SISTEMAS ÓPTICOS. Atenuação e Dispersão

Tamanho: px
Começar a partir da página:

Download "SISTEMAS ÓPTICOS. Atenuação e Dispersão"

Transcrição

1 MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Campus São José Área de Telecomunicações Curso Superior Tecnológico em Sistemas de Telecomunicações SISTEMAS ÓPTICOS Atenuação e Dispersão 1

2 Limitações da fibra Atenuação limita a distância Dispersão limita a taxa de transmissão 2

3 Limitações da fibra A distância e a taxa de transmissão em uma fibra são completamente independentes uma da outra; Atenuação reduz a amplitude do campo óptico; Dispersão modifica a forma de onda; A maior ou menor perda de potência e a modificação tolerada no sinal de modulação determinarão a distância entre os repetidores ou entre os amplificadores ópticos. 3

4 Atenuação As perdas de transmissão de uma fibra óptica costuma ser definida em termos da relação de potência luminosa na entrada da fibra de comprimento L e a potência luminosa na sua saída; f =10log P s P e 1 L,[dB/km ] Onde: α f atenuação sofrida na fibra (db/km) P s potência óptica de saída (Watts) P e potência óptica de entrada (Watts) L comprimento da fibra (km) 4

5 Atenuação As causas mais importantes de perda em uma fibra óptica são: Absorção pelo material; Irradiação devido curvaturas; Espalhamento pelo material; Espalhamento da onda guiada; Perdas por modos vazantes; Perdas por microcurvaturas; Atenuações em emendas e conexões; Perdas por acoplamento no início e final da fibra. 5

6 Atenuação Tanto nas fibras MM como nas SM a perda é dependente do comprimento de onda; Em fibras com múltiplos modos de propagação, a energia óptica é dividida entre os muitos percursos possíveis e cada um apresentará valor próprio de perda; Portanto, é possível encontrar resultados diferentes para medições da perda em diferentes ocasiões; A confirmação dos resultados implica em garantir que as condições de acoplamento do feixe óptico fiquem inalteradas sempre que forem necessárias novas medidas. 6

7 Absorção pelo material A absorção pelo material é um tipo de perda relacionado com a composição do material e o processo de fabricação da fibra, na qual resulta uma dissipação, na forma de calor, da potência óptica transmitida, tanto no núcleo quanto na casca. As causas dessa perda são as vibrações das moléculas e a transição de elétrons entre os níveis de energia do meio. Em frequências próximas das vibrações naturais desses componentes, o campo eletromagnético transfere parte de sua energia, reforçando suas oscilações. 7

8 Absorção pelo material Uma concentração de impurezas em valores tão baixos quanto algumas partes por milhão (ppm) ou algumas partes por bilhão (ppb) pode produzir atenuações consideráveis nos comprimentos de onda de interesse; Alguns resultados experimentais mostram a absorção por íons de diversos elementos químicos presentes no vidro, em um comprimento de onda de 800 nm, e o comprimento de onda no qual se tem a máxima absorção. 8

9 Absorção pelo material Íon presente no vidro Comprimento de onda de máxima absorção (nm) Concentração em ppm para atenuação de 1dB/km em 800nm Fe ,0025 Fe Cr ,0016 Cr ,0001 Cu Cu ,0008 9

10 Absorção pelo material A absorção pelo material pode ser causada por 3 formas diferentes: Absorção devido a defeitos na estrutura atômica (desprezível); Absorção intrínseca; Absorção extrínseca. 10

11 Absorção Intrínseca São aquelas originadas pela composição do material da fibra impurezas existentes no material da fibra; Resulta basicamente de metais de transição, ferro, cobalto, crómio, níquel, etc; Para as fibras de silica fundido a faixa de menor absorção vai de 700nm à 1600nm; Melhores técnicas de fabricação levam este tipo de absorção a níveis aceitáveis. 11

12 Absorção Extrínseca Causada principalmente pela presença do íon hidroxila OH - ; Concentração de poucas partes por bilhão (ppb) do íon OH - são necessárias para obter valores de atenuação inferiores a 20 db/km; Tais impurezas, apresentam comportamentos atômicos que provocam absorção de uma parcela da intensidade luminosa da fibra; Com a evolução tecnológica das técnicas de fabricação, os níveis de íons OH -, foram reduzidos a níveis de concentrações inferiores a 1 ppb e em alguns casos menores ainda. 12

13 Absorção devido íons OH - Picos de atenuação devido aos íons OH - 13

14 Absorção devido íons OH - Com a evolução na técnica de fabricação os picos diminuíram 14

15 Perdas por Espalhamento As perdas por espalhamento incluem reduções na amplitude do campo guiado por mudanças na direção de propagação, causadas pelo próprio material e por imperfeições no núcleo da fibra. Ou seja, ocorre o desvio da luz em várias direções; O espalhamento linear refere-se à transferência de uma parcela da luz de um modo de propagação para outros modos, quando a quantidade de energia transferida for diretamente proporcional à potência da luz guiada; 15

16 Perdas por Espalhamento Espalhamento de Rayleigh Espalhamento de Mie Espalhamentos lineares Espalhamento estimulado de Brillouin Espalhamento estimulado Espalhamentos não-lineares de Raman 16

17 Perdas por Espalhamento O espalhamento é causado por: Flutuações térmicas; Variações de pressão; Pequenas bolhas; Variação no perfil de índice de refração; 17

18 Perdas por Espalhamento O espalhamento Rayleigh é o mais importante e resulta de irregularidades submicroscópicas na composição e densidade do material. Estas são bem pequenas quando comparadas ao comprimento de onda da fibra (inferior a 10%); O resultado é uma flutuação no valor do índice de refração do material ao longo da fibra; O espalhamento de Mie pode ser observado quando as irregularidades da fibra têm dimensões comparáveis ao comprimento de onda da luz guiada. Ou seja, quando são superiores a 10% do comprimento de onda do feixe óptico; As irregularidades neste caso são: bolhas, minúsculos defeitos na interface do núcleo com a casca, variações no diâmetro da fibra, sinusoidades no eixo conhecidas como microcurvaturas. 18

19 Perdas não-lineares Os valores de potência óptica dentro da fibra são da ordem de miliwatts, entretanto sua seção transversal é também minúscula, o que significa uma elevada densidade de potência dentro do núcleo; A densidade de potência é proporcional ao quadrado do campo elétrico transmitido, tornando-se muito grande dentro da fibra também. E quando ultrapassar um certo valor crítico, o meio passa a ter uma resposta não-linear à excitação aplicada; Logo, as variações na potência de saída da fibra deixam de ser proporcionais às variações da potência de entrada; Então, haverá transferência de energia de um modo para outro, ou mesmo dentro do mesmo modo, em comprimentos de onda diferentes; 19

20 Perdas não-lineares Quando a energia vai para o mesmo modo, gera uma onda que se propaga em sentido contrário ao originalmente aplicado ou pode alterar a polarização do campo guiado; A consequência é que a onda introduzida no início da transmissão tem um decréscimo a mais que deve ser adicionado aos outros mecanismos de perda no comprimento de onda original. Os efeitos não-lineares surgem principalmente nas fibras monomodo de grandes comprimentos físicos, por causa do menor diâmetro do núcleo; Nas fibras multimodo o núcleo tem diâmetro bem maior e nem sempre a densidade de potência alcançará o valor necessário para conduzi-la a uma condição de não-linearidade. 20

21 Perdas não-lineares Se o meio não estiver excitado por outra fonte de energia, absorverá parte da energia dos fótons, tranferindo os elétrons para níveis mais elevados. Logo, a onda espalhada terá frequência diferente do sinal guiado (Lei de Planck); Frequência ou deslocamento de Stokes diferença entre essas duas frequências; Havendo transferência de energia para uma frequência diferente, a potência contida em um dado comprimento de onda sofrerá aumento na perda; A elevada densidade de potência óptica, isto é, grande quantidade de fótons por unidade de tempo por unidade de superfície, forçará o aparecimento de vibrações mecânicas em nível molecular. 21

22 Perdas não-lineares No espalhamento estimulado de Brillouin ocorre uma modulação da luz causada pelas vibrações. Sendo que o máximo de desvio da frequência ocorre no sentido oposto ao originalmente estabelecido na fibra. Portanto, este espalhamento é um fenômeno que excita uma onda retrógrada no núcleo. É possível percebê-lo quando a potência guiada ultrapassa alguns miliwatts; O espalhamento estimulado de Raman refere-se à transferência da energia óptica que ocorrerá em bandas laterais mais separadas em relação ao comprimento de onda original. Ou seja, as frequências espalhadas serão maiores do que as do espalhamento de Brillouin; As bandas laterais resultantes deste efeito podem estar separadas de até 200nm. O efeito predominante é no sentido direto da propagação. 22

23 Perdas não-lineares O espalhamento de Raman se verifica quando a potência aplicada for grande, da ordem de 10 a vezes maior do que no caso do espalhamento de Brillouin; Quando a transmissão pela fibra estiver sendo feita em um único comprimento de onda, a potência típica para dar origem ao efeito Raman é da ordem de 50mW a 100mW ; Portanto, para os níveis de sinal mais comuns, a perda de potência causada por este tipo de problema não é significativa na transmissão de informações em fibras ópticas. 23

24 Perdas por deformações mecânicas As perdas por deformações mecânicas podem ser de dois tipos: MICROCURVATURAS; MACROCURVATURAS. 24

25 Macrocurvaturas A ocorrência da perda é dada quando os modos próximos ao ângulo crítico (alta ordem) ultrapassam este valor em função da curvatura. Assim deixam de ser totalmente refletidos internamente, passando a ser refratados; A interface do núcleo com a casca, o campo guiado deve satisfazer determinadas condições de contorno impostas pelas leis da teoria eletromagnética: a componente tangencial do campo elétrico e a componente tangencial do campo magnético da luz devem ser sempre contínuos na fronteira de separação; logo, no ponto da interface entre o núcleo e a casca as amplitudes dos campos elétrico e magnético tangenciais devem ser sempre iguais; isto exige um ajuste automático da velocidade de propagação do campo fora do núcleo ao se encurvar a fibra. 25

26 Macrocurvaturas Para que estas condições sejam satisfeitas, a velocidade do campo deve ser igual à velocidade da luz; Assim, a partir de uma certa distância (raio crítico r c ) o modo guiado deveria propagar-se com uma velocidade superior à velocidade da luz. Mas como isto não é possível, a partir de uma distância radial, haverá modos de irradiação. r c 4π 3N ( ) N N λ 2 Fibra multimodo r c ( 2 2 N N ) λ 1 2 2,748 0, 996 λ λ c 3 Fibra monomodo 26

27 Macrocurvaturas 27

28 Microcurvaturas É uma pequena deformação na fronteira entre o núcleo e a casca; Pode ser provocado por qualquer força transversalmente aplicada na superfície da fibra; Parte da energia é perdida devido aos modos de alta ordem tornarem-se não guiados. 28

29 Tipos de atenuações 29

30 Atenuações devido fatores construtivos ou de instalação Perdas em emendas e conectores; Atenuação causada pela diferença de diâmetros; Atenuação causada pela diferença de abertura numérica; Atenuação por diferenças no perfil dos índices de refração; Desalinhamento axial entre as fibras ópticas; Atenuação por deslocamento longitudinal; Atenuação por rugosidade nas extremidades; Atenuação devido a desalinhamento angular das fibras. 30

31 DISPERSÃO Dispersão está associado aos diferentes tempo de chegada, de cada modo que está se propagando na fibra, no receptor; Isso resulta em um alargamento temporal do sinal óptico emitido no início da fibra; Esse alargamento limita a banda passante e, consequentemente, a capacidade de transmissão de informação na fibra; A duração do pulso ( ) entre os pontos de meia potência vale: t t 0 =± =FWHM =2,355 Onde: σ é o desvio padrão; FWHM é a largura de banda de meia potência 31

32 DISPERSÃO Quando: t t 0 =±3 Então, a amplitude da potência óptica cai a cerca de 1% do valor de pico, isto significa que 99% da energia do pulso está contida no intervalo de tempo de 6σ; A potência óptica cairá 3dB nos valores que possuem uma largura de faixa de: BW = 0,187 = 0,441 = 0,441 FWHM 32

33 DISPERSÃO Dispersão Modal Dispersão Material Dispersão do Guia de Onda + { Dipersão cromática Dipersão por Modo de Polarização 33

34 DISPERSÃO Modal Cromática Polarização 34

35 DISPERSÃO MODAL Existem fibras que podem ter percursos diferentes no núcleo ; Os percursos determinam modos de propagação, em quantidade tanto maior quanto maior for a abertura numérica; Esta grande quantidade de modos de propagação dão origem à dispersão modal; A dispersão modal é especificada por unidade de comprimento ns/km; Observe que taxas de transmissão da ordem de gigabits/s ou centenas de megabits/s possuem intervalos entre símbolos desta da ordem de grandeza de ns, o que mostra a forte influência que o problema pode apresentar no desempenho do sistema. 35

36 DISPERSÃO MODAL A máxima diferença de tempo entre os percursos ocorrerá entre um modo que se propaga paralelamente ao eixo da fibra e o modo de ordem mais baixa (que viaja na condição de reflexão total); Esta situação vai ocorrer quando em um fibra instalada em linha reta entre o transmissor e o receptor, houver o raio se propagando paralelo a linha de divisão de meios, a o modo mais lento com o ângulo incidente igual ao ângulo crítico. Nesta situação teremos: sen c = N 2 N 1 36

37 DISPERSÃO MODAL 37

38 DISPERSÃO MODAL Considerando o modo mais lento, a distância entre duas reflexões sucessivas é: l= 2a cos c = 2a 1 sin 2 c = 2aN 1 N 2 1 N = 2aN AN A projeção sobre o eixo do núcleo é: l a =l sin c = 2 a N 2 AN 38

39 DISPERSÃO MODAL Desta forma, é possível calcular a quantidade de reflexões sucessivas ao longo da fibra: N r = L l a L comprimento da fibra óptica. A distância total percorrida na condição de ângulo crítico é: D t =N r l= L l a l= L AN 2 a N 2 2 a N 1 AN =L N 1 N 2 39

40 DISPERSÃO MODAL A diferença entre os tempos de chegada do modo mais rápido com o modo mais lento (propagando-se na condição de ângulo crítico) é: t = D t L = N 1 L N 1 N 2 c / N 1 c /N 1 c N 2 A dispersão aumenta com a abertura numérica, resultando em uma menor largura de banda. Por quê? 40

41 DISPERSÃO MODAL EXEMPLO 1) Uma fibra óptica geometricamente perfeita tem índice de refração do núcleo igual a 1,52 e o índice da casca é 1% menor. O diâmetro do núcleo é de 50μm e comprimento de onda guiado é de 850nm. Estime a dispersão modal máxima em 1km e 5km de extensão. 2) Seja uma fibra óptica com índice de refração do núcleo de 1,480 e da casca de 1,470. O diâmetro do núcleo é de 62,5μm e o comprimento de onda guiado é de 1310nm. Determine para uma fibra com 10km de extensão: a) a distância entre duas reflexões sucessivas; b) o número de reflexões sucessivas do modo mais lento; c) a dispersão modal máxima. 41

42 DISPERSÃO CROMÁTICA Dispersão Cromática = Dispersão Material + Dispersão por Guia de Onda; Dispersão Material espalhamento dos comprimentos de onda que constituem o sinal, devido a propagação em um meio dispersivo; Guia de Onda espalhamento do sinal devido as características do guia de onda, tais como, distribuição do IOR Não Linearidade do Índice de Refração e características geométricas. 42

43 DISPERSÃO CROMÁTICA Fontes distribuição espectral de potência finita; Comprimento de onda das fontes não se propagam com a mesma velocidade (IOR é função do λ), chegando em instantes de tempo diferentes; Um pulso transmitido em tal meio sofrerá um espalhamento, limitando assim a banda passante de transmissão. 43

44 DISPERSÃO MATERIAL A dispersão material ocorre em todas as fibras, pois este tipo de dispersão é consequência da composição da matéria-prima da fibra e da largura espectral da fonte luminosa; Sendo o índice de refração e consequentemente a velocidade de propagação função do comprimento de onda, cada componente da fonte luminosa viaja com velocidade diferente, pois, as fontes luminosas possuem certa largura espectral; 44

45 DISPERSÃO MATERIAL O índice de refração do material que compõe a fibra tem uma dependência nãolinear com o comprimento de onda transmitido; Isto implica em diferentes atrasos (velocidades) de propagação, resultando na chamada dispersão material; A diversidade de componentes espectrais nos modos transmitidos é imposta pelas fontes luminosas que se caracterizam, de uma maneira geral, por emissão de luz policromática, isto é, emissão em vários comprimentos de onda em torno de um comprimento de onda central; Para minimizar a dispersão material é necessário diminuir a largura espectral das fontes luminosas e utilizá-las em fibras ópticas de baixa dispersão. 45

46 DISPERSÃO MATERIAL 46

47 DISPERSÃO GUIA DE ONDA Resulta da dependência do número V característico do guia de onda luminoso com relação ao comprimento de onda transmitido; Para um valor fixo qualquer de V existe um atraso de propagação diferente para cada modo, implicando em uma distorção do sinal óptico na saída da fibra; No caso das fibras multimodo de silica, a dispersão do guia de onda é geralmente muito pequena comparada com a dispersão material, podendo muitas vezes ser desprezada; 47

48 DISPERSÃO GUIA DE ONDA Nas fibras monomodo esta dispersão assume uma grande importância, pois, além de ser de magnitude equivalente, tem a propriedade de, em determinados comprimentos de onda, compensar a dispersão material; A dispersão do guia de onda na fibra monomodo ocorre em função da variação do índice de refração núcleo e da casca ao longo da fibra. A luz propaga-se com diferentes velocidades durante a trajetória; Outro fator que provoca este tipo de dispersão é a variação da dimensão do núcleo ao longo da fibra, pois a propagação de um modo é função do comprimento de onda e do diâmetro do núcleo. 48

49 DISPERSÃO CROMÁTICA 49

50 DISPERSÃO CROMÁTICA Efeitos da dispersão cromática na forma de onda do sinal 50

51 DISPERSÃO CROMÁTICA Efeitos da dispersão cromática no pulso do sinal, aumentando a BER 51

52 REFLEXÃO DE FRESNEL Quando um feixe de luz é injetado na fibra, parte dele é refletido de volta à fonte luminosa. Esta reflexão é chamada de Reflexão de Fresnel e ocorre em função da diferença entre os índices de refração dos meios onde ocorre a propagação da luz; A Reflexão de Fresnel que ocorre entre o ar e a fibra pode ser definida pela seguinte equação: = n 1 2 n 1 Onde: ρ reflexão de Fresnel; n índice de refração do núcleo da fibra. 52

53 REFLEXÃO DE FRESNEL Esta reflexão ocasiona uma perda no sinal luminoso transmitido, que é definida por: P FresneldB =10log 10 1 A perda do sinal luminoso deve ser considerada tanto na entrada da luz na fibra como na saída, isto porque a reflexão de Fresnel ocorre tanto na passagem da luz do ar para a fibra, como da fibra para o ar. 53

54 REFLEXÃO DE FRESNEL Reflexão de Fresnel tanto na entrada como na saída da fibra 54

SISTEMAS ÓPTICOS. Atenuação e Dispersão

SISTEMAS ÓPTICOS. Atenuação e Dispersão MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Campus São José Área de Telecomunicações Curso Superior Tecnológico

Leia mais

Atenuações em Fibras Ópticas

Atenuações em Fibras Ópticas Atenuações em Fibras Ópticas A atenuação da luz (Perca de potência ótica) ao passar pela fibra óptica é devida a várias razões, tais como: absorção do material no núcleo ou na casca, espalhamento devido

Leia mais

SISTEMAS DE COMUNICAÇÕES ÓPTICAS. A atenuação experimentada pelos sinais luminosos propagados através de uma fibra

SISTEMAS DE COMUNICAÇÕES ÓPTICAS. A atenuação experimentada pelos sinais luminosos propagados através de uma fibra Capítulo 3 3. DEGRADAÇÃO DOS SINAIS EM FIBRAS ÓPTICAS 3.1 Atenuação A atenuação experimentada pelos sinais luminosos propagados através de uma fibra óptica é uma característica cujo papel é fundamental

Leia mais

DISPERSÃO. Esse alargamento limita a banda passante e, consequentemente, a capacidade de transmissão de informação na fibra;

DISPERSÃO. Esse alargamento limita a banda passante e, consequentemente, a capacidade de transmissão de informação na fibra; DISPERSÃO Quando a luz se propaga em meios dispersivos a sua velocidade de propagação muda com o comprimento de onda. Além disso a luz se propaga de diferentes modos (por diferentes caminhos) gerando distintos

Leia mais

1 Fibra óptica e Sistemas de transmissão ópticos

1 Fibra óptica e Sistemas de transmissão ópticos 1 Fibra óptica e Sistemas de transmissão ópticos 1.1 Introdução Consiste de um guia de onda cilíndrico, conforme Figura 1, formado por núcleo de material dielétrico ( em geral vidro de alta pureza), e

Leia mais

Comprimento de onda ( l )

Comprimento de onda ( l ) Comprimento de onda ( l ) Definição Pode ser definido como a distância mínima em que um padrão temporal da onda, ou seja, quando um ciclo se repete. λ= c f Onde: c velocidade da luz no vácuo [3.10 8 m/s]

Leia mais

SISTEMAS ÓPTICOS FIBRAS ÓPTICAS

SISTEMAS ÓPTICOS FIBRAS ÓPTICAS MIISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIOAL E TECOLÓGICA Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Campus São José Área de Telecomunicações Curso Superior Tecnológico

Leia mais

Plano de Aula: Fibra Ótica e Estruturas de Cabeamento para Redes 1/2 CABEAMENTO - CCT0014

Plano de Aula: Fibra Ótica e Estruturas de Cabeamento para Redes 1/2 CABEAMENTO - CCT0014 Plano de Aula: Fibra Ótica e Estruturas de Cabeamento para Redes 1/2 CABEAMENTO - CCT0014 Título Fibra Ótica e Estruturas de Cabeamento para Redes 1/2 Número de Aulas por Semana Número de Semana de Aula

Leia mais

Meios físicos. Par Trançado (TP) dois fios de cobre isolados

Meios físicos. Par Trançado (TP) dois fios de cobre isolados Meios físicos bit: propaga entre pares de transmissor/receptor enlace físico: o que fica entre transmissor e receptor meio guiado: sinais se propagam em meio sólido: cobre, fibra, coaxial meio não guiado:

Leia mais

Resolução dos exercícios propostos do livro texto referente a primeira etapa do curso Rodrigo César Pacheco

Resolução dos exercícios propostos do livro texto referente a primeira etapa do curso Rodrigo César Pacheco dos exercícios propostos do livro texto referente a primeira etapa do curso Rodrigo César Pacheco Exercícios do capítulo 1 (páginas 24 e 25) Questão 1.1 Uma fonte luminosa emite uma potência igual a 3mW.

Leia mais

Ondas - 2EE 2003 / 04

Ondas - 2EE 2003 / 04 Ondas - EE 003 / 04 Utilização de Basicamente trata-se de transmitir informação ao longo de uma guia de onda em vidro através de um feixe luminoso. O que é uma Fibra Óptica? Trata-se de uma guia de onda

Leia mais

ONDA ELETROMAGNÉTICA

ONDA ELETROMAGNÉTICA ONDA ELETROMAGNÉTICA Sempre que houver um campo magnético variando no tempo, surgirá um campo elétrico induzido, de acordo com a lei de Faraday. Simetricamente, quando em uma região existir um campo elétrico

Leia mais

Resolução de exercícios Parte 1

Resolução de exercícios Parte 1 Resolução de exercícios Parte 1 Capítulo 1 (4 exercícios) 1. Uma fonte luminosa emite uma potência igual a 3mW. Se as perdas totais do sistema somam 45dB, qual deve ser a mínima potência detectável por

Leia mais

Cabeamento Estruturado CAB Curso Técnico Integrado de Telecomunicações 7ª Fase Professor: Cleber Jorge Amaral

Cabeamento Estruturado CAB Curso Técnico Integrado de Telecomunicações 7ª Fase Professor: Cleber Jorge Amaral Cabeamento Estruturado CAB6080721 Curso Técnico Integrado de Telecomunicações 7ª Fase Professor: Cleber Jorge Amaral 2016-1 Introdução Os cabos de fibra óptica, ou simplesmente cabos ópticos, são cabos

Leia mais

MINISTÉRIO DA EDUCAÇÃO

MINISTÉRIO DA EDUCAÇÃO MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Campus São José Área de Telecomunicações Curso Superior Tecnológico

Leia mais

Física II. Capítulo 04 Ondas. Técnico em Edificações (PROEJA) Prof. Márcio T. de Castro 22/05/2017

Física II. Capítulo 04 Ondas. Técnico em Edificações (PROEJA) Prof. Márcio T. de Castro 22/05/2017 Física II Capítulo 04 Ondas Técnico em Edificações (PROEJA) 22/05/2017 Prof. Márcio T. de Castro Parte I 2 Ondas Ondas: é uma perturbação no espaço, periódica no tempo. 3 Classificação quanto à Natureza

Leia mais

Sistemas Ópticos Características das Fibras

Sistemas Ópticos Características das Fibras Sistemas Ópticos Características das Fibras Introdução A fibra óptica é: Uma estrutura cilíndrica; Visivelmente transparente; Fabricado com materiais dielétricos e vítreos E de material flexível; Composta

Leia mais

Sistemas de comunicação óptica. Segunda parte Fontes transmissoras

Sistemas de comunicação óptica. Segunda parte Fontes transmissoras Sistemas de comunicação óptica Segunda parte Fontes transmissoras Transmissores Ópticos Fontes ópticas. Diodos emissores (LEDs) Laser de semicondutores Processo ópticos em semicondutores Absorção óptica

Leia mais

Cap Ondas Eletromagnéticas

Cap Ondas Eletromagnéticas Cap. 33 - Ondas Eletromagnéticas Espectro EM; Descrição de onda EM; Vetor de Poynting e Transferência de energia; Polarização; ; Polarização e Reflexão. Espectro EM Onda: flutuação/oscilação de alguma

Leia mais

DUARTE DA ROSA RELATÓRIO TÉCNICO TRABALHO DE MEIOS DE TRANSMISSÃO

DUARTE DA ROSA RELATÓRIO TÉCNICO TRABALHO DE MEIOS DE TRANSMISSÃO 1 Serviço Nacional de Aprendizagem Comercial E.E.P. Senac Pelotas Centro Histórico Programa Nacional de Acesso ao Ensino Técnico e Emprego Curso Técnico em Informática LUCIANO DUARTE DA ROSA RELATÓRIO

Leia mais

Redes de Computadores.

Redes de Computadores. Redes de Computadores www.profjvidal.com Meios de Comunicação Fibra Óptica Meios de Comunicação Fibra Óptica Consiste basicamente de material dielétrico, em geral sílica ou plástico, transparente flexível

Leia mais

Além dos componentes básicos que acabamos de estudar temos outros componentes que fazem parte de um sistema de comunicação.. Entre eles destacamos:

Além dos componentes básicos que acabamos de estudar temos outros componentes que fazem parte de um sistema de comunicação.. Entre eles destacamos: 9 Outros Dispositivos Introdução Nos enlaces ópticos que constituem sistemas de comunicação, novos dispositivo, além dos básicos (laser, led, fibra e fotodetetor) já mencionados, anteriormente, outros

Leia mais

Fibra Óptica Cap a a p c a id i a d d a e d e d e d e t r t an a s n mi m t i i t r i i n i f n o f r o ma m ç a ão ã

Fibra Óptica Cap a a p c a id i a d d a e d e d e d e t r t an a s n mi m t i i t r i i n i f n o f r o ma m ç a ão ã Fibra Óptica Capacidade de transmitir informação Capacidade de transmitir informação Capacidade taxa máxima de transmissão fiável C = B log 2 (1 + S/N) [Lei de Shannon] B largura de banda do canal B T

Leia mais

PARTE 1: PROPAGAÇÃO DE ONDAS E A FIBRA ÓPTICA -

PARTE 1: PROPAGAÇÃO DE ONDAS E A FIBRA ÓPTICA - TE814-Comunicações Ópticas I PARTE 1: PROPAGAÇÃO DE ONDAS E A FIBRA ÓPTICA - DESCRIÇÃO PELA ÓPTICA GEOMÉTRICA PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro da

Leia mais

3. Polarização da Luz

3. Polarização da Luz 3. Polarização da Luz Sendo uma onda eletromagnética, a luz é caracterizada por vetor um campo elétrico e um campo magnético dependentes do tempo e do espaço. As ondas de luz se propagam em ondas transversais

Leia mais

Fenómenos ondulatórios

Fenómenos ondulatórios Fenómenos ondulatórios Características das ondas Uma onda é descrita pelas seguintes características físicas: Amplitude, A Frequência, f Comprimento de onda, Velocidade, v Características das ondas A amplitude

Leia mais

Propagação Radioelétrica 2017/II Profa. Cristina

Propagação Radioelétrica 2017/II Profa. Cristina Propagação Radioelétrica 2017/II Profa. Cristina Módulo II Fenômenos de Propagação Efeitos da Refração na Propagação Fenômenos de Propagação Quando uma onda se propaga e encontra certo meio, como um obstáculo

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ Departamento de Química. CQ122 Química Analítica Instrumental II Prof. Claudio Antonio Tonegutti Aula 01 09/11/2012

UNIVERSIDADE FEDERAL DO PARANÁ Departamento de Química. CQ122 Química Analítica Instrumental II Prof. Claudio Antonio Tonegutti Aula 01 09/11/2012 UNIVERSIDADE FEDERAL DO PARANÁ Departamento de Química CQ122 Química Analítica Instrumental II Prof. Claudio Antonio Tonegutti Aula 01 09/11/2012 A Química Analítica A divisão tradicional em química analítica

Leia mais

Princípios da Interação da Luz com o tecido: Refração, Absorção e Espalhamento. Prof. Emery Lins Curso Eng. Biomédica

Princípios da Interação da Luz com o tecido: Refração, Absorção e Espalhamento. Prof. Emery Lins Curso Eng. Biomédica Princípios da Interação da Luz com o tecido: Refração, Absorção e Espalhamento Prof. Emery Lins Curso Eng. Biomédica Introdução Breve revisão: Questões... O que é uma radiação? E uma partícula? Como elas

Leia mais

Comunicações Óticas. Janelas de transmissão e Amplificadores a fibra ótica 5 Período Prof. Felipe Henriques

Comunicações Óticas. Janelas de transmissão e Amplificadores a fibra ótica 5 Período Prof. Felipe Henriques Comunicações Óticas Janelas de transmissão e Amplificadores a fibra ótica 5 Período Prof. Felipe Henriques Janelas de transmissão Primeira janela: 850 nm multimodo; Segunda janela: 1300 nm multimodo; Terceira

Leia mais

Amplificadores ópticos

Amplificadores ópticos MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Campus São José Área de Telecomunicações Curso Superior Tecnológico

Leia mais

Módulo III Guias de Ondas. Guias de Ondas Retangulares Guias de Ondas Circulares

Módulo III Guias de Ondas. Guias de Ondas Retangulares Guias de Ondas Circulares Módulo III Guias de Ondas Guias de Ondas Retangulares Guias de Ondas Circulares Guias de Ondas Linhas de transmissão paralelas não são blindadas e, portanto, o campo elétrico entre os dois fios acaba irradiando

Leia mais

Filtros, Multiplexadores, Demutiplexadores Compensadores de Dispersão

Filtros, Multiplexadores, Demutiplexadores Compensadores de Dispersão MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Campus São José Área de Telecomunicações Filtros, Multiplexadores,

Leia mais

Aula do cap. 17 Ondas

Aula do cap. 17 Ondas Aula do cap. 17 Ondas O que é uma onda?? Podemos definir onda como uma variação de uma grandeza física que se propaga no espaço. É um distúrbio que se propaga e pode levar sinais ou energia de um lugar

Leia mais

EMENDAS ÓPTICAS. Uma emenda óptica consiste na junção de dois ou mais segmentos de fibras, podendo ser permanente ou temporária.

EMENDAS ÓPTICAS. Uma emenda óptica consiste na junção de dois ou mais segmentos de fibras, podendo ser permanente ou temporária. EMENDAS ÓPTICAS Uma emenda óptica consiste na junção de dois ou mais segmentos de fibras, podendo ser permanente ou temporária. Servem para: Conectar dois cabos ópticos Possibilitar manobras nas instalações

Leia mais

PEA-5716 COMPONENTES E SISTEMAS DE COMUNICAÇÃO E SENSOREAMENTO A FIBRAS ÓPTICAS

PEA-5716 COMPONENTES E SISTEMAS DE COMUNICAÇÃO E SENSOREAMENTO A FIBRAS ÓPTICAS EPUSP Escola Politécnica da Universidade de São Paulo - EPUSP Departamento de Engenharia de Energia e Automação Elétricas - PEA Av. Prof. Luciano Gualberto, Travessa 3, No.158 Butantã - São Paulo - SP

Leia mais

SEL413 Telecomunicações. 1. Notação fasorial

SEL413 Telecomunicações. 1. Notação fasorial LISTA de exercícios da disciplina SEL413 Telecomunicações. A lista não está completa e mais exercícios serão adicionados no decorrer do semestre. Consulte o site do docente para verificar quais são os

Leia mais

IEAv - CTA Divisão de Física Aplicada EFA Sub-Divisão de Eletromagnetismo EFA-E Grupo de Eletromagnetismo Computacional

IEAv - CTA Divisão de Física Aplicada EFA Sub-Divisão de Eletromagnetismo EFA-E Grupo de Eletromagnetismo Computacional IEAv - CTA Divisão de Física Aplicada EFA Sub-Divisão de Eletromagnetismo EFA-E Grupo de Eletromagnetismo Computacional Marcos A. R. Franco Valdir A. Serrão Francisco Sircilli Neto Grupo de Eletromagnetismo

Leia mais

Aula 3 Ondas Eletromagnéticas

Aula 3 Ondas Eletromagnéticas Aula 3 Ondas letromagnéticas - Luz visível (nos permitem ver - Infravermelhos (aquecem a Terra - Ondas de radiofrequencia (transmissão de rádio - Microondas (cozinhar -Transporte de momento linear - Polarização

Leia mais

Evolução dos sistemas de comunicação óptica

Evolução dos sistemas de comunicação óptica Evolução dos sistemas de comunicação óptica 960 - Realização do primeiro laser; 966 - Proposta para usar as fibras ópticas em telecomunicações (Kao); 970 - Fabrico da primeira fibra óptica de sílica dopada

Leia mais

PSI 3481 SISTEMAS ÓPTICOS E DE MICRO- ONDAS. Fibras Ópticas

PSI 3481 SISTEMAS ÓPTICOS E DE MICRO- ONDAS. Fibras Ópticas PSI 3481 SISTEMAS ÓPTICOS E DE MICRO- ONDAS Fibras Ópticas Fibras Ópticas Luz guiada: reflexão interna total (1854) Fibra Óptica: multicamadas (1950). Antes de 1970: perda 1000 db/km Em 1970: perda 20

Leia mais

Análise de alimentos II Introdução aos Métodos Espectrométricos

Análise de alimentos II Introdução aos Métodos Espectrométricos Análise de alimentos II Introdução aos Métodos Espectrométricos Profª Drª Rosemary Aparecida de Carvalho Pirassununga/SP 2018 Introdução Métodos espectrométricos Abrangem um grupo de métodos analíticos

Leia mais

Aula 3 - Ondas Eletromagnéticas

Aula 3 - Ondas Eletromagnéticas Aula 3 - Ondas Eletromagnéticas Física 4 Ref. Halliday Volume4 Sumário - Transporte de Energia e o Vetor de Poynting; Polarização; Reflexão e Refração; Reflexão Interna Total; Situação a ser analisada...

Leia mais

Application Note PARÂMETROS DE CONFIGURAÇÃO DE UM OTDR. WISE Indústria de Telecomunicações

Application Note PARÂMETROS DE CONFIGURAÇÃO DE UM OTDR. WISE Indústria de Telecomunicações WISE Indústria de Telecomunicações PARÂMETROS DE CONFIGURAÇÃO DE UM OTDR Os três parâmetros-chave a considerar ao especificar um OTDR são: A distância que ele pode atingir (alcance) O quão de perto ele

Leia mais

Acopladores, Circuladores, Filtros, Multiplexadores, Demutiplexadores Compensadores de Dispersão

Acopladores, Circuladores, Filtros, Multiplexadores, Demutiplexadores Compensadores de Dispersão MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Campus São José Área de Telecomunicações Curso Superior Tecnológico

Leia mais

Fenómenos ondulatórios

Fenómenos ondulatórios Fenómenos ondulatórios Onda É uma perturbação que se propaga em um meio, determinando a transferência de energia, sem transporte de matéria. Em relação à direção de propagação da energia nos meios materiais

Leia mais

POLARIZAÇÃO DA LUZ. Figura 1 - Representação dos campos elétrico E e magnético B de uma onda eletromagnética que se propaga na direção x.

POLARIZAÇÃO DA LUZ. Figura 1 - Representação dos campos elétrico E e magnético B de uma onda eletromagnética que se propaga na direção x. POLARIZAÇÃO DA LUZ INTRODUÇÃO Uma onda eletromagnética é formada por campos elétricos e magnéticos que variam no tempo e no espaço, perpendicularmente um ao outro, como representado na Fig. 1. A direção

Leia mais

n 1 x sen = n 2 x sen

n 1 x sen = n 2 x sen LEI DE SNELL - DESCARTES R.I N n 1 x sen î 1 2 ^ n 2 x sen r î ^ r R.R n 1 x sen = n 2 x sen î ^ r 1 Índice de refração relativo: Índice de refração do meio 1 em relação ao meio 2. n 1 n 2 ^ r sen sen

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lucas Barboza Sarno da Silva SUMÁRIO Introdução às ondas eletromagnéticas Equações de Maxwell e ondas eletromagnéticas Espectro de ondas eletromagnéticas Ondas eletromagnéticas planas e a velocidade

Leia mais

PROBLEMAS DE FIBRAS ÓPTICAS

PROBLEMAS DE FIBRAS ÓPTICAS PROBLEMAS DE FIBRAS ÓPTICAS Mª João M. Martins 2º Semestre 20/2 Problema FO- Diagrama de Dispersão de uma Fibra Óptica (oral) Considere uma fibra óptica de núcleo homogéneo com raio a = 2.0µm, n =.45 e

Leia mais

Física Experimental IV Polarização - Lei de Malus. Prof. Alexandre Suaide Prof. Manfredo Tabacniks

Física Experimental IV Polarização - Lei de Malus. Prof. Alexandre Suaide Prof. Manfredo Tabacniks Física Experimental IV - 2008 Polarização - Lei de Malus Prof. Alexandre Suaide Prof. Manfredo Tabacniks Polarização da luz Objetivos Estudar o fenômeno de polarização da luz Aula 1 Métodos de polarização

Leia mais

INTRODUÇÃO AO SENSORIAMENTO REMOTO

INTRODUÇÃO AO SENSORIAMENTO REMOTO UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS DISCIPLINA: LEB450 TOPOGRAFIA E GEOPROCESSAMENTO II PROF. DR. CARLOS ALBERTO VETTORAZZI

Leia mais

PROPAGAÇÃO ELETROMAGNÉTICA

PROPAGAÇÃO ELETROMAGNÉTICA PROPAGAÇÃO LTROMAGNÉTICA LONARDO GURRA D RZND GUDS PROF. DR. ONDA LTROMAGNÉTICA As ondas de rádio que se propagam entre as antenas transmissora e receptora são denominadas de ondas eletromagnéticas Transmissor

Leia mais

Tópicos avançados em sistemas de telecomunicações. Renato Machado

Tópicos avançados em sistemas de telecomunicações. Renato Machado Renato Machado UFSM - Universidade Federal de Santa Maria DELC - Departamento de Eletrônica e Computação renatomachado@ieee.org renatomachado@ufsm.br Santa Maria, 14 de Março de 2012 Sumário 1 2 3 4 5

Leia mais

Apostila 8 Setor B. Aulas 37 e 38. Página 150. G n o m o

Apostila 8 Setor B. Aulas 37 e 38. Página 150. G n o m o Apostila 8 Setor B Aulas 37 e 38 FENÔMENOS Página 150 ONDULATÓRIOS G n o m o Frentes de Onda a) Fonte pontual b) Fonte reta Reflexão 1ª lei: o raio incidente, a reta normal no ponto de incidência e o raio

Leia mais

Propagação Radioelétrica 2017/II Profa. Cristina

Propagação Radioelétrica 2017/II Profa. Cristina Propagação Radioelétrica 2017/II Profa. Cristina Módulo II Fenômenos de Propagação Efeitos da Reflexão na Propagação Reflexão Ocorre quando uma onda EM incide em uma superfície refletora. Parte da energia

Leia mais

Fenómenos ondulatórios

Fenómenos ondulatórios Sumário UNIDADE TEMÁTICA 2. 2- Comunicação de informação a longas distâncias. 2.2- Propriedades das ondas. - Reflexão e refração de ondas. - Leis da reflexão e da refração. - Índice de refração de um meio.

Leia mais

Espectrofotometria UV-Vis. Química Analítica V Mestranda: Joseane Maria de Almeida Prof. Dr. Júlio César José da Silva

Espectrofotometria UV-Vis. Química Analítica V Mestranda: Joseane Maria de Almeida Prof. Dr. Júlio César José da Silva Espectrofotometria UV-Vis Química Analítica V Mestranda: Joseane Maria de Almeida Prof. Dr. Júlio César José da Silva Juiz de Fora, 1/2018 1 Terminologia Espectroscopia: Parte da ciência que estuda o fenômeno

Leia mais

1 O canal de comunicação radiomóvel

1 O canal de comunicação radiomóvel 1 O canal de comunicação radiomóvel O projeto de sistemas de comunicações sem fio confiáveis e de alta taxa de transmissão continua sendo um grande desafio em função das próprias características do canal

Leia mais

Índice. 1. Uma visão histórica. 2. Óptica de raios. 3. Ondas eletromagnéticas

Índice. 1. Uma visão histórica. 2. Óptica de raios. 3. Ondas eletromagnéticas Índice i 1. Uma visão histórica 1.1 Considerações preliminares...1 1.2 Desenvolvimentos iniciais...2 1.3 Óptica ondulatória versus corpuscular...4 1.4 Ressurgimento da teoria ondulatória...6 1.5 Ondas

Leia mais

Física 4. Guia de Estudos P1

Física 4. Guia de Estudos P1 Física 4 Guia de Estudos P1 1. Introdução O curso de física IV visa introduzir aos alunos os conceitos de física moderna através de uma visão conceitual dos fenômenos e uma abordagem simplificada das demonstrações.

Leia mais

Técnicas de Caracterização de Materiais

Técnicas de Caracterização de Materiais Técnicas de Caracterização de Materiais 4302504 2º Semestre de 2016 Instituto de Física Universidade de São Paulo Professores: Antonio Domingues dos Santos Manfredo H. Tabacniks 20 de setembro Caracterização

Leia mais

Transmissão de informação sob a forma de ondas

Transmissão de informação sob a forma de ondas Transmissão de informação sob a forma de ondas Adaptado da Escola Virtual (Porto Editora) 1 2 1 3 ONDAS: fenómenos de reflexão, absorção e refração Quando uma onda incide numa superfície de separação entre

Leia mais

Capítulo 9: Transferência de calor por radiação térmica

Capítulo 9: Transferência de calor por radiação térmica Capítulo 9: Transferência de calor por radiação térmica Radiação térmica Propriedades básicas da radiação Transferência de calor por radiação entre duas superfícies paralelas infinitas Radiação térmica

Leia mais

PLANO DE ENSINO EMENTA

PLANO DE ENSINO EMENTA 1 PLANO DE ENSINO IDENTIFICAÇÃO DA DISCIPLINA Curso: CST em Sistemas de Telecomunicações, Tecnologia Nome da disciplina: Comunicações Ópticas Código: TEL037 Carga horária: 67 horas Semestre previsto: 5º

Leia mais

1 Teoria da Dispersão dos Modos de Polarização PMD

1 Teoria da Dispersão dos Modos de Polarização PMD em Enlaces Ópticos 4 1 Teoria da Dispersão dos Modos de Polarização PMD Teoria básica da dispersão dos modos de polarização discutida na referência 6, Test and Measurements. Neste capítulo serão abordados

Leia mais

INSTRUMENTAÇÃO PARA IMAGIOLOGIA MÉDICA

INSTRUMENTAÇÃO PARA IMAGIOLOGIA MÉDICA INSTRUMENTAÇÃO PARA IMAGIOLOGIA MÉDICA TÉCNICAS DE IMAGEM POR ULTRA-SONS Licenciatura em Engenharia Biomédica da FACULDADE DE CIÊNCIAS E TECNOLOGIA DA UNIVERSIDADE DE COIMBRA INSTRUMENTAÇÃO PARA IMAGIOLOGIA

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Ulbra 016) Um objeto está à frente de um espelho e tem sua imagem aumentada em quatro vezes e projetada em uma tela que está a,4 m do objeto, na sua horizontal. Que tipo de espelho foi utilizado e

Leia mais

ASSUNTO: Produção e Propagação de Ondas Eletromagnéticas.

ASSUNTO: Produção e Propagação de Ondas Eletromagnéticas. UNIDADES DE TRANSMISSÃO 1 QUESTIONÁRIO DA UNIDADE I ASSUNTO: Produção e Propagação de Ondas Eletromagnéticas. Nome: N o : Turma: Para cada período mencionado, analise seu conteúdo e marque " F " para uma

Leia mais

2 Conceitos preliminares

2 Conceitos preliminares 2 Conceitos preliminares As redes de ragg atraíram um considerável interesse ao longo dos últimos anos. Isso se deve a sua característica de refletir uma faixa estreita de comprimentos de onda. As redes

Leia mais

1) Estrutura geral da fibra óptica

1) Estrutura geral da fibra óptica UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA Tecnologia de Fibras Ópticas Prof. Cláudio Kitano Ilha Solteira, julho de 2017 1) Estrutura geral da fibra

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lucas Barboza Sarno da Silva A luz uma onda eletromagnética Equações de Maxwell S S C C q E. ds 0 B. ds 0 db E. dr dt B. dr i 0 0 0 de dt Velocidade da luz: 1 8 c 310 m / s 0 0 03/09/2015 Prof.

Leia mais

Ondas. Lucy V. C. Assali. Física II IO

Ondas. Lucy V. C. Assali. Física II IO Ondas Física II 2016 - IO O que é uma onda? Qualquer sinal que é transmitido de um ponto a outro de um meio, com velocidade definida, sem que haja transporte direto de matéria. distúrbio se propaga leva

Leia mais

Fenómenos ondulatórios

Fenómenos ondulatórios Fenómenos ondulatórios Relação entre a velocidade de propagação da onda, o comprimento da onda e o período: v. f ou v T Reflexão de ondas Na reflexão de ondas, o ângulo de reflexão r é igual ao ângulo

Leia mais

Relação entre comprimento de onda e frequência.

Relação entre comprimento de onda e frequência. Espectro Eletromagnético. Relação entre comprimento de onda e frequência. Relação entre comprimento de onda e frequência. FENÔMENOS ONDULATÓRIOS Reflexão Refração Difração Interferência Batimento Ressonância

Leia mais

TIPOS DE FIBRA FIBRA MULTIMODO ÍNDICE DEGRAU. d 1. diâmetro do núcleo de 50 µm a 200 µm. (tipicamente 50 µm e 62,5 µm) d 2

TIPOS DE FIBRA FIBRA MULTIMODO ÍNDICE DEGRAU. d 1. diâmetro do núcleo de 50 µm a 200 µm. (tipicamente 50 µm e 62,5 µm) d 2 TIPOS DE FIBRA FIBRA MULTIMODO ÍNDICE DEGRAU d 1 diâmetro do núcleo de 50 µm a 200 µm (tipicamente 50 µm e 62,5 µm) d 2 diâmetro da fibra óptica (núcleo + casca) de 125 µm a 280 µm (tipicamente 125 µm)

Leia mais

Universidade Federal do Rio Grande do Sul. Instituto de Física Departamento de Física. FIS01184 Física IV-C Área 1 Lista 1

Universidade Federal do Rio Grande do Sul. Instituto de Física Departamento de Física. FIS01184 Física IV-C Área 1 Lista 1 Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01184 Física IV-C Área 1 Lista 1 1.A luz do Sol no limite superior da atmosfera terrestre tem uma intensidade de

Leia mais

29/05/14. Exemplos : Ondas em cordas, ondas na superfície de um líquido, ondas sonoras, etc.

29/05/14. Exemplos : Ondas em cordas, ondas na superfície de um líquido, ondas sonoras, etc. Classificação das ondas Natureza Ondas Mecânicas Ondas Eletromagnéticas Modo de vibração Transversais Longitudinais Dimensão Unidimensionais Bidimensionais Tridimensionais Natureza das ondas Natureza das

Leia mais

Fundamentos físicos da Sismoestratigrafia

Fundamentos físicos da Sismoestratigrafia Fundamentos físicos da Sismoestratigrafia Ondas em meios sólidos elásticos Uma onda é uma perturbação da matéria que se propaga em uma direção, ou seja, as partículas em um determinado ponto de um meio

Leia mais

1- Quais das seguintes freqüências estão dentro da escala do ultrassom? 2- A velocidade média de propagação nos tecidos de partes moles é?

1- Quais das seguintes freqüências estão dentro da escala do ultrassom? 2- A velocidade média de propagação nos tecidos de partes moles é? Exercícios de Física 1- Quais das seguintes freqüências estão dentro da escala do ultrassom? a) 15 Hz b) 15 KHz c) 15 MHz d) 17.000 Hz e) 19 KHz 2- A velocidade média de propagação nos tecidos de partes

Leia mais

Comunicações Ópticas. Profº: Cláudio Henrique Albuquerque Rodrigues, M. Sc.

Comunicações Ópticas. Profº: Cláudio Henrique Albuquerque Rodrigues, M. Sc. Comunicações Ópticas Profº: Cláudio Henrique Albuquerque Rodrigues, M. Sc. Corpos luminosos e Corpos iluminados O Sol, as estrelas, uma lâmpada ou uma vela, acesas, são objetos que emitem luz própria,

Leia mais

1-A figura 1 a seguir mostra um feixe de luz incidindo sobre uma parede de vidro que separa o ar da água.

1-A figura 1 a seguir mostra um feixe de luz incidindo sobre uma parede de vidro que separa o ar da água. REFRAÇÃO- LEI DE SNELL DESCARTES -A figura a seguir mostra um feixe de luz incidindo sobre uma parede de vidro que separa o ar da água. Os índices de refração são,00 para o ar,,50 para vidro e,33 para

Leia mais

1.1. Sistema Básico de Comunicação Óptica utilizando Fibra Óptica

1.1. Sistema Básico de Comunicação Óptica utilizando Fibra Óptica 1 Introdução Com o avanço do conhecimento, o desenvolvimento do estudo da eletricidade, do magnetismo e a formulação da teoria do eletromagnetismo tornaram-se os pilares de muitas invenções que revolucionaram

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas

UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica. Disciplina: TE053 - Ondas Eletromagnéticas UNIVERSIDADE FEDERAL DO PARANÁ - UFPR Setor de Tecnologia Departamento de Engenharia Elétrica 3 a LISTA DE EXERCÍCIOS Disciplina: TE053 - Ondas Eletromagnéticas Professor: César Augusto Dartora 1 1) Resolver

Leia mais

Física Módulo 2 Ondas

Física Módulo 2 Ondas Física Módulo 2 Ondas Ondas, o que são? Onda... Onda é uma perturbação que se propaga no espaço ou em qualquer outro meio, como, por exemplo, na água. Uma onda transfere energia de um ponto para outro,

Leia mais

MINISTÉRIO DA EDUCAÇÃO

MINISTÉRIO DA EDUCAÇÃO MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Campus São José Área de Telecomunicações Curso Superior Tecnológico

Leia mais

Física IV P1-1 de setembro de 2016

Física IV P1-1 de setembro de 2016 Questão 1 Física IV - 4323204 P1-1 de setembro de 2016 (I) Considere um conjunto de duas fendas de largura l, espaçadas por uma distância de 5l. Sobre estas duas fendas incide uma onda plana monocromática,

Leia mais

Sumário. Comunicações. Comunicação da informação a curtas distâncias 12/11/2015

Sumário. Comunicações. Comunicação da informação a curtas distâncias 12/11/2015 Sumário UNIDADE TEMÁTICA 2. 1.1- Comunicação de informação a curtas distâncias. - Transmissão de sinais. Sinais. - Propagação de um sinal: energia e velocidade de propagação (modelo ondulatório). Comunicação

Leia mais

Análise Sistemática da Metodologia de Previsão do DGD em Sistemas Ópticos de Alta Capacidade 4

Análise Sistemática da Metodologia de Previsão do DGD em Sistemas Ópticos de Alta Capacidade 4 Capacidade 4 1 Teoria de PMD O que se apresenta a seguir é uma teoria básica descrita nas referências 7 e 10, onde será apresentado um resumo dos aspectos mais importantes. 1.1. Introdução A dispersão

Leia mais

d = t sen (θ a θ b ). b

d = t sen (θ a θ b ). b Universidade Federal do Rio de Janeiro Instituto de Física Física IV 019/1 Lista de Exercícios do Capítulo Propriedades da Luz Professor Carlos Zarro 1) Três espelhos interceptam-se em ângulos retos. Um

Leia mais

Anglo/Itapira-Moji 2º Colegial Física 1

Anglo/Itapira-Moji 2º Colegial Física 1 Anglo/Itapira-Moji º Colegial Física 1 LISTA DE RECUPERAÇÃO FINAL (PLúcio) 6. O gráfico representa a tensão U aplicada aos terminais de um resistor, em função da corrente i que o atravessa. 1. Determine

Leia mais

COLÉGIO SHALOM. Trabalho de recuperação Ensino Médio 2º Ano Profº: Wesley da Silva Mota Física

COLÉGIO SHALOM. Trabalho de recuperação Ensino Médio 2º Ano Profº: Wesley da Silva Mota Física COLÉGIO SHALOM Trabalho de recuperação Ensino Médio 2º Ano Profº: Wesley da Silva Mota Física Entrega na data da prova Aluno (a) :. No. 01-(Ufrrj-RJ) A figura a seguir mostra um atleta de ginástica olímpica

Leia mais

Sinal: perturbação que produz alteração de uma propriedade física. A perturbação (o sinal) provoca oscilações ou vibrações num ponto de um meio.

Sinal: perturbação que produz alteração de uma propriedade física. A perturbação (o sinal) provoca oscilações ou vibrações num ponto de um meio. Ondas e sinais Para gerar uma onda num meio é necessário criar uma perturbação num ponto (ou numa zona), ou seja, alterar uma propriedade física do meio nesse ponto. Quando isso ocorre, dizemos que foi

Leia mais

Cabeamento Estruturado CAB Curso Técnico Integrado de Telecomunicações 7ª Fase Professor: Cleber Jorge Amaral

Cabeamento Estruturado CAB Curso Técnico Integrado de Telecomunicações 7ª Fase Professor: Cleber Jorge Amaral Cabeamento Estruturado CAB6080721 Curso Técnico Integrado de Telecomunicações 7ª Fase Professor: Cleber Jorge Amaral 2016-1 Revisão da aula anterior... Banda passante e largura de banda Hz e bps Banda

Leia mais

Sensoriamento Remoto Aplicado à Geografia. Prof. Dr. Reinaldo Paul Pérez Machado

Sensoriamento Remoto Aplicado à Geografia. Prof. Dr. Reinaldo Paul Pérez Machado Sensoriamento Remoto Aplicado à Geografia Prof. Dr. Reinaldo Paul Pérez Machado Qual é a nossa principal fonte de energia? ( SOHO ) Solar and Heliospheric Observatory Image of the Sun Obtained on September

Leia mais

Interferência de ondas: está relacionada com a diferença de fase entre as ondas. A diferença de fase entre duas ondas pode mudar!!!!

Interferência de ondas: está relacionada com a diferença de fase entre as ondas. A diferença de fase entre duas ondas pode mudar!!!! Interferência de ondas: está relacionada com a diferença de fase entre as ondas. Construtiva: em fase Destrutiva: fora de fase A diferença de fase entre duas ondas pode mudar!!!! Coerência: para que duas

Leia mais

AGG0232 Sísmica I Lista 1 Ondas P e S Universidade de São Paulo / IAG - 1/5. Ondas P e S

AGG0232 Sísmica I Lista 1 Ondas P e S Universidade de São Paulo / IAG - 1/5. Ondas P e S AGG0232 Sísmica I Lista 1 Ondas P e S Universidade de São Paulo / IAG - 1/5 Ondas P e S A Figura 1 mostra como se propagam as ondas sísmicas P e S. Neste exemplo as ondas se propagam na direção x. Cada

Leia mais

228 Interferômetro de Michelson

228 Interferômetro de Michelson 1 Roteiro elaborado com base na documentação que acompanha o conjunto por: Osvaldo Guimarães PUC-SP & Otávio Augusto T. Dias IFT-SP Tópicos Relacionados Interferência, comprimento de onda, índice de refração,

Leia mais

Prof. Neckel 06/08/2017. Tipos de ondas. Nesta disciplina: Ondas mecânicas. Simulação no desmos

Prof. Neckel 06/08/2017. Tipos de ondas. Nesta disciplina: Ondas mecânicas. Simulação no desmos FÍSICA 2 ONDAS PROGRESSIVAS PROF. MSC. LEANDRO NECKEL ONDA Definição de onda: Perturbação Periódica que se propaga em um meio ou no espaço Tipos de ondas Mecânicas: oscilação em um determinado meio, dependem

Leia mais

onda de luz a b c d e f g h i fonte de luz raio de luz 08/04/ :57:41 3

onda de luz a b c d e f g h i fonte de luz raio de luz 08/04/ :57:41 3 INTRODUÇÃO Mário Luiz Prof. Dr. Em Ciência Cartográficas ESPECIALIDADE: FOTOGRAMETRIA E COMPUTAÇÃO DE IMAGENS Universidade Federal do Rio Grande do Sul Instituto de Geociências Óptica Física onda de luz

Leia mais