ÍNDICE PREFÁCIO 9 O GREGO 9 FONÉTICA 11 MORFOLOGIA 23 PARTE PARTE CAPÍTULO I 25 ARTIGO CAPÍTULO II 26 SUBSTANTIVOS. QUADRO GERAL DAS DESINÊNCIAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ÍNDICE PREFÁCIO 9 O GREGO 9 FONÉTICA 11 MORFOLOGIA 23 PARTE PARTE CAPÍTULO I 25 ARTIGO CAPÍTULO II 26 SUBSTANTIVOS. QUADRO GERAL DAS DESINÊNCIAS"

Transcrição

1 ÍNI 1 PRT 2 PRT PRÁIO 9 O GRGO 9 ONÉTI 11 LTO GRGO PRONÚNI TRIIONL SONS LÍNGU GRG ONSONTS QU POM INLIZR PLVRS MOIIÇÕS ONÉTIS SÍLS ONTRÇÃO RS LISÃO SPÍRITOS NTOS: RGRS NTUÇÃO NLÍTIS SINIS PONTUÇÃO MOROLOGI 23 LMNTOS O VOÁULO PLVRS VRIÁVIS INVRIÁVIS LXÃO NOMINL PÍTULO I 25 RTIGO SU LXÃO PÍTULO II 26 SUSTNTIVOS. QURO GRL S SINÊNIS 1. a LINÇÃO TM M -a SUSTNTIVOS ONTRTOS NOMS MININOS NOMS MSULINOS... 29

2 2. a LINÇÃO TMS M -o SUSTNTIVOS ONTRTOS LINÇÃO ÁTI JTIVOS 1. a LSS a LINÇÃO: TMS M ONSONT SMIVOGL TM M OLUSIV TM M LÍQUI TM M SIILNT TM M SMIVOGL TM M ITONGO PÊNI À 3. a LINÇÃO PÍTULO III 44 JTIVOS IVISÃO M LSSS RSPTIV LXÃO JTIVOS 1. a LSS JTIVOS 2. a LSS JTIVOS 3. a LSS OS JTIVOS IRRGULRS mégaç polúç OMPRTIVOS SUPRLTIVOS RGRS SU ONSTRUÇÃO OMPRTIVOS SUPRLTIVOS IRRGULRS PÊNI À LXÃO NOMINL PÍTULO IV 57 PRONOMS JTIVOS PRONOMINIS PRONOMS PSSOIS PRONOMS JTIVOS POSSSSIVOS PRONOMS JTIVOS MONSTRTIVOS PRONOM RLTIVO PRONOM INTRROGTIVO tíç, tí PRONOM ININIO tiç, ti PÍTULO V 62 LXÃO VRL VOZ, MOO, TMPO, SPTO, NÚMRO PSSO VOZS MOOS TMPOS SPTO NÚMROS PSSOS... 63

3 TMS, RTRÍSTIS, VOGIS LIGÇÃO, SINÊNIS ORMS NOMINIS O VRO UMNTO RORO LSSIIÇÃO GRL OS VROS LXÃO O VRO eımí LXÃO OS VROS M -w VRO paideúw educar (ONJUGÇÃO) TMPOS SGUNOS OU ORTS VROS ONTRTOS: M -áw M -éw M -ów VROS TM M ONSONT ) TM M OLUSIV ) TM M LÍQUI (l, r, m, n) VROS M -mi OM RORO OM SUIXO SM SUIXO NM RORO VRO oπda, eu sei VROS IRRGULRS RQUNTS PÍTULO VI 106 NUMRIS RINIS OUTROS NUMRIS ORINIS VÉRIOS NUMRIS PÍTULO VII 108 PRPOSIÇÕS PÍTULO VIII 109 VÉRIOS PÍTULO IX 112 ONJUNÇÕS PÍTULO X 113 INTRJIÇÕS

4 PÍTULO XI 114 OMPOSIÇÃO RIVÇÃO OMPOSIÇÃO JUSTPOSIÇÃO PRIXÇÃO RIVÇÃO SUIXOS NOMINIS SUIXOS VRIS PRT SINTX 123 S NGÇÕS PRTÍUL än OUTRS PRTÍULS POSIÇÕS O RTIGO PÍTULO I 127 ONORÂNI O PRIO OM O SUJITO O TRIUTO OM O SUSTNTIVO O POSTO O RLTIVO OM O NTNT TRÇÃO O RLTIVO GNT PSSIV PÍTULO II 131 GNITIVO SOLUTO PÍTULO III 132 ORÇÕS INPNNTS INITIVS OU IRMTIVS INTRROGTIVS IRTS VOLITIVS OPTTIVS PÍTULO IV 134 ORÇÕS SUORINS OMPLTIVS LRTIVS

5 2. ININITIVS INTRROGTIVS INIRTS RLTIVS ONJUNIONIS USIS INIS ONSUTIVS ONSSIVS TMPORIS OMPRTIVS ONIIONIS PÍTULO V 143 OMPLMNTOS IRUNSTNIIS G H I OMPLMNTOS IRUNSTNIIS LUGR TMPO LUGR ON TMPO QUNO LUGR PR ON PR QUNTO TMPO LUGR POR ON TMPO URNT O QUL LUGR ON TMPO S QUNO OMPLMNTO IRUNSTNIL US OMPLMNTO IRUNSTNIL IM OMPLMNTO IRUNSTNIL MIO OMPLMNTO IRUNSTNIL MOO OMPLMNTO IRUNSTNIL OMPNHI OMPLMNTO IRUNSTNIL MTÉRI OMPLMNTO IRUNSTNIL PRÇO ISTÂNI ORIGM PÍTULO VI 148 SINTX OS SOS 1. NOMINTIVO VOTIVO USTIVO GNITIVO TIVO ININITIVO PRTIÍPIO

6 PÊNI 154 I 156 RÍZS GRGS OMPOSIÇÃO VOULR NO LTIM INTÍIO M PORTUGUÊS LGUMS RGRS N OMPOSIÇÃO OMO SGUNOS LMNTOS OS OMPOSTOS II 165 TRSLÇÃO PLVRS GRGS PR O PORTUGUÊS ILIOGRI 167

ÍNDICE INTRODUÇÃO 17 SINTAXE 27 PREFÁCIO 15

ÍNDICE INTRODUÇÃO 17 SINTAXE 27 PREFÁCIO 15 ÍNI PRFÁIO 15 INTROUÇÃO 17 I. LÍNGU OMUNIÇÃO GRMÁTI. MORFOLOGI SINTX 18 II. LÍNGU FL LÍNGU SRIT. NORM SVIO. NÍVIS LÍNGU 22 PÍTULO I 22 LINGUGM FL PÍTULO II 23 LINGUGM SRIT PÍTULO III 23 NORM SVIO, NÍVIS

Leia mais

FONÉTICA MORFOLOGIA 1. A 2. A PARTE PARTE I. O ALFABETO ALEMÃO 4 II. OS SONS DA LÍNGUA ALEMÃ 7 A DECLINAÇÃO 16 I. O ARTIGO 17 CAPÍTULO I 7 VOGAIS

FONÉTICA MORFOLOGIA 1. A 2. A PARTE PARTE I. O ALFABETO ALEMÃO 4 II. OS SONS DA LÍNGUA ALEMÃ 7 A DECLINAÇÃO 16 I. O ARTIGO 17 CAPÍTULO I 7 VOGAIS 1. PRTE FONÉTI I. O LFETO LEMÃO 4 II. OS SONS LÍNGU LEMÃ 7 PÍTULO I 7 VOGIS PÍTULO II 8 ITONGOS PÍTULO III 9 ONSONTES PÍTULO IV 10 GRUPOS ONSONÂNTIOS PÍTULO V 11 ENTUÇÃO PÍTULO VI 12 SÍL TÓNI PÍTULO VII

Leia mais

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA 1. Tm 40 livros irnts qu vi gurr m 4 ixs ors irnts, olono 10 livros m ix.. Qunts possiilis tm istriuir os livros pls ixs irnts? Justiiqu.. Suponh gor qu tinh 60 livros. Qunts possiilis pr os olor ns 4

Leia mais

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados.

Grafos. Luís Antunes. Grafos dirigidos. Grafos não dirigidos. Definição: Um grafo em que os ramos não são direccionados. Luís Antuns Grfos Grfo: G=(V,E): onjunto vértis/nós V um onjunto rmos/ros E VxV. Rprsntção visul: Grfos não irigios Dfinição: Um grfo m qu os rmos não são irionos. Grfos irigios Dfinição: Um grfo m qu

Leia mais

Simulado 7: matrizes, determ. e sistemas lineares

Simulado 7: matrizes, determ. e sistemas lineares Simulo 7 Mtrizes, eterminntes e sistems lineres. b... e 6. 7. 8.. 0. b.. e. Simulo 8 Cirunferêni / Projeções / Áres. b 6. e 7. 8.. 0. Simulo Análise ombintóri / Probbilie / Esttísti. e.. e.. b... e.....

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Geometria Ficha de Trabalho Nº 02 10º Ano AGUPAMENO DE EOLA DE MOÁGUA Gomti Fih lho Nº 0 0º Ano Osv igu o lo... Ini so istm: ois plnos ppniuls us ts plls um t post um plno um t snt o plno FIH us ts não omplns. s oons os vétis... Qul posição ltiv

Leia mais

NR 1 ( ) NR 9 ( ) NR 6 ( ) NR 3 ( ) NR 4 ( ) NR 7 ( ) NR 5 ( ) NR 10 (210.

NR 1 ( ) NR 9 ( ) NR 6 ( ) NR 3 ( ) NR 4 ( ) NR 7 ( ) NR 5 ( ) NR 10 (210. ANEXO ANEXO II da NR-28 NR 1 (101.000-0) 1.7. a 101001-8 1 S 1.7. b 101010-7 1 S 1.7. c I 101005-0 3 S 1.7. c II 101006-9 3 S 1.7. c III 101007-7 3 M 1.7. c IV 101008-5 3 S 1.7. d 101009-3 3 S 1.7. e 101011-5

Leia mais

QUESTIONÁRIO DO DIRETOR. Senhor(a) Diretor(a),

QUESTIONÁRIO DO DIRETOR. Senhor(a) Diretor(a), 2013 QUSTONÁRO O RTOR Senhor(a) iretor(a), s avaliações do Sistema Nacional de valiação da ducação ásica (S) são compostas por dois tipos de instrumentos de avaliação: as provas aplicadas aos estudantes

Leia mais

Rev /00. Metalúrgica Netz Ltda. Fone/FAX: (55) Endereço: RS 344, KM 43,5 - ao lado da AGCO do Brasil. Santa Rosa - RS.

Rev /00. Metalúrgica Netz Ltda. Fone/FAX: (55) Endereço: RS 344, KM 43,5 - ao lado da AGCO do Brasil. Santa Rosa - RS. TÁLOO PÇS Rev. 05.2013/00 ROÇIR Metalúrgica Netz Ltda. one/x: (55) 3511-1500 ndereço: RS 344, KM 43,5 - ao lado da O do rasil. Santa Rosa - RS. ÍNI R 1,3 (VISÃO RL ROIR RIOL 1300) 01 R 1,3 (LIST PÇS ROIR

Leia mais

Prgrmçã O Mu s u Év r, p r l ém f rcr s s i g ns «vi s i t s cl áss i cs» qu cri m s p nt s c nt ct nt r s di v rs s p úb l ic s qu vi s it m s c nt ú d s d s u ri c s p ó l i, p r cu r, c nc m i t nt

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: TEMPO TOTAL APLICADO: h m TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms ssinl ltrntiv orrsponnt: 01)

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms ssinl ltrntiv

Leia mais

QUESTIONÁRIO. Senhor(a) Professor(a),

QUESTIONÁRIO. Senhor(a) Professor(a), 2013 QUSTIONÁRIO O PROSSOR Senhor(a) Professor(a), O Sistema Nacional de valiação da ducação ásica, S, é composto por dois tipos de instrumentos de avaliação: as provas aplicadas aos estudantes e os questionários

Leia mais

CASA DE DAVI CD VOLTARÁ PARA REINAR 1. DEUS, TU ÉS MEU DEUS. E B C#m A DEUS, TU ÉS MEU DEUS E SENHOR DA TERRA

CASA DE DAVI CD VOLTARÁ PARA REINAR 1. DEUS, TU ÉS MEU DEUS. E B C#m A DEUS, TU ÉS MEU DEUS E SENHOR DA TERRA S VI VOLTRÁ PR RINR 1. US, TU ÉS MU US #m US, TU ÉS MU US SNHOR TRR ÉUS MR U T LOUVRI #m SM TI NÃO POSSO VIVR M HGO TI OM LGRI MOR NST NOV NÇÃO #m #m OH...OH...OH LVNTO MINH VOZ #m LVNTO MINHS MÃOS #m

Leia mais

Anexo IV Estrutura societária. Estrutura societária vigente

Anexo IV Estrutura societária. Estrutura societária vigente tdt ntrg o Anxo: (Pr uso o BNA) Bno Nionl Angol Prtiipçõs Anxo IV Estrutur soitári Estrutur soitári vignt D orm rir o umprimnto os rquisitos lgis stlios n Li s Instituiçõs Finnirs, nos trmos o Aviso nº

Leia mais

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos.

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos. Not m: litur dsts potmtos ão disps d modo lgum litur tt d iliogrfi pricipl d cdir Chm-s tção pr importâci do trlho pssol rlir plo luo rsolvdo os prolms prstdos iliogrfi, sm cosult prévi ds soluçõs proposts,

Leia mais

ANEXO II MODELO DE PROPOSTA

ANEXO II MODELO DE PROPOSTA Plnih01 ANEXO II MODELO DE PROPOSTA Lot Itm Dsrição Uni 1 2 3 4 5 Imprssão CARTAZ: Formto A4, 21x29,7 m, Ppl rilo, 120 g/m² Nº ors: 4/0 ors. Qunti Rgistrr: 6.000 Imprssão CARTAZ: Formto A4, 21x29,7 m Ppl

Leia mais

PV nrt V. (isocórico) P V. Resumo e Exemplos Resolvidos Processos Termodinâmicos - Física Prof. Dr. Cláudio S.

PV nrt V. (isocórico) P V. Resumo e Exemplos Resolvidos Processos Termodinâmicos - Física Prof. Dr. Cláudio S. Resumo e Exemplos Resolvios roessos Termoinâmios - Físi ro. Dr. láuio S. Srtori Lei termoinâmi: U W roessos termoinâmios omuns 2 Lei Termoinâmi: uno se inluem toos os sistems que tomm prte num proesso,

Leia mais

MECANISMOS DE REAÇÕES

MECANISMOS DE REAÇÕES /4/7 MECSMS DE REÇÕES rof. Hrly. Mrins Filho Rçõs lmnrs Rçõs qu concm m pns um p são rçõs lmnrs. molculri rção lmnr é o númro moléculs qu rgm. Rção lmnr unimolculr: C molécul m um proili inrínsc s compor

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ FACULDADE DE ECONOMIA, ADMINISTRAÇÃO, ATUÁRIA, CONTABILIDADE E SECRETARIADO DEPARTAMENTO DE CIÊNCIAS CONTÁBEIS

UNIVERSIDADE FEDERAL DO CEARÁ FACULDADE DE ECONOMIA, ADMINISTRAÇÃO, ATUÁRIA, CONTABILIDADE E SECRETARIADO DEPARTAMENTO DE CIÊNCIAS CONTÁBEIS UNIVERSIDADE FEDERAL DO CEARÁ FACULDADE DE ECONOMIA, ADMINISTRAÇÃO, ATUÁRIA, CONTABILIDADE E SECRETARIADO DEPARTAMENTO DE CIÊNCIAS CONTÁBEIS Orçmnto Emprsri Copyrit Prir, F. I. Pro. Isiro MINI CASE # 12

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: ELETRÔNICA TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Toos os iritos rsrvos. Proii rproução totl ou pril sts págins sm utorizção CTA Eltrôni Rsolv os prolms

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B.

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B. TEMA IV Funções eis de Vriável el 1. evisões Ddos dois onjuntos A e B, um unção de A em B é um orrespondêni que d elemento de A z orresponder um e um só elemento de B. Dus unções e são iuis se e somente

Leia mais

Dúvida: Como estimar os pontos da avaliação curricular para o Título de Especialista em Nutrição?

Dúvida: Como estimar os pontos da avaliação curricular para o Título de Especialista em Nutrição? úvida: omo estimar os pontos da avaliação curricular para o Título de Especialista em Nutrição? Resposta: nota da avaliação curricular varia de 0 a pontos e será calculada em uma planilha eletrônica preparada

Leia mais

Compressão Paralela às Fibras

Compressão Paralela às Fibras Comprssão Paralla às Fibras Critério imnsionamnto pn o íni sbltz (λ): λ x ou L 0 x ou i x ou i x ou é o raio giração m rlação aos ixos prinipais a sção transvrsal o lmnto strutural L 0 o omprimnto lambagm

Leia mais

ORION 6. Segunda Porta USB. Henry Equipamentos Eletrônicos e Sistemas Ltda.

ORION 6. Segunda Porta USB. Henry Equipamentos Eletrônicos e Sistemas Ltda. ORION 6 Sgun Port USB Hnry Equipmntos Eltrônios Sistms Lt. Ru Rio Piquiri, 400 - Jrim Wissópolis Cóigo Postl: 83.322-010 Pinhis - Prná - Brsil Fon: +55 41 3661-0100 INTRODUÇÃO: Pr orrto unionmnto, é nssário

Leia mais

E NINGUÉM PODE TIRAR O QUE MEU DEUS ME DÁ A D B SUAS PROMESSAS EM MIM SE CUMPRIRÃO E JÁ POSSO CELEBRAR

E NINGUÉM PODE TIRAR O QUE MEU DEUS ME DÁ A D B SUAS PROMESSAS EM MIM SE CUMPRIRÃO E JÁ POSSO CELEBRAR LÓRI ÚLTIM S Intro: ON HVI SURIÃO LUZ US M MIM RILHOU ON STV SO SUS ÁUS RRMOU MINH OR ULP SOR SI L LVOU UM NOVO NTINO M MUS LÁIOS OLOOU # U VOU, VOU LRR VOU TRNSOR LRI # PORQU LÓRI ÚLTIM S JÁ É MIOR QU

Leia mais

ANEXO VI AO TERMO DE REFERÊNCIA PLANILHA DE CUSTOS E FORMAÇÃO DE PREÇOS - ANALÍTICA

ANEXO VI AO TERMO DE REFERÊNCIA PLANILHA DE CUSTOS E FORMAÇÃO DE PREÇOS - ANALÍTICA NXO VI O TRMO RRÊNI PLNILH USTOS ORMÇÃO PRÇOS - NLÍTI NXO VI - PLNILH USTOS ORMÇÃO PRÇOS (NLÍTI - MÃO OR) MÃO--OR VINUL À XUÇÃO ONTRTUL Nº do processo: Licitação nº: Regime de Tributação: SIMPLS ( ) PRSUMIO

Leia mais

Plugues e Tomadas Industriais

Plugues e Tomadas Industriais Plugues e Toms Inustriis Linh Inustril Instlções mis onfiáveis e segurs. CARACTERÍSTICAS GERAIS A Linh e Plugs e Toms Inustriis Soprno é ini pr onexão e iversos equipmentos, em mientes sujeitos pó, águ,

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: ELETRÔNICA TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Rsolv os prolms ssinl ltrntiv orrsponnt: Toos os iritos rsrvos. Proii rproução totl ou pril sts págins

Leia mais

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO NESS P2 COM SENSORES NESS P2 SEM SENSORES

DIAGRAMA DE INTERLIGAÇÃO DE AUTOMAÇÃO NESS P2 COM SENSORES NESS P2 SEM SENSORES 0 QUIPMTOS OTROLOS OMPRSSOR PRUSO IRM ITRLIÇÃO UTOMÇÃO 0.0.. SS P OM SSORS 0.0..0 SS P SM SSORS /0/ ILUSÃO O MOLO SM SSORS 0/0/ LTRÇÃO MR O TRSUTOR ORRT URO URO /0/ RVISÃO S IMSÕS O LYOUT /0/ LTRÇÃO O

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

AGRUPAMENTO DE ESCOLAS GONÇALO SAMPAIO ESCOLA E.B. 2, 3 PROFESSOR GONÇALO SAMPAIO

AGRUPAMENTO DE ESCOLAS GONÇALO SAMPAIO ESCOLA E.B. 2, 3 PROFESSOR GONÇALO SAMPAIO AGRUPAMENTO DE ESCOLAS GONÇALO SAMPAIO ESCOLA E.B. 2, 3 PROFESSOR GONÇALO SAMPAIO DEPARTAMENTO DE LÍNGUAS INGLÊS Curso d Educação Formação (CEF) PLANIFICAÇÃO BIANUAL 1º Ano (116 Horas) Mtas Curriculars

Leia mais

Lista de Exercícios 9: Soluções Grafos

Lista de Exercícios 9: Soluções Grafos UFMG/ICEx/DCC DCC111 Mtmáti Disrt List Exríios 9: Soluçõs Gros Ciênis Exts & Engnhris 2 o Smstr 2016 1. O gro intrsção um olção onjuntos A 1, A 2,..., A n é o gro qu tm um vérti pr um os onjuntos olção

Leia mais

Problemas Hamiltonianos

Problemas Hamiltonianos Prolms Hmiltoninos Dfinição: Um iruito hmiltonino m um grfo onxo G é finio omo um minho lmntr, fho pssno m vérti G xtmnt um vz. Um grfo qu mit um iruito hmiltonino é um grfo hmiltonino. Evintmnt nm too

Leia mais

Cifras. Tomo posse tom: G. letra e música: Elias e Alice Passos. G F- C F G F C F Tomo posse das promessas

Cifras. Tomo posse tom: G. letra e música: Elias e Alice Passos. G F- C F G F C F Tomo posse das promessas INTROUÇÃO: F F F- F F F Tomo posse das promessas F- F F F Sou herdeiro, herdeiro de eus m Tudo posso no Senhor BM Sou mais que vencedor onquistarei a terra Não temerei gigantes u saltarei muralhas F m

Leia mais

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente:

TOTAL PONTOS Nome: Data: / Hora: h m às h m Resolva os problemas e assinale a alternativa correspondente: ELETRÔNICA TEMPO TOTAL APLICADO: h m www.tltroni.om.r TOTAL PONTOS TURMA Nom: Dt: / Hor: h m às h m Rsolv os prolms ssinl ltrntiv orrsponnt: Toos os iritos rsrvos. Proii rproução totl ou pril sts págins

Leia mais

Cinemática de uma Partícula Cap. 12

Cinemática de uma Partícula Cap. 12 MECÂNIC - DINÂMIC Cinemáti e um Prtíul Cp. Objetios Introuzir os oneitos e posição, eslomento, eloie e elerção Estur o moimento e um ponto mteril o longo e um ret e representr grfimente esse moimento Inestigr

Leia mais

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal EA6 Circuits FEEC UNCAMP Aul 6 Est ul:! Sistms Trifásics quilibrds cm Trnsfrmdr idl Nst ul nlisrms um sistm trifásic quilibrd cm trnsfrmdr Cm sistm é quilibrd, pdms nlisr circuit trifásic trtnd pns d um

Leia mais

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos Sumário Conjuntos Neulosos - Introução rino Joquim e O Cruz NCE e IM UFRJ rino@ne.ufrj.r Se voê tem um mrtelo tuo irá preer um prego triuío Dinísio e gpunt (3 C) Conjuntos Clássios Função e Inlusão em

Leia mais

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO Pr Ordendo RACIOCÍNIO LÓGICO AULA 06 RELAÇÕES E FUNÇÕES O pr ordendo represent um ponto do sistem de eixos rtesinos. Este sistem é omposto por um pr de rets perpendiulres. A ret horizontl é hmd de eixo

Leia mais

GABARITO DA AVALIAÇÃO AMD

GABARITO DA AVALIAÇÃO AMD GRITO VLIÇÃO M FULS INTGRS IPIRNG OS XTRÍOS M /06/0 0:6:8 Turma RN09 Semestre 0 T. MMOGRFI MMOGRFI MMOGRFI MMOGRFI T. MMOGRFI MMOGRFI - 60 T. RIOTRPI RIOTRPI RIOTRPI RIOTRPI T. RIOTRPI RSSONNI MGNTI -

Leia mais

Valoração de Grafos. Fluxo em Grafos. Notas. Teoria dos Grafos - BCC 204, Fluxo em Grafos. Notas. Exemplos. Fluxo em Grafos. Notas.

Valoração de Grafos. Fluxo em Grafos. Notas. Teoria dos Grafos - BCC 204, Fluxo em Grafos. Notas. Exemplos. Fluxo em Grafos. Notas. Teori o Grfo - BCC 204 Fluxo em Grfo Hrolo Gmini Sno Univerie Feerl e Ouro Preo - UFOP 19 e ril e 2011 1 / 19 Vlorção e Grfo Exemplo vlore eáio: iâni roovi que lig ie e ie é e 70 kilômero vlore inâmio:

Leia mais

GABARITO DA AVALIAÇÃO AMD

GABARITO DA AVALIAÇÃO AMD GRITO VLIÇÃO M -FUL IPIRNG OS XTRÍOS M //0 :9:7 Turma LN 0 Semestre 0 URRÍULO SOLR IVRSI ULTURL T. URRIULO SOLR IVRSI ULTURL URRIULO SOLR IVRSI ULTURL URRIULO SOLR IVRSI ULTURL URRIULO SOLR IVRSI ULTURL

Leia mais

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL SHWETZER ENGNEERNG LORTORES, OMERL LTD OMPENSÇÃO NGULR E REMOÇÃO D OMPONENTE DE SEQÜÊN ZERO N PROTEÇÃO DFERENL RFEL RDOSO ntrodução O prinípio d proteção diferenil é de que som ds orrentes que entrm n

Leia mais

CD CIA DE JOÃO BATISTA - 1. PREPARAI O CAMINHO INTR: C9 SOMOS UM POVO CLAMANDO POR JESUS QUE VENHA O SEU REINO SOBRE NÓS

CD CIA DE JOÃO BATISTA - 1. PREPARAI O CAMINHO INTR: C9 SOMOS UM POVO CLAMANDO POR JESUS QUE VENHA O SEU REINO SOBRE NÓS C CI JOÃO BTIST - 1. PRPRI O CMINHO INTR: SOMOS UM POVO CLMNO POR JSUS QU VNH O SU RINO SOBR NÓS VOZ OS SUS PROFTS S OUVIRÁ m7 PRPRI O CMINHO O SNHOR COMO UM NOIV O SU NOIVO SPRR C NSIMOS SU VOLT ÓH JSUS,

Leia mais

FACULDADES UNIFICADAS DA. Curso de Direito Escritório de Assistência Jurídica Registro OAB 6614 DA F UNDAÇ Ã O EDUCACIONAL DE B ARRETOS

FACULDADES UNIFICADAS DA. Curso de Direito Escritório de Assistência Jurídica Registro OAB 6614 DA F UNDAÇ Ã O EDUCACIONAL DE B ARRETOS FACULDADES UNIFICADAS DA FUNDAÇÃO EDUCACIONAL DE BARRETOS Curso de Direito Escritório de Assistência Jurídica Registro OAB 6614 REGULAMENTO DO NÚ CLEO DE PRÁ TICA JURÍ DICA DA F UNDAÇ Ã O EDUCACIONAL DE

Leia mais

u t = L t N t L t Aplicação dos conceitos: Exemplo: Interpretando Rendimento Per Capita: Y = Pop {z} PIB per capita Y {z} Produtividade Trabalho

u t = L t N t L t Aplicação dos conceitos: Exemplo: Interpretando Rendimento Per Capita: Y = Pop {z} PIB per capita Y {z} Produtividade Trabalho 1 Aul 14 Ofrt Agrgd, Inflção Dsmprgo Populção, Tx d Prticipção, Populção Activ ( t ), Tx d Emprgo, Populção Emprgd (N t ), Tx d Dsmprgo (u t ) Populção Dsmprgd ( t N t ). Tx d Dsmprgo (u t ): u t t N t

Leia mais

Retomada dos conceitos

Retomada dos conceitos etom os conceitos rofessor: s resoluções estes exercícios estão isponíveis no lno e uls este móulo. onsulte tmbém o nco e uestões e incentive os lunos usr o imulor e Testes. 1 N esc figur, os egrus istm

Leia mais

Faculdade de saúde Pública. Universidade de São Paulo HEP-5705. Epidemiologia I. Estimando Risco e Associação

Faculdade de saúde Pública. Universidade de São Paulo HEP-5705. Epidemiologia I. Estimando Risco e Associação 1 Fuldde de súde Públi Universidde de São Pulo HEP-5705 Epidemiologi I Estimndo Riso e Assoição 1. De 2.872 indivíduos que reeberm rdioterpi n infâni em deorrêni de presentrem o timo umentdo, 24 desenvolverm

Leia mais

Teoria dos Grafos Aula 11

Teoria dos Grafos Aula 11 Tori dos Gros Aul Aul pssd Gros om psos Dijkstr Implmntção Fil d prioridds Hp Aul d hoj MST Algoritmos d Prim Kruskl Propridds d MST Dijkstr (o próprio) Projtndo um Rd $ $ $ $ $ Conjunto d lolidds (x.

Leia mais

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES SHWETZER ENGNEERNG LORTORES, OMERL LTD OMPENSÇÃO NGULR E REMOÇÃO D OMPONENTE DE SEQÜÊN ZERO N PROTEÇÃO DFERENL DE TRNSFORMDORES Por Rfel rdoso. NTRODUÇÃO O prinípio d proteção diferenil é de que som ds

Leia mais

Depósitos acumuladores de aço inoxidável

Depósitos acumuladores de aço inoxidável epósitos umulores e ço inoxiável 60 I, 00 I, 0 I, 00 I, 00 I, 00 I, 800 I, 000 I 60 I/PC, 00 I/PC, 0 I/PC, 00 I/PC, 00 I/PC, 00 I/PC, 800 I/PC e 000 I/PC epósitos umulores pr instlção e queiemento entrl

Leia mais

OBI2015 Caderno de Soluções

OBI2015 Caderno de Soluções OLIMPÍADA BRASILEIRA DE INFORMÁTICA SOCIEDADE BRASILEIRA DE COMPUTAÇÃO OBI2015 Cerno e Soluções Molie Iniição Nível 2, Fse 1 8 e mio e 2015 A PROVA TEM DURAÇÃO DE 2 HORAS Promoção: Apoio: v1.0 Olimpí Brsileir

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

Expressão Semi-Empírica da Energia de Ligação

Expressão Semi-Empírica da Energia de Ligação Exprssão Smi-Empíric d Enrgi d Ligção om o pssr do tmpo n usênci d um tori dtlhd pr dscrvr strutur nuclr, vários modlos form dsnvolvidos, cd qul corrlcionndo os ddos xprimntis d um conjunto mis ou mnos

Leia mais

log5 log 5 x log 2x log x 2

log5 log 5 x log 2x log x 2 mta unção rítmic. Indiqu o vlor d:.. 6.. 7 49...5..6. 5 ln.7. 9.4. ln.8..9. 46.. 4 4 6 6 8 8. Dtrmin o vlor d... 4 8.. 8.. 8.4. 5.5..9. 5.6. 9.7.,8.8... 6 5 8 4 5..... Rsolv cd um ds quçõs:.... 5.. ln

Leia mais

O PRESIDENTE DA REPÚBLICA Faço saber que o Congresso Nacional decreta e eu sanciono a seguinte Lei:

O PRESIDENTE DA REPÚBLICA Faço saber que o Congresso Nacional decreta e eu sanciono a seguinte Lei: Propost Plno Crrir pr os Srviors o Por Juiiário União ANATA Assoição Nionl os Anlists, Ténios Auxilirs o Por Juiiário Ministério Púlio União Li nº, 0 Institui o Plno Crrir os srviors o Por Juiiário União

Leia mais

HORÁRIO LICENCIATURAS INTEGRADAS TURMA A HORÁRIO SEGUNDA TERÇA QUARTA QUINTA SEXTA

HORÁRIO LICENCIATURAS INTEGRADAS TURMA A HORÁRIO SEGUNDA TERÇA QUARTA QUINTA SEXTA HORÁRO LCENCATURAS NTEGRADAS TURMA A HORÁRO SEGUNDA TERÇA QUARTA QUNTA SEXTA HORÁRO LCENCATURAS NTEGRADAS TURMA B HORÁRO SEGUNDA TERÇA QUARTA QUNTA SEXTA HORÁRO LCENCATURAS NTEGRADAS TURMA C HORÁRO SEGUNDA

Leia mais

CD CORAÇÃO DA NOIVA - 1. O SENHOR É BOM INTR:E D A/C# C7+ B E D A/C# O SENHOR É BOM C7+ B E SEU AMOR DURA PARA SEMPRE ELE É BOM...

CD CORAÇÃO DA NOIVA - 1. O SENHOR É BOM INTR:E D A/C# C7+ B E D A/C# O SENHOR É BOM C7+ B E SEU AMOR DURA PARA SEMPRE ELE É BOM... C CORÇÃO NOIV - 1. O SNHOR É OM INTR: /C# C7+ /C# O SNHOR É OM C7+ SU MOR UR PR SMPR L É OM... Letra e Música: avi Silva C CORÇÃO NOIV - 2. SNTO É O TU NOM M TO TRR S OUVIRÁ UM NOVO SOM UM CNÇÃO MOR PRCORRRÁ

Leia mais

Axel! Axel! Mas onde foi que se meteu o meu sobrinho?

Axel! Axel! Mas onde foi que se meteu o meu sobrinho? Hmburgo, domingo, 24 d mio d 1863... O profssor Lidnbrock s dirig prssdo à su pqun cs, situd no númro 19 d Königstrss. Já voltou, snhor Lidnbrock?!! Sim, Mrth, ms o jntr não prcis str pronto. não são nm

Leia mais

c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule:

c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule: Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe Definição Clule pel efinição os seguintes ritmos: ) (/8) ) 8 ) 0,5 Clule pel efinição os seguintes ritmos: ) 6 ) 7 (/7) ) 9 (/7) ) (/9) e) 7 8 f) 0,5 8

Leia mais

3. LOGARITMO. SISTEMA DE LOGARITMO

3. LOGARITMO. SISTEMA DE LOGARITMO 0. LOGARITMO. SISTEMA DE LOGARITMO.. LOGARITMO ritmo. Agor que já "semos" o que é, podemos formlizr definição de Definição Sejm e números reis positivos, om. Chm-se ritmo de n se, o epoente que stisfz

Leia mais

Estratégico. III Seminário de Planejamento. Rio de Janeiro, 23 a 25 de fevereiro de 2011

Estratégico. III Seminário de Planejamento. Rio de Janeiro, 23 a 25 de fevereiro de 2011 Estratégico III Seminário de Planejamento Rio de Janeiro, 23 a 25 de fevereiro de 2011 G es tão Em pre sa rial O rie nta ção pa ra om erc ado Ino vaç ão et

Leia mais

A Você sabe de onde são estas bandeiras?

A Você sabe de onde são estas bandeiras? Conhno-s mlhor A Voê sa on são stas aniras? 1 Esrva os noms os paíss aaixo as rsptivas aniras. nominação paíss inormaçõs pssoais prguntar pla proissão azr uma suposição ontar (até 102) rvlar a ia Almanha

Leia mais

Análise de Algoritmos Gabarito da Primeira Prova

Análise de Algoritmos Gabarito da Primeira Prova Análise e Algoritmos Gbrito Primeir Prov Tópios: Funmentos e nálise e lgoritmos e lgoritmos pr orenção Instituto e Ciênis Exts, Universie e Brsíli 22 e bril e 2009 Prof. Muriio Ayl-Rinón Funmentos: relções

Leia mais

MONITORAMENTO DE INFORMAÇÃO

MONITORAMENTO DE INFORMAÇÃO Mídia Imprssa E Emprsa Curitiba ofrc mnor prço à obra 8/01) Diário Notícias/Criciúma - 29/01/2016 Cu 5 - Política of m pr à ob 1 Falta Água m Rio do Sul 8/01) Diário do Alto Val/Rio do Sul - 29/01/2016

Leia mais

basalto malhadinha a escolha natural

basalto malhadinha a escolha natural slto mlhdinh slto mlhdinh A Eoslto Loliz-s nos Cnhs m Pont do Sol, ddis à trnsformção omrilizção d pdr ornmntl d lçd m slto. As pdrs usds são provnints d Pdrir d Mlhdinh, sujits um rigoroso prosso d slção.

Leia mais

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R píulo álculo Ingrl m R píulo - álculo Ingrl SUMÁRIO rimiivs imdis ou qus-imdis rimiivção por prs por subsiuição rimiivção d unçõs rcionis Ingris órmul d Brrow ropridds do ingrl dinido Ingris prméricos

Leia mais

GOVERNO DO ESTADO DO RIO DE JANEIRO SECRETARIA DE ESTADO DE EDUCAÇÃO PREGÃO ELETRÔNICO PARA REGISTRO DE PREÇOS N.º 010/2011 EDITAL

GOVERNO DO ESTADO DO RIO DE JANEIRO SECRETARIA DE ESTADO DE EDUCAÇÃO PREGÃO ELETRÔNICO PARA REGISTRO DE PREÇOS N.º 010/2011 EDITAL ANEXO VII PLANILHA ESTIMATIVA DE QUANTITATIVOS E PREÇOS MÁXIMOS ACEITÁVEIS ITEM ESPECIFICAÇÃO UNID. QUANT. 01 MÓDULO: I VOLUME I, DISCIPLINA: CIENCIAS. VALOR UNITÁRIO VALOR GLOBAL 02 MÓDULO: I VOLUME II,

Leia mais

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DA RETA Auls 01 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário EQUAÇÃO GERAL DA RETA... 2 Csos espeiis... 2 Determinção d equção gerl de um ret prtir de dois de seus pontos...

Leia mais

VI.1.1 DIFUSÃO EM FASE LÍQUIDA: 1- SOLUTO NÃO ELETROLÍTICO EM SOLUÇÕES LÍQUIDAS DILUÍDAS: EQUAÇÃO DE Wilke e Chang (1955):

VI.1.1 DIFUSÃO EM FASE LÍQUIDA: 1- SOLUTO NÃO ELETROLÍTICO EM SOLUÇÕES LÍQUIDAS DILUÍDAS: EQUAÇÃO DE Wilke e Chang (1955): VI.. IFUSÃO EM FSE LÍQUI: - SOLUTO NÃO ELETROLÍTICO EM SOLUÇÕES LÍQUIS ILUÍS: EQUÇÃO E Wilke e Chang (955): 0 B B 8 M 7,4 0 T V B IFUSIVIE. O SOLUTO( ) NO SOLVENTE B 0,6 b 0,5 cm 2 s ; T TEMPERTUR O MEIO

Leia mais

Medidas de Associação.

Medidas de Associação. Meis e Assoição. O álulo e meis propris frequêni e um oenç é bse pr omprção e populções, e, onsequentemente, pr ientifição e eterminntes oenç. Pr fzer isto e mneir mis efiz e informtiv, s us frequênis

Leia mais

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. o Ano de Escolaridade Prova 635/Versões 1 e 2 Eam Nacional d 0 (. a fas) Prova Escrita d Matmática. o no d Escolaridad Prova 3/Vrsõs GRUPO I Itns Vrsão Vrsão. (C) (). () (C) 3. () (C). (D) (). (C) (). () () 7. () (D) 8. (C) (D) Justificaçõs:. P( )

Leia mais

Fontes Bibliográficas. Estruturas de Dados Aula 15: Árvores. Introdução. Definição Recursiva de Árvore

Fontes Bibliográficas. Estruturas de Dados Aula 15: Árvores. Introdução. Definição Recursiva de Árvore Fonts Biliográis Estruturs Dos Aul 15: Árvors 24/05/2009 Livros: Introução Estruturs Dos (Cls, Crquir Rngl): Cpítulo 13; Projto Algoritmos (Nivio Zivini): Cpítulo 5; Estruturs Dos sus Algoritmos (Szwritr,

Leia mais

ÍNDICE DE CONFIANÇA DA INDÚSTRIA DA CONSTRUÇÃO

ÍNDICE DE CONFIANÇA DA INDÚSTRIA DA CONSTRUÇÃO mrço/2017 número 92 ÍNDICE DE CONFIANÇA DA INDÚSTRIA DA CONSTRUÇÃO Indicdor de Con nç O ICIC-PR ( de Con nç d Indústri de Construção - Prná) subiu +4,3 pontos neste mês de mrço. Este índice está n áre

Leia mais

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M=

a) 1. b) 0. c) xnw. d) q (Espm 2014) Se a matriz 7. (Pucrs 2014) Dadas as matrizes A = [ 1 2 3] a) 18 b) 21 c) 32 d) 126 e) 720 Se a matriz M= Dtrminant. (Upg 4) Considrando as matrizs abaixo, sndo dt A = 5, dtb= dtc=, assinal o qu for orrto. x z x y x A =,B= 4 5 x+ z y C= ) x+ y+ z= 4 ) A C= 4) B C= 4 8) y = x 6) 6 4 A+ B= 6 5 T. (Uds 4) S A

Leia mais

BRIEFING DE PESQUISA DE MERCADO CARNE SUÍNA POTENCIAL DO MERCADO

BRIEFING DE PESQUISA DE MERCADO CARNE SUÍNA POTENCIAL DO MERCADO BRIEFING DE PESQUISA DE MERCADO CARNE SUÍNA POTENCIAL DO MERCADO I. HISTÓRICO O projto surgiu m 2006, por dmnd d FAP - Fdrção d Agriultur Puári do DF do Sindisuinos. Os rsultdos lnçdos no primiro momnto

Leia mais

2.1. Integrais Duplos (definição de integral duplo)

2.1. Integrais Duplos (definição de integral duplo) Análise Mtemáti II- no letivo 6/7.. Integris uplos (efinição e integrl uplo) Pr melhor ompreener efinição e integrl uplo vmos omeçr por olor o seguinte esfio: Tene eterminr o volume o sólio que está im

Leia mais

NESS-A TOUCH SCREEN 7" C/ MODEM

NESS-A TOUCH SCREEN 7 C/ MODEM 6 7 8 9 0 QUIPMNTOS ONTROLOS OMPRSSOR LTRNTIVO // LTRÇÃO LYOUT-IM MUTI PR SOPOST OTÃO MRÊNI LLN9 0 07/0/ LTRÇÃO O MOM O LYOUT LOUV 7 0 06// INLUSÃO O ORINTTIVO O LÇO OMUNIÇÃO IO V. 00 8/0/ INIIL TOS R.

Leia mais

Dado um grafo G, é possível encontrar uma representação gráfica para o grafo tal que não

Dado um grafo G, é possível encontrar uma representação gráfica para o grafo tal que não 13 - Gros Plnrs Nst ul qurmos rsponr à suint qustão: Do um ro G, é possívl nontrr um rprsntção rái pr o ro tl qu não hj ruzmnto rsts? Consir por xmplo o ro K 4 rprsnto rimnt ns iurs i1, i2 i3.: i. 1 i.

Leia mais

Quem falou foi Henrieta, toda arrumada com a camisa de goleira. E tinha mais um monte de gente: Alice, Cecília, Martinha, Edilene, Luciana, Valdete,

Quem falou foi Henrieta, toda arrumada com a camisa de goleira. E tinha mais um monte de gente: Alice, Cecília, Martinha, Edilene, Luciana, Valdete, Cpítul 3 N ã p! Abu! On já viu? Et qu é n! Cê minh mã? Qun mnin chgm p jg nqul ming, qu ncntm? Um gup mnin. D cmit, têni, clçã muit ipiçã. E g? Afinl, qum tinh ti qul ii mluc? D qun vcê gtm futl? pguntu

Leia mais

AULA: Superfícies Quádricas

AULA: Superfícies Quádricas AULA: Superfíies Quádris Definição : Um equção gerl do gru em três vriáveis é um equção do tipo: A B C D E F G H I J (I), om pelo menos um ds onstntes A, B, C, D, E ou F é diferente de ero. Definição :

Leia mais

EDUCAÇÃO FÍSICA HORÁRIO SEMESTRE SALA 01 TURMA: EDF SEGUNDA TERÇA QUARTA QUINTA SEXTA SÁB ANATOMIA HUMANA PRÁTICA ANATOMIA HUMANA

EDUCAÇÃO FÍSICA HORÁRIO SEMESTRE SALA 01 TURMA: EDF SEGUNDA TERÇA QUARTA QUINTA SEXTA SÁB ANATOMIA HUMANA PRÁTICA ANATOMIA HUMANA 1 SMSTR SL 01 TURM: F 318-1 H SGUN TRÇ QURT QUINT SXT SÁ NTOMI HUMN TORI NTOMI HUMN TORI NTOMI HUMN TORI SPÉ. HIST. SOIIS UÇÃO SPÉ. HIST. SOIIS UÇÃO SPÉ. HIST. SOIIS UÇÃO NTOMI HUMN NTOMI HUMN PSIOLOGI

Leia mais

Capri L.138 / A.101 / P. 77,5 cm

Capri L.138 / A.101 / P. 77,5 cm BERÇO & CM Cpri L.38 /.0 / P. 77,5 m Gur ss mnul l po srvir pr futurs onsults m so vris, lmbrno qu nossos móvis tm rnti 2 nos. Pr surnç o su bbê, li om muit tnção tos s instruçõs nts iniir montm. MNUL

Leia mais

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. PROPRIEDADES DOS QUADRILÁTEROS Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :...

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO. PROPRIEDADES DOS QUADRILÁTEROS Prof. Rogério Rodrigues NOME :... NÚMERO :... TURMA :... 1 TRIR SÉRI NSINO MÉIO INTGRO PROPRIS OS QURILÁTROS Prof. Rogério Rodrigues NOM :... NÚMRO :... TURM :... 2 IV - QURILÁTROS IV. 1) Quadriláteros Notáveis - lassificação : hamamos de Quadrilátero todo polígono

Leia mais

CÂNTICOS DE LOUVOR. IPI - Banda Kids

CÂNTICOS DE LOUVOR. IPI - Banda Kids ÂNTIOS E LOUVOR IPI - anda Kids LERI LERI ESTÁ NO ORÇÃO E QUEM JÁ ONHEE JESUS. 7 7 VEREIR PZ SÓ TEM QUELE QUE JÁ ONHEE JESUS. m O SENTIMENTO MIS PREIOSO, QUE VEM O NOSSO SENHOR, Em 7 7 7 É O MOR QUE SÓ

Leia mais

Uma nota sobre bissetrizes e planos bissetores

Uma nota sobre bissetrizes e planos bissetores Runs Ros Ortg Junior 83 Um not sor isstris pnos isstors Runs Ros Ortg Junior Doutor Curso Mtmáti Univrsi Tuiuti o rná Dprtmnto Mtmáti Univrsi Fr o rná Tuiuti: Ciêni Cutur n 9 FCET 4 pp 83-9 Curiti r 84

Leia mais

Eletrônica Digital Moderna e VHDL Volnei A. Pedroni, Elsevier, Soluções dos Exercícios Ímpares dos Capítulos 1 5

Eletrônica Digital Moderna e VHDL Volnei A. Pedroni, Elsevier, Soluções dos Exercícios Ímpares dos Capítulos 1 5 Eltrôni Digitl Morn VHDL Volni A. Proni, Elsvir, 200 Trução (om rvisão, tulizção mplição) Digitl Eltronis n Dsign with VHDL Elsvir / Morgn Kufmnn, USA, 2008 Soluçõs os Exríios Ímprs os Cpítulos 5 Cpítulo

Leia mais

1. Associe cada igualdade a uma das afirmações escrevendo o símbolo romano correspondente.

1. Associe cada igualdade a uma das afirmações escrevendo o símbolo romano correspondente. COLÉGIO MCHDO DE SSIS Disipli MTEMÁTIC Professor TLI RETZLFF Turm 8 o ( ) ( )B ( )C Dt / / Pupilo ssoie igule um s firmções esreveo o símolo romo orrespoete I ( + ) = + + II ( ) = + III ( + ) ( ) = ) O

Leia mais

ÍNDICE DE CONFIANÇA DA INDÚSTRIA DA CONSTRUÇÃO

ÍNDICE DE CONFIANÇA DA INDÚSTRIA DA CONSTRUÇÃO bril/2017 número 93 ÍNDICE DE CONFIANÇA DA INDÚSTRIA DA CONSTRUÇÃO Indicdor de Con nç O ICIC-PR ( de Con nç d Indústri de Construção - Prná) ciu -5,2 pontos neste mês de bril. Este índice está n áre de

Leia mais

Estes resultados podem ser obtidos através da regra da mão direita.

Estes resultados podem ser obtidos através da regra da mão direita. Produto toril ou produto trno Notção: Propridds Intnsidd: Sntido: ntiomuttiidd: Distriutio m rlção à dição: Não é ssoitios pois, m grl, Cso prtiulr: Pr tors dfinidos m oordnds rtsins: Ests rsultdos podm

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS CÁLCULO IFEENCIAL E INTEGAL II INTEGAIS MÚLTIPLAS A ierenç prinipl entre Integrl eini F ) F ) e s Integris Múltipls resie no to e que, em lugr e omeçrmos om um prtição o intervlo [, ], suiviimos um região

Leia mais

banco bolsa passo a passo

banco bolsa passo a passo Bno Bols Bno Bols it tr or trnç no ols psso psso pso kg imnsõs rto: P (A9 x L39 x P39m), G (A33 x L5 x P43m) tmpo stimo onstrução 3h nívl áil usto stimo R$ 0 suport té 90kg (G) 50kg (P) rrmnts srr tio-tio,

Leia mais

Nova Linha T-holder com Grampo Combinado para Pastilhas de Cerâmica

Nova Linha T-holder com Grampo Combinado para Pastilhas de Cerâmica Stmro 2014 www.tgut.om.r 1/13 Nov Lin T-olr om Grmpo Comino pr Pstils Crâmi Stmro 2014 www.tgut.om.r 2/13 Nov Lin T-olr om Grmpo Comino pr Pstils Crâmi A TguT stá rpginno lin T-olr pr pstils râmi. O tul

Leia mais

Considere a junção representada na Fig.1. Admita que as linhas bifilares são ideais (sem 2 (3)

Considere a junção representada na Fig.1. Admita que as linhas bifilares são ideais (sem 2 (3) Miroons 3/4 Mstro m Ennhri Eltroténi Comutors Rsonsál: Prof. Afonso Brbos º Exm 4//4 urção: 3 hors Rsolr roblm m folh sr Problm Consir junção rrsnt n Fi.. Amit qu s linhs bifilrs são iis (sm rs). Tom =.

Leia mais

EDUCAÇÃO FÍSICA HORÁRIO 2015.2 1 SEMESTRE SALA 01 TURMA: EDF 317-1

EDUCAÇÃO FÍSICA HORÁRIO 2015.2 1 SEMESTRE SALA 01 TURMA: EDF 317-1 1 SMSTR SL 01 TURM: F 317-1 H SGUN TRÇ QURT QUNT SXT SÁ NTOM TOR NTOM TOR NTOM TOR SPÉ. HST. SOS SPÉ. HST. SOS SPÉ. HST. SOS NTOM NTOM PSOLOG PNS. PGÓGO ÁT PNS. PGÓGO ÁT SPORT LZR SO T. OM. XPRSSÃO. FORMÇÃO

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

Módulo III Capacitores

Módulo III Capacitores laudia gina ampos d arvalho Módulo apacitors apacitors: Dnomina-s condnsador ou capacitor ao conjunto d condutors dilétricos arrumados d tal manira qu s consiga armaznar a máxima quantidad d cargas létricas.

Leia mais