido. RESPOSTA TÉCNICA Título Cálculo para desenvolvimento de redes de ar comprimido Resumo Informações técnicas sobre desenvolvimento de projetos de rede de ar comprimido. Palavras-chave Ar comprimido; compressor

Leia mais

Aula 03. Dimensionamento da Tubulação de Distribuição de Ar Comprimido

Aula 03. Dimensionamento da Tubulação de Distribuição de Ar Comprimido Aula 03 Dimensionamento da Tubulação de Distribuição de Ar Comprimido 1 - Introdução A rede de distribuição de ar comprimido compreende todas as tubulações que saem do reservatório, passando pelo secador

Leia mais

Atuadores Pneumáticos Rotativos

Atuadores Pneumáticos Rotativos UNIFEI EME610 - Sistemas Hidropneumáticos Pneumática 2 Atuadores Pneumáticos Rotativos Aula 9 Prof. José Hamilton Chaves Gorgulho Júnior https://www.youtube.com/watch?v=-65-t7st6tw Atuadores oscilantes

Leia mais

Atuadores Pneumáticos

Atuadores Pneumáticos www.iesa.com.br 1 Atuadores Pneumáticos Os atuadores pneumáticos são classificados em: Atuadores Pneumáticos Lineares: São atuadores que geram movimentos lineares Atuadores Pneumáticos Rotativos: São atuadores

Leia mais

1 Introdução 2 CONCEITOS FUNDAMENTAIS HIDRÁULICA. Prof. Ezequiel de Souza Costa Júnior (CEFET-MG)

1 Introdução 2 CONCEITOS FUNDAMENTAIS HIDRÁULICA. Prof. Ezequiel de Souza Costa Júnior (CEFET-MG) HIDRÁULICA Prof. Ezequiel de Souza Costa Júnior (CEFET-MG) 1 Introdução 1.1 Histórico: Existem apenas três métodos conhecidos de transmissão de potência na esfera comercial: mecânica, elétrica e fluídica.

Leia mais

3. DISTRIBUIÇÃO DO AR COMPRIMIDO

3. DISTRIBUIÇÃO DO AR COMPRIMIDO 3. DISTRIBUIÇÃO DO AR COMPRIMIDO 3.1. Reservatório de ar comprimido FUNÇÃO: estabilizar a distribuição do ar comprimido, eliminar as oscilações de pressão na rede distribuidora e, quando há um momentâneo

Leia mais

2ª Aula Compressores e sistemas de ar comprimido

2ª Aula Compressores e sistemas de ar comprimido 2ª Aula Compressores e sistemas de ar comprimido Compressores recíprocos de duplo efeito São compressores caracterizados por possuir pistões de duplo efeito, isto é, os pistões são capazes de comprimir

Leia mais

Atuadores pneumáticos

Atuadores pneumáticos elcabral@usp.br 1 PMR2560 Robótica Atuadores pneumáticos Eduardo L. L. Cabral elcabral@usp.br elcabral@usp.br 2 Objetivos Atuadores pneumáticos : Conceito; Sistemas pneumáticos ; Tipos principais; Dimensionamento.

Leia mais

Transmissão hidráulica de força e energia

Transmissão hidráulica de força e energia Líquidos Transmissão de força Intensificador de pressão Pressão em uma coluna de fluido Velocidade e vazão Tipos de fluxo Geração de calor Diferencial de pressão Transmissão Hidráulica de Força e Energia

Leia mais

Eficiência energética ambiental. Sistemas de ar comprimido. 2 º. semestre, 2017

Eficiência energética ambiental. Sistemas de ar comprimido. 2 º. semestre, 2017 Eficiência energética ambiental Sistemas de ar comprimido 2 º. semestre, 2017 Aplicações de ar comprimido Ar comprimido é utilizado em virtualmente todos os campos na indústria e comércio, tanto na: Manufatura

Leia mais

ATUADORES HIDRÁULICOS E PNEUMÁTICOS

ATUADORES HIDRÁULICOS E PNEUMÁTICOS ATUADORES HIDRÁULICOS E PNEUMÁTICOS Em um sistema hidráulico ou pneumático, os atuadores são equipamentos capazes de converter energia hidráulica em energia mecânica que é utilizada para a movimentação

Leia mais

EME610 - Sistemas Hidropneumáticos Introdução

EME610 - Sistemas Hidropneumáticos Introdução UNIFEI EME610 - Sistemas Hidropneumáticos Introdução Aula 01 Prof. José Hamilton Chaves Gorgulho Júnior Ementa Fundamentos de sistemas hidráulicos e pneumáticos; Componentes principais; Circuitos fundamentais;

Leia mais

Dispositivos pneumáticos - v Objetivo. 5.2 Cuidados com a Segurança

Dispositivos pneumáticos - v Objetivo. 5.2 Cuidados com a Segurança 5 Dispositivos pneumáticos - v1.1 5.1 Objetivo O laboratório dispõe de diversos dispositivos pneumáticos e outros que podem ser utilizados em conjunto com os CLPs. O objetivo desta aula é implementar algumas

Leia mais

Refrigeração e Ar Condicionado

Refrigeração e Ar Condicionado Refrigeração e Ar Condicionado Compressores Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de Juiz

Leia mais

Atuadores e Sistemas Hidráulicos

Atuadores e Sistemas Hidráulicos 1 Atuadores e Sistemas Hidráulicos Prof. Dr. Emílio Carlos Nelli Silva Aula 1 Escola Politécnica da USP Departamento de Engenharia Mecatrônica e Sistemas Mecânicos Introdução 2 Hidráulica é o ramo da engenharia

Leia mais

Circuitos Pneumáticos

Circuitos Pneumáticos www.iesa.com.br 1 Circuitos Pneumáticos Exemplos: 1) Comando de um cilindro de ação simples ) Comando de um cilindro de ação dupla 3) Comando indireto de um cilindro de ação simples 4) Comando indireto

Leia mais

Sistemas Hidráulicos. Composição e Componentes

Sistemas Hidráulicos. Composição e Componentes Sistemas Hidráulicos Composição e Componentes Composição e Componentes Composição e Componentes Esquema geral de sistema hidráulico Três partes principais: Esquema geral de sistema hidráulico Três partes

Leia mais

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS

MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS MÁQUINAS TÉRMICAS E PROCESSOS CONTÍNUOS AULA 14 COMPRESSORES PROF.: KAIO DUTRA Compressores Compressores são máquinas operatrizes que transformam trabalho mecânico em energia comunicada a um gás, predominantemente

Leia mais

AULA 10 - SISTEMAS PNEUMÁTICOS

AULA 10 - SISTEMAS PNEUMÁTICOS AULA 10 - SISTEMAS PNEUMÁTICOS Pneumática Definição Dicionário: Ramo da Física que trata das propriedades físicas (peso, pressão, elasticidade etc.) do ar e dos outros gases; pneumodinâmica. Prof. Fabricia

Leia mais

PNEUMÁTICA DEFINIÇÃO:

PNEUMÁTICA DEFINIÇÃO: DEFINIÇÃO: PNEUMÁTICA Pneumática: (do grego pneumos com o significado de respiração) pode ser entendida como sendo o conjunto de todas as aplicações que utilizam a energia armazenada e transmitida pelo

Leia mais

Compressores. Profa. Alessandra Lopes de Oliveira FZEA/USP

Compressores. Profa. Alessandra Lopes de Oliveira FZEA/USP Compressores Profa. Alessandra Lopes de Oliveira FZEA/USP Compressores l Função: aspirar vapor do evaporador (mantendo P e T desejadas) comprimir o vapor a determinada P e T e deslocar o refrigerante no

Leia mais

Válvulas de Controle 25/11/20122

Válvulas de Controle 25/11/20122 25/11/2012 1 2012 25/11/20122 2 Tipos de Válvulas Os tipos de válvulas classificam-se em função dos respectivos tipos de corpos, e portanto, quando estivermos falando de tipos de válvulas deve-se subentender

Leia mais

12ª Aula Bombas Hidráulicas

12ª Aula Bombas Hidráulicas 12ª Aula Bombas Hidráulicas As bombas são utilizadas nos circuitos hidráulicos, para converter energia mecânica em energia hidráulica. A ação mecânica cria um vácuo parcial na entrada da bomba, o que permite

Leia mais

Vácuo. Figura 2.1: Esquema explicativo para os conceitos de pressão absoluta e pressão manométrica.

Vácuo. Figura 2.1: Esquema explicativo para os conceitos de pressão absoluta e pressão manométrica. 1-1 2. INSTRUMENTOS DE PRESSÃO 2.1. UNIDADES DE PRESSÃO atmosfera psi Kgf/cm² bar Torr * mh2o in. Hg Pascal atm lbf/in² Kgf/cm² bar mmhg mh2o in. Hg Pa atm 1 14,6959 1,033 1,01325 760 10,33 29,92 101325

Leia mais

Válvulas NAMUR - Montagem Direta - Conexão Roscada G1/4"-G3/8"-G1/2"

Válvulas NAMUR - Montagem Direta - Conexão Roscada G1/4-G3/8-G1/2 SÉRIE PÁGS. Colocação de Pedidos 0 Informações Práticas 0 Simbologia 0 0 Bobinas e Conectores 06 07 Informações de Engenharia 08 09 Dimensionamento de Cilindros 0 CILINDROS PNEUMÁTICOS Cilindros Simples

Leia mais

Disciplina: Sistemas Fluidomecânicos. Instrumentos de Pressão

Disciplina: Sistemas Fluidomecânicos. Instrumentos de Pressão Disciplina: Sistemas Fluidomecânicos Instrumentos de Pressão atmosfera psi Kgf/cm² bar Torr (Torricelli) mh2o in. Hg Pascal atm lbf/in² Kgf/cm² bar mmhg mh2o in. Hg Pa atm 1 14,6959 1,033 1,01325 760 10,33

Leia mais

Sistema Linha Dupla. Diagrama de funcionamento. Soned - Indústria e Comércio Ltda. - Especificações de Produtos - Edição 02/2011.

Sistema Linha Dupla. Diagrama de funcionamento. Soned - Indústria e Comércio Ltda. - Especificações de Produtos - Edição 02/2011. Sistema Linha Dupla Este sistema foi projetado para aplicações em equipamentos de grande porte (usinas de açúcar, siderúrgicas, etc.). O sistema Linha Dupla pode operar com óleo ou graxa, que são bombeados

Leia mais

Nebulizadores aplicam gotas menores que 50 mm.

Nebulizadores aplicam gotas menores que 50 mm. Universidade Estadual Paulista Faculdade de Ciências Agrárias e Veterinárias Curso : Agronomia Disciplina: Tratamento Fitossanitário Aula: Aplicação de Líquidos e Pulverizadores Os produtos fitossanitários

Leia mais

Boletim da Engenharia

Boletim da Engenharia Boletim da Engenharia 22 Sistema de Lubrificação Centrífuga de Alta Performance para os Compressores Frigoríficos 09/05 No passado, os compressores frigoríficos com eixos horizontais eram normalmente projetados

Leia mais

Circuito Hidráulico Básico:

Circuito Hidráulico Básico: Circuito Hidráulico ásico: O circuito hidráulico mais simples consiste no comando de avanço e recuo de um cilindro de dupla ação, utilizando uma bomba de vazão constante e uma válvula direcional de acionamento

Leia mais

14ª Aula Bombas Hidráulicas (Complemento)

14ª Aula Bombas Hidráulicas (Complemento) 14ª Aula Bombas Hidráulicas (Complemento) Bombas de Pistão As bombas de pistão geram uma ação de bombeamento, fazendo com que os pistões se alterem dentro de um tambor cilíndrico. O mecanismo de bombeamento

Leia mais

EXERCÍCIOS Curso Básico de Turbinas a Vapor Parte 3. Aluno: 1) Em relação ao sistema de controle das turbinas, marque verdadeiro V, ou Falso F:

EXERCÍCIOS Curso Básico de Turbinas a Vapor Parte 3. Aluno: 1) Em relação ao sistema de controle das turbinas, marque verdadeiro V, ou Falso F: EXERCÍCIOS Curso Básico de Turbinas a Vapor Parte 3 Aluno: Instrutor: Gustavo Franchetto 1) Em relação ao sistema de controle das turbinas, marque verdadeiro V, ou Falso F: (V) O sistema de controle atua

Leia mais

INSTRUMENTAÇÃO EM PROCESSOS INDUSTRIAIS

INSTRUMENTAÇÃO EM PROCESSOS INDUSTRIAIS INSTRUMENTAÇÃO EM PROCESSOS INDUSTRIAIS Válvulas de controle (funções, componentes, tipos e aplicações) Patrícia Lins de Paula 25/03/2012 154 VÁLVULAS São dispositivos destinados a estabelecer, controlar

Leia mais

FUNDAMENTOS FÍSICOS DO AR COMPRIMIDO

FUNDAMENTOS FÍSICOS DO AR COMPRIMIDO DEFINIÇÃO: O ar é incolor, insípido e é uma mistura de diversos gases. Composição percentual do ar seco padrão: (ISO 2533). Elementos Percentual em volume Percentual em massa Nitrogênio 78,08 75,52 Oxigênio

Leia mais

Conservação de Energia

Conservação de Energia Lei de Pascal F = Força A = Área P = Pressão 1. Suponhamos uma garrafa cheia de um líquido, o qual é, praticamente, incompressível 2. Se aplicarmos uma força de 10kgf numa rolha de 1 cm 2 de área 3. o

Leia mais

Hidráulica e Pneumática. Prof. Fagner Ferraz

Hidráulica e Pneumática. Prof. Fagner Ferraz Hidráulica e Pneumática Prof. Fagner Ferraz O que você entende por hidráulica? Pra que serve? Onde se aplica? 2 O termo Hidráulica derivou-se da raiz grega Hidro (água). Entendem-se por Hidráulica todas

Leia mais

Capítulo 4. Elementos finais de controle

Capítulo 4. Elementos finais de controle Capítulo 4 Elementos finais de controle Bombas Máquinas geratrizes, cuja finalidade é deslocar líquidos por escoamento. Ela transforma o trabalho mecânico que recebe de um motor em energia hidráulica sob

Leia mais

Bombas. Máquinas hidráulicas capazes de elevar a pressão de um fluído, isto é, de lhe comunicar energia;

Bombas. Máquinas hidráulicas capazes de elevar a pressão de um fluído, isto é, de lhe comunicar energia; Bombas Máquinas hidráulicas capazes de elevar a pressão de um fluído, isto é, de lhe comunicar energia; As bombas classificam-se de acordo com a forma do propulsor em centrífugas (ou radiais), mistas (ou

Leia mais

Sistemas Hidropneumáticos I Pneumática 01

Sistemas Hidropneumáticos I Pneumática 01 Sistemas Pneumáticos UNIFEI Sistemas Hidropneumáticos I Pneumática 01 EME-26 Aula 07 19-10-2009 Prof. José Hamilton Chaves Gorgulho Júnior Gerador: compressores (êmbolo, palhetas, pistões, parafusos etc.);

Leia mais

FLUTEC Pressure Relief Valves

FLUTEC Pressure Relief Valves FLUTEC Pressure Relief Valves DB4E 1.1. até 630 bar até 30l/min Carcaças de conexão 1. DESCRIÇÃO 1.1. GENERALIDADES As válvulas limitadoras de pressão FLUTEC tipo DB4E são válvulas conforme DIN ISO 1219

Leia mais

Válvula Redutora de Pressão Modelo 42 LP Light (Ação Direta)

Válvula Redutora de Pressão Modelo 42 LP Light (Ação Direta) Válvula Redutora de Pressão Modelo 42 LP Light (Ação Direta) Ideal para instalação por ponto Permite regulagem e manutenção no próprio local Baixo Nível de Ruído Até 20 db Filtro Incorporado Produto altamente

Leia mais

Eletropneumática. Aula 01

Eletropneumática. Aula 01 Eletropneumática Aula 01 Pneumática é o ramo da engenharia que estuda a aplicação do ar comprimido para a tecnologia de acionamento e comando. Na verdade, o uso do ar comprimido como fonte de energia pelo

Leia mais

Válvulas de Controle Direcional (Non-lub)

Válvulas de Controle Direcional (Non-lub) Válvulas de Controle Direcional (Non-lub) Válvulas de controle direcional Identificação das válvulas direcionais Número de posições O número de quadrados representados na simbologia é igual ao número de

Leia mais

Mecânica dos Fluidos. Aula 5 Manômetros e Manometria. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 5 Manômetros e Manometria. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 5 Manômetros e Manometria Tópicos Abordados Nesta Aula Manômetros. Manometria. Definição de Manômetro O manômetro é o instrumento utilizado na mecânica dos fluidos para se efetuar a medição da pressão,

Leia mais

FENÔMENOS DOS TRANSPORTES. Pressão e Estática dos Fluidos

FENÔMENOS DOS TRANSPORTES. Pressão e Estática dos Fluidos Pressão e Estática dos Fluidos 1 Estática dos Fluidos A estática dos fluidos é a ramificação da mecânica dos fluidos que estuda o comportamento de um fluido em uma condição de equilíbrio estático (parado).

Leia mais

Mecanização Agrícola e Máquinas Motorização e partes do sistema

Mecanização Agrícola e Máquinas Motorização e partes do sistema Mecanização Agrícola e Máquinas Motorização e partes do sistema Eng. Agr. Me. Andre Gustavo Battistus E-mail: andregustavo@udc.edu.br E-mail alternativo: andre_battistus@hotmail.com Terminologia Motorização

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA ENGENHARIA AMBIENTAL E CIVIL AULA 4 SISTEMAS ELEVATÓRIOS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA ENGENHARIA AMBIENTAL E CIVIL AULA 4 SISTEMAS ELEVATÓRIOS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA ENGENHARIA AMBIENTAL E CIVIL AULA 4 SISTEMAS ELEVATÓRIOS Prof. Dr. Fernando Ernesto Ucker 2015 SISTEMAS ELEVATÓRIOS Um sistema de recalque

Leia mais

TUBULAÇÕES INDUSTRIAS AULA 4 Prof. Clélio AULA 4. Volume I do Livro Texto CONTEÚDO: Capítulo 7. Purgadores de Vapor, Separadores Diversos e Filtros.

TUBULAÇÕES INDUSTRIAS AULA 4 Prof. Clélio AULA 4. Volume I do Livro Texto CONTEÚDO: Capítulo 7. Purgadores de Vapor, Separadores Diversos e Filtros. AULA 4 Volume I do Livro Texto CONTEÚDO: Capítulo 7 Purgadores de Vapor, Separadores Diversos e Filtros. 1 LINHAS DE VAPOR Nas linhas de vapor sempre haverá água líquida (condensado) resultante da condensação

Leia mais

Segunda lista de exercícios de FT para a segunda parte da D1

Segunda lista de exercícios de FT para a segunda parte da D1 Segunda lista de exercícios de FT para a segunda parte da D1 Exercício 51: Achar p1 do sistema a seguir Os dados deste exercício foram coletados na bancada de laboratório e podem ser obtidos no meu canal

Leia mais

Válvula Redutora de Pressão Modelo 42 LP Micro (Ação Direta)

Válvula Redutora de Pressão Modelo 42 LP Micro (Ação Direta) Válvula Redutora de Pressão Modelo 42 LP Micro (Ação Direta) Ideal para instalação por ponto de utilização, com conexões de 3/8 rosca fêmea padrão BSP Permite regulagem e manutenção no próprio local Baixo

Leia mais

1. INTRODUÇÃO. Figura 1.1 Classificação das máquinas de fluido [adaptado de BRASIL, 2010, p.21] mca metros de coluna d água. 1 1

1. INTRODUÇÃO. Figura 1.1 Classificação das máquinas de fluido [adaptado de BRASIL, 2010, p.21] mca metros de coluna d água. 1 1 1. INTRODUÇÃO Máquina de Fluido (fluid machinery) é o equipamento que promove a troca de energia entre um sistema mecânico e um fluido, transformando energia mecânica (trabalho) em energia de fluido ou

Leia mais

PONTIFICIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA FENÔMENOS DE TRANSPORTE: EXERCÍCIOS 1A. Prof. Dr. Felipe Corrêa V dos Santos

PONTIFICIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA FENÔMENOS DE TRANSPORTE: EXERCÍCIOS 1A. Prof. Dr. Felipe Corrêa V dos Santos PONTIFICIA UNIVERSIDADE CATÓLICA DE GOIÁS ESCOLA DE ENGENHARIA FENÔMENOS DE TRANSPORTE: EXERCÍCIOS 1A Prof. Dr. Felipe Corrêa V dos Santos Goiânia, 2018 Exercícios de Hidrostática - Pressões e Medidores

Leia mais

Professora : Elisângela Moraes

Professora : Elisângela Moraes UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE LORENA -EEL Professora : Elisângela Moraes 02/03/2012 PROGRAMA RESUMIDO 1. Gases Ideais; 2. Gases Reais; 3. Termodinâmica; 4. Termoquímica; 5. Entropia;

Leia mais

Transmissão. Tomada de Força

Transmissão. Tomada de Força Transmissão Tomada de Força Prefácio Este módulo de treinamento refere-se a Tomada de Força. O módulo de treinamento é parte de uma série de módulos destinados ao Treinamento Básico de Transmissão. Este

Leia mais

Operações Unitárias: Bombeamento. Profª. Camila Ortiz Martinez UTFPR Campo Mourão

Operações Unitárias: Bombeamento. Profª. Camila Ortiz Martinez UTFPR Campo Mourão Operações Unitárias: Bombeamento Profª. Camila Ortiz Martinez UTFPR Campo Mourão Bombeamento Transformam trabalho mecânico que recebe de um motor em energia + comuns: fluxo de transporte de... por meio

Leia mais

Manual Técnico de Instalação, Operação e Manutenção. Damper tipo Borboleta

Manual Técnico de Instalação, Operação e Manutenção. Damper tipo Borboleta Manual Técnico de Instalação, Operação e Manutenção Damper tipo Borboleta ISO 9001:2008 VENTEC AMBIENTAL EQUIPAMENTOS E INSTALAÇÕES LTDA Rua André Adolfo Ferrari, nº 550 - Distrito Industrial Nova Era

Leia mais

Bombas hidráulicas. Prof. Dr. Emílio Carlos Nelli Silva Prof. Dr. Rafael Traldi Moura

Bombas hidráulicas. Prof. Dr. Emílio Carlos Nelli Silva Prof. Dr. Rafael Traldi Moura Bombas hidráulicas Prof. Dr. Emílio Carlos Nelli Silva Prof. Dr. Rafael Traldi Moura Definição de bomba hidráulica Definição: Máquina responsável por transformar energia mecânica ou elétrica em energia

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL CAMPUS RIO GRANDE INSTRUMENTAÇÃO INDUSTRIAL

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL CAMPUS RIO GRANDE INSTRUMENTAÇÃO INDUSTRIAL INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO SUL CAMPUS RIO GRANDE INSTRUMENTAÇÃO INDUSTRIAL Aula 12 2 É o tipo de medição que se faz para determinar o nível em função de uma segunda

Leia mais

LINTEC VEÍCULOS E MOTORES ESPECIFICAÇÕES TÉCNICAS

LINTEC VEÍCULOS E MOTORES ESPECIFICAÇÕES TÉCNICAS LINTEC VEÍCULOS E MOTORES ESPECIFICAÇÕES TÉCNICAS Código: ET 700.042 Data: 21/03/2013 MOTOR 3LDG 1500 LINTEC PRODUTO: MOTOR ESPECIFICAÇÕES TÉCNICAS MODELO: MOTOR 3LDG1500 CÓDIGO: 7040.000.002.00.5 APROVADO:

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TURBINAS A VAPOR

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TURBINAS A VAPOR UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TURBINAS A VAPOR Prof. FERNANDO BÓÇON, Dr.Eng. Curitiba, setembro de 2015 IV - TURBINAS A VAPOR 1. GENERALIDADES 1.1

Leia mais

MANUAL VALVULA DE SEGMENTO ESFÉRICO SERIE 960

MANUAL VALVULA DE SEGMENTO ESFÉRICO SERIE 960 A. Introdução Este manual tem por objetivo apresentar as especificações, procedimentos de instalação, operação e manutenção de válvula de segmento esférico série 960. A válvula de segmento esférico montado

Leia mais

Problema 1 Problema 2

Problema 1 Problema 2 1 Problema 1 7ª Edição Exercício: 2.42 / 8ª Edição Exercício: 1.44 A área da seção transversal da válvula do cilindro mostrado na figura abaixo é igual a 11cm 2. Determine a força necessária para abrir

Leia mais

Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama

Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama Pressão: Não é uma grandeza física fundamental; Derivada da medição de força e área; Força é derivada da : massa, comprimento e tempo; Área

Leia mais

Compressores. 2

Compressores.  2 www.iesa.com.br 1 Compressores A pneumática utiliza o ar como fonte de energia para o acionamento de seus automatismos. Esse ar necessita de determinadas condições apropriadas para sua utilização. São

Leia mais