MATEMÁTICA - 3 o ANO MÓDULO 53 PIRÂMIDE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA - 3 o ANO MÓDULO 53 PIRÂMIDE"

Transcrição

1 MATEMÁTICA - 3 o ANO MÓDULO 53 PIRÂMIDE

2

3

4

5

6

7

8

9

10

11

12 Como pode cair no enem (ENEM) Uma indústria fabrica brindes promocionais em forma de pirâmide. A pirâmide é obtida a partir de quatro cortes em um sólido que tem a forma de um cubo. No esquema, estão indicados o sólido original (cubo) e a pirâmide obtida a partir dele. O O A D B C Os pontos A, B, C, D e O do cubo e da pirâmide são os mesmos. O ponto O é central na face superior do cubo. Os quatro cortes saem de O em direção às arestas AD, BC, AB e CD, nessa ordem. Após os cortes, são descartados quatro sólidos. Os formatos dos sólidos descartados são: a) todos iguais. b) todos diferentes. c) três iguais e um diferente. d) apenas dois iguais. e) iguais dois a dois. A D B C

13 Fixação Assim, o volume médio de terra que Hagar acumulou em cada ano de trabalho é, em dm³, igual a: a) 12 c) 14 b) 13 d) 15 1) (UERJ) Leia os quadrinhos: Suponha que o volume de terra acumulada no carrinho de mão do personagem seja igual ao do sólido esquematizado na figura abaixo, formado por uma pirâmide reta sobreposta a um paralelepípedo retângulo.

14 Fixação 2) A molécula do hexafluoreto de enxofre (SF 6 ) tem a forma geométrica de um octaedro regular. Os centros dos átomos de flúor correspondem aos vértices do octaedro, e o centro do átomo de enxofre corresponde ao centro desse sólido, como ilustra a figura abaixo. ( Considere que a distância entre o centro de um átomo de flúor e o centro do átomo de enxofre seja igual a 1,53 A º. Assim, a medida da aresta desse octaedro, em A º é aproximadamente igual a: a) 1,53 b) 1,79 c) 2,16 d) 2,62

15 Fixação 3) (UFF) A figura a seguir representa a planificação de uma pirâmide quadrangular regular. Sabendo-se que mede 3 cm e que as faces laterais são triângulos equiláteros, o volume da pirâmide é: a) cm³ b) cm³ c) cm³ d) cm³ e) cm³

16 Fixação F 4) (UFF) A figura ao lado representa um prisma regular com 6m de altura e base hexagonal 5 ABCDEF. Determine o volume da pirâmide VABC, sabendo que o lado da base do prisma m mede 3m. a b

17 ixação ) (UERJ) ABCD é um tetraedro regular de aresta a. O ponto médio da aresta AB é M e o ponto édio da aresta CD é N. Calcule: ) MN; ) o seno do ângulo NMD.

18 Proposto 1) (UNIRIO) Um prisma de altura H e uma pirâmide têm bases com a mesma área. Se o volume do prisma é a metade do volume da pirâmide, a altura da pirâmide é: a) H/6 b) H/3 c) 2H d) 3H e) 6H

19 Proposto 2) (UNIRIO) Uma pirâmide está inscrita num cubo, como mostra a figura abaixo. Sabendo-se que o volume da pirâmide é de 6 m 3, então, o volume do cubo, em m 3, é igual a: a) 9 b) 12 c) 15 d) 18 e) 21

20 Proposto 3) (UFF) O volume de octaedro regular de aresta a é: a) a² 2 d) a³ 2 2 b) a³ 2 3 c) a³ 3 2 e) a³ 3 3

21 Proposto 4) (UERJ) ABCD é um tetraedro no qual ABC é um triângulo equilátero de lado a e a aresta AD é perpendicular ao plano ABC. Sabendo-se que o ângulo diedro das faces ABC e DBC é 45, o volume do tetraedro é: a) a³ 12 b) a³ 8 c) a³ 6 d) a³ 4 e) a³ 2

22 Proposto 5) (UFF) A grande pirâmide de Quéops, antiga construção localizada no Egito, é uma pirâmide regular de base quadrada, com 137 m de altura. Cada face dessa pirâmide é um triângulo isósceles cuja altura relativa à base mede 179 m. A área da base dessa pirâmide, em m², é: a) b) c) d) e) 79432

23 Proposto 6) (CESGRANRIO) Seja VABC um tetraedro regular. O cosseno do ângulo α que a aresta VA faz com o plano ABC é: a) 3 3 V b) 3 2 c) 2 2 d) 1 2 C A e) 2 3 B

24 Proposto 7) (FUVEST) A figura é a planificação de um poliedro (A = B = C = D; E = F). Calcule seu volume:

25 Proposto 8) (UERJ) Um triângulo equilátero ABC (fig.1) de papelão foi dobrado na sua altura AH. Apoiase o papelão dobrado com os lados AB e AC sobre a mesa, de modo que o ângulo BHC tenha 60 (fig.2) A tangente do ângulo θ que AH faz com o plano da mesa é igual a: a) 2 2 c) 1 2 b) 3 2 d) 1 3

26 Proposto 9) (UERJ) Com os vértices A, B, C e D de um cubo de aresta a, construiu-se um tetraedro regular, como mostra a figura ao lado: Calcule: a) o volume da pirâmide EBCD em função de a; b) a razão entre os volumes do tetraedro ABCD e do cubo.

27 Proposto 10) (UFF) A figura representa uma pirâmide regular cuja base é um triângulo equilátero ABC, de lado 3 2 cm. Sabendo que VA, VB e VC determinam um triedro trirretângulo, determine o valor da altura VH da pirâmide.

28 Proposto 11) Uma folha de papel colorido, com forma de um quadrado de 20 cm de lado, será usada para cobrir todas as faces e a base de uma pirâmide quadrangular regular com altura de 12 cm e apótema da base medindo 5cm. Após se ter concluído essa tarefa, e levando-se em conta que não houve desperdício de papel, a fração percentual que sobrará dessa folha de papel corresponde a: a) 20% b) 16% c) 15% d) 12% e) 10%

29 Proposto e) ) (UFF) No tetraedro representado na figura, R e S são, respectivamente, os pontos médios de NP e OM. A razão RS é igual a: MN a) 3 b) 3 2 c) 2 d) 2 2

30 Proposto 13) (UFF) Considere ABCDEFGH um cubo cuja aresta mede 1 cm e I um ponto no prolongamento da aresta AB, de tal modo que o volume do tetraedro ADFI tenha o mesmo volume do cubo ABCDEFGH Determine a medida do segmento BI.

31 Proposto 14) Observe as figuras a seguir. Figura 1 Figura 2 A figura 1 mostra a forma do toldo de uma barraca, e a figura 2, sua respectiva planificação, composta por dois trapézios isósceles congruentes e dois triângulos. Calcule: a) a distância h da aresta AB ao plano CDEF; b) o volume do sólido de vértices A, B, C, D, E e F, mostrado na figura 1, em função de h.

32 Proposto 15) (ENEM) Representar objetos tridimensionais em uma folha de papel nem sempre é tarefa fácil. O artista holandês Escher ( ) explorou essa dificuldade criando várias figuras planas impossíveis de serem construídas como objetos tridimensionais, a exemplo da litografia Belvedere. (Belvedere, Escher) Considere que um marceneiro tenha encontrado algumas figuras supostamente desenhadas por Escher e deseje construir uma delas com ripas rígidas de madeira que tenham o mesmo tamanho. Qual dos desenhos a seguir ele poderia reproduzir em um modelo tridimensional real? a) b) c) d) e)

33 Proposto 16) (ENEM) Um artesão construiu peças de artesanato interceptando uma pirâmide de base quadrada com um plano. Após fazer um estudo das diferentes peças que poderia obter, ele concluiu que uma delas poderia ter uma das faces pentagonal. Qual dos argumentos a seguir justifica a conclusão do artesão? a) Uma pirâmide de base quadrada tem 4 arestas laterais e a interseção de um plano com a pirâmide intercepta suas arestas laterais. Assim, esses pontos formam um polígono de 4 lados. b) Uma pirâmide de base quadrada tem 4 faces triangulares e, quando um plano intercepta essa pirâmide, divide cada face em um triângulo e um trapézio. Logo, um dos polígonos tem 4 lados. c) Uma pirâmide de base quadrada tem 5 faces e a interseção de uma face com um plano é um segmento de reta. Assim, se o plano interceptar todas as faces, o polígono obtido nessa interseção tem 5 lados. d) O número de lados de qualquer polígono obtido como interseção de uma pirâmide com um plano é igual ao número de faces da pirâmide. Como a pirâmide tem 5 faces, o polígono tem 5 lados. e) O número de lados de qualquer polígono obtido interceptando-se uma pirâmide por um plano é igual ao número de arestas laterais da pirâmide. Como a pirâmide tem 4 arestas laterais, o polígono tem 4 lados.

34 roposto 7) (ENEM) João propôs um desafio a Bruno, seu colega de classe: ele iria descrever um deslocamento pela pirâmide seguir e Bruno deveria desenhar a projeção desse deslocamento no plano da base da pirâmide. O deslocamento descrito por João foi: mova-se pela pirâmide, sempre em linha reta, do ponto A ao ponto E, a eguir do ponto E ao ponto M, e depois de M a C. O desenho que Bruno deve fazer é: ) c) e) ) d)

MATEMÁTICA - 2 o ANO MÓDULO 06 PIRÂMIDE

MATEMÁTICA - 2 o ANO MÓDULO 06 PIRÂMIDE MATEMÁTICA - 2 o ANO MÓDULO 06 PIRÂMIDE h a p 4 a p = 5 6 a b 6 a p = 3 B Como pode cair no enem (ENEM) Uma fábrica produz velas de parafina em forma de pirâmide quadrangular regular com 19 cm de altura

Leia mais

Projeto Jovem Nota 10

Projeto Jovem Nota 10 1. (Fuvest 99) Considere uma caixa sem tampa com a forma de um paralelepípedo reto de altura 8 m e base quadrada de lado 6 m. Apoiada na base, encontra-se uma pirâmide sólida reta de altura 8m e base quadrada

Leia mais

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3.

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3. 1. (Fuvest 2004) No sólido S representado na figura ao lado, a base ABCD é um retângulo de lados AB = 2Ø e AD = Ø; as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos eqüiláteros e o

Leia mais

Projeto Jovem Nota 10

Projeto Jovem Nota 10 1. (Uff 99) Considere o cubo de vértices A, B, C, D, E, F, G e H representando na figura abaixo. Sabendo que a área do triângulo DEC é Ë2/2m, calcule o volume da pirâmide cujos vértices são D, E, G e C.

Leia mais

Projeto Jovem Nota 10

Projeto Jovem Nota 10 1. (Ita 2003) Quatro esferas de mesmo raio R > 0 são tangentes externamente duas a duas, de forma que seus centros formam um tetraedro regular com arestas de comprimento 2 R. Determine, em função de R,

Leia mais

Lista de exercícios - 2os anos - matemática 2 - prova Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e

Lista de exercícios - 2os anos - matemática 2 - prova Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e Lista de exercícios - 2os anos - matemática 2 - prova 7-2013 Professores: Cebola, Figo, Guilherme, Rod e Sandra 1 - Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e 5 cm

Leia mais

Lista de exercícios 08 Aluno (a):

Lista de exercícios 08 Aluno (a): Lista de exercícios 08 Aluno (a): Turma: 3º série (Ensino médio) Professores: Flávio Disciplina: Matemática Prismas e pirâmides Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

Lista de exercícios 06 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Pirâmides

Lista de exercícios 06 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Pirâmides Lista de exercícios 06 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Pirâmides Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:

Leia mais

UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS

UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br 1 PIRÂMIDES Pirâmide é o poliedro convexo tal que uma face é um

Leia mais

UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS

UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br 1 PIRÂMIDES Pirâmide é o poliedro convexo tal que uma face é um

Leia mais

Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA

Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA Poliedross 1.5 Superfície poliédrica fechada Uma superfície poliédrica fechada é composta de um número finito (quatro ou mais) de superfícies poligonais planas, de modo que cada lado de uma dessas superfícies

Leia mais

3 PIRÂMIDE RETA 1 ELEMENTOS DA PIRÂMIDE 4 PIRÂMIDE REGULAR 2 CLASSIFICAÇÃO DE PIRÂMIDES. Matemática Pedro Paulo GEOMETRIA ESPACIAL V

3 PIRÂMIDE RETA 1 ELEMENTOS DA PIRÂMIDE 4 PIRÂMIDE REGULAR 2 CLASSIFICAÇÃO DE PIRÂMIDES. Matemática Pedro Paulo GEOMETRIA ESPACIAL V Matemática Pedro Paulo GEOMETRIA ESPACIAL V 1 ELEMENTOS DA PIRÂMIDE Pirâmide é um poliedro formado por um polígono que é a base e um ponto fora do plano da base que é o vértice. Cada lado do polígono da

Leia mais

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO

Leia mais

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m.

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m. Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Pirâmide ano/em Pirâmide Geometria Espacial II - volumes e áreas de prismas e pirâmides 1 Exercícios Introdutórios Exercício 1 Determine

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

D3 Relacionar diferentes poliedros ou corpos redondos com suas planificações ou vistas. ***********************************

D3 Relacionar diferentes poliedros ou corpos redondos com suas planificações ou vistas. *********************************** Observe o prisma hexagonal regular ilustrado a seguir: Dentre as alternativas a seguir, a que representa uma planificação para esse sólido é *********************************** Ao fazer um molde de um

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Recuperação do 4 Bimestre Matemática Prof. Leandro Conteúdo: Cilindro. Pirâmide e Cone. Esfera. Posições relativas entre retas. Equação geral da circunferênc Distância

Leia mais

Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides.

Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides. Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides. A seguir, algumas representações de pirâmides: Essa forma espacial é bastante

Leia mais

1. (Ufrgs 2011) No hexágono regular representado na figura abaixo, os pontos A e B possuem, respectivamente, coordenadas (0, 0) e (3,0).

1. (Ufrgs 2011) No hexágono regular representado na figura abaixo, os pontos A e B possuem, respectivamente, coordenadas (0, 0) e (3,0). Nome: nº Professor(a): Série: 2º EM. Turma: Data: / /2013 Nota: Sem limite para crescer Bateria de Exercícios Matemática II 3º Trimestre 1º Trimestre 1. (Ufrgs 2011) No hexágono regular representado na

Leia mais

Pirâmide Nível Fácil

Pirâmide Nível Fácil Pirâmide 01 Nível Fácil 1. (Unisc 01) Em uma pirâmide regular, a base é um quadrado de lado q. Sabendo que as faces laterais dessa pirâmide são triângulos equiláteros, pode-se afirmar que o seu volume

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

Aresta. Lateral. Altura. Aresta da Base Apótema da Base. Observação: na pirâmide regular a base é um polígono regular; a projeção ortogonal do

Aresta. Lateral. Altura. Aresta da Base Apótema da Base. Observação: na pirâmide regular a base é um polígono regular; a projeção ortogonal do # Pirâmides / Elementos # Pirâmide Regular Vértice Aresta Lateral Face Lateral Altura Aresta Lateral Altura Raio Base Aresta da Base Base Aresta da Base Apótema da Base Apótema da Pirâmide Área da Base

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

Lista 11. Geometria, Coleção Profmat, SBM. Problemas selecionados das seções 7.2 (pág. 311) e 7.3 (pág. 329).

Lista 11. Geometria, Coleção Profmat, SBM. Problemas selecionados das seções 7.2 (pág. 311) e 7.3 (pág. 329). MA13 Exercícios das Unidades 17 e 18 2014 Lista 11 Geometria, Coleção Profmat, SBM. Problemas selecionados das seções 7.2 (pág. 311) e 7.3 (pág. 329). 1) Sejam dados um ponto A e um plano α com A α. Prove

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

III REPRESENTAÇÃO DO PLANO. 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares

III REPRESENTAÇÃO DO PLANO. 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares 59 MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD020 Geometria Descritiva Curso

Leia mais

1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais.

1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais. 1. (Enem 2011) A figura seguinte mostra um modelo de sombrinha muito usado em países orientais. Esta figura é uma representação de uma superfície de revolução chamada de a) pirâmide. b) semiesfera. c)

Leia mais

Lista de exercícios 05. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática

Lista de exercícios 05. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática Lista de exercícios 05 Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 29/08/2015. A lista deverá apresentar

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 50 POLIEDROS

MATEMÁTICA - 3 o ANO MÓDULO 50 POLIEDROS MATEMÁTICA - 3 o ANO MÓDULO 50 POLIEDROS Tetraedro regular Hexaedro regular Octaedro regular Dodecaedro regular Icosaedro regular B C A F D G E H Como pode cair no enem O poliedro da figura (uma invenção

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco

Leia mais

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção

Leia mais

1 POLIEDROS 2 ELEMENTOS 4 POLIEDROS REGULARES 3 CLASSIFICAÇÃO. 3.2 Quanto ao número de faces. 4.1 Tetraedro regular. 3.

1 POLIEDROS 2 ELEMENTOS 4 POLIEDROS REGULARES 3 CLASSIFICAÇÃO. 3.2 Quanto ao número de faces. 4.1 Tetraedro regular. 3. Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL II 1 POLIEDROS Na Geometria Espacial, como o nome diz, o nosso assunto são as figuras espaciais (no espaço). Vamos estudar sólidos e corpos geométricos que possuem

Leia mais

Geometria Descritiva. Revisão: Polígonos regulares/irregulares. Linhas e Pontos pertencentes a Faces/Arestas de Poliedros

Geometria Descritiva. Revisão: Polígonos regulares/irregulares. Linhas e Pontos pertencentes a Faces/Arestas de Poliedros Geometria Descritiva Revisão: Polígonos regulares/irregulares Linhas e Pontos pertencentes a Faces/Arestas de Poliedros - Os Poliedros em estudo em GD podem ser: regulares (cujas fases são polígonos regulares,

Leia mais

Soluções do Capítulo 8 (Volume 2)

Soluções do Capítulo 8 (Volume 2) Soluções do Capítulo 8 (Volume 2) 1. Não. Basta considerar duas retas concorrentes s e t em um plano perpendicular a uma reta r. As retas s e t são ambas ortogonais a r, mas não são paralelas entre si.

Leia mais

Geometria Espacial: Sólidos Geométricos

Geometria Espacial: Sólidos Geométricos Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.

Leia mais

3ª Ficha de Trabalho

3ª Ficha de Trabalho SOL SUNÁRI LRTO SMPIO 3ª icha de Trabalho MTMÁTI - 10º no 01/013 1ª. Parte : ( Questões Múltiplas ) 1. O perímetro do retângulo é igual a: ( ) 0 8 ( ) 10 8 ( ) 5 3 10 ( ) 100 15 15 75. diagonal de um quadrado

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de

Leia mais

Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança

Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança 1. Maria quer inovar sua loja de embalagens e decidiu vender caixas com diferentes

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais

Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 2011 Assunto: Preparação para o Exame Nacional. 2.1.

Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 2011 Assunto: Preparação para o Exame Nacional. 2.1. Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano 011 Assunto: Preparação para o Exame Nacional 1. Considera a equação x + 1 = kx Para que -1 seja uma das soluções da equação

Leia mais

4. Posições relativas entre uma reta e um plano

4. Posições relativas entre uma reta e um plano RESUMO GEOMETRIA DE POSIÇÃO OU EUCLIDIANA 1.Geometria de posição espacial Ponto, reta e plano são considerados noções primitivas na Geometria. Espaço é o conjunto de todos o pontos. Postulados são proposições

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

Prof. Paulo Cesar Costa

Prof. Paulo Cesar Costa 01. (UFPA) Uma pirâmide regular, cuja base é um quadrado de diagonal 6 6 cm, e altura igual a / do lado da base, tem área total igual a: 96 cm b) 5 cm 88 cm 8 cm e) 576 cm 06. (ITA) A aresta de um cubo

Leia mais

MATEMÁTICA LISTA DE PRISMAS

MATEMÁTICA LISTA DE PRISMAS NOME: MÊS: SÉRIE:: 1 a TURMA: ENSINO: MÉDIO LISTA DE PRISMAS MATEMÁTICA 1) Observe o prisma regular hexagonal ilustrado na figura a seguir. A medida da aresta da base é 6 cm e a medida da altura é 10 cm.

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º Ensino Médio Professor: Elias Bittar Matemática Atividades para Estudos Autônomos Data: 8 / 5 / 2017 Valor: xxx pontos Caro(a) aluno(a),

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido

Leia mais

Matemática - 3C12/14/15/16/26 Lista 2

Matemática - 3C12/14/15/16/26 Lista 2 Matemática - 3C12/14/15/16/26 Lista 2 Poliedros Convexos 1) Determine qual é o poliedro convexo e fechado que tem 6 vértices e 12 arestas. 2) Determine o nº de vértices de dodecaedro convexo que tem 20

Leia mais

DEPARTAMENTO DE MATEMÁTICA Matemática 7 MA07A TURMA T51 Prof. Luiz Antonio Kretzschmar

DEPARTAMENTO DE MATEMÁTICA Matemática 7 MA07A TURMA T51 Prof. Luiz Antonio Kretzschmar DEPARTAMENTO DE MATEMÁTICA Matemática 7 MA07A TURMA T51 Prof. Luiz Antonio Kretzschmar PARTE 2 PONTO, RETA, PLANO Def. : Uma reta é paralela a um plano se, e somente se, eles não têm ponto comum Uma reta

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I Escola Secundária com º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I º Teste de avaliação versão1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada

Leia mais

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff Sólidos Geométricos, Poliedros e Volume 2017.1 Prof. Lhaylla Crissaff www.professores.uff.br/lhaylla Sólidos Geométricos Prisma Pirâmide Cilindro Cone Esfera Prisma Ex.: P é um pentágono. Prisma Prisma

Leia mais

Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre

Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre Exercícios de matemática - 2º ano - Ensino Médio - 3º bimestre Pergunta 1 de 10 - Assunto: Geometria Espacial [2014 - FUVEST] Três das arestas de um cubo, com um vértice em comum, são também arestas de

Leia mais

Lista de exercícios Geometria Espacial 2º ANO Prof. Ulisses Motta

Lista de exercícios Geometria Espacial 2º ANO Prof. Ulisses Motta Lista de exercícios Geometria Espacial º ANO Prof. Ulisses Motta 1. (Uerj) Dois dados, com doze faces pentagonais cada um, têm a forma de dodecaedros regulares. Se os dodecaedros estão justapostos por

Leia mais

Hewlett-Packard PRISMAS. Aulas 01 e 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard PRISMAS. Aulas 01 e 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard PRISMAS Aulas 01 e 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2016 Sumário PRISMAS... 1 CLASSIFICAÇÃO DE UM PRISMA... 1 ÁREAS EM UM PRISMA... 1 EXERCÍCIOS FUNDAMENTAIS...

Leia mais

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3.

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3. Matemática Pedro Paulo GEOMETRIA ESPACIAL VIII 1 TRONCO DE PIRÂMIDE Chamaremos de tronco de pirâmide de bases paralelas a porção da pirâmide limitada por sua base e por uma secção transversal qualquer

Leia mais

OS PRISMAS. 1) Conceito :

OS PRISMAS. 1) Conceito : 1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :

Leia mais

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

LISTA DE EXERCÍCIOS COMPLEMENTAR 1ª PROVA

LISTA DE EXERCÍCIOS COMPLEMENTAR 1ª PROVA MINISTÉRI DA EDUCAÇÃ UNIVERSIDADE FEDERAL D PARANÁ SETR DE CIÊNCIAS EXATAS DEPARTAMENT DE EXPRESSÃ GRÁFICA Professora Elen Andrea Janzen Lor Representação de Retas LISTA DE EXERCÍCIS CMPLEMENTAR 1ª PRVA

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Série: 2 a - Ensino Médio Professor: Elias Bittar Atividades para Estudos Autônomos Data: 11 / 5 / 2016 Caro(a) aluno(a), Aluno(a): N o

Leia mais

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P.

Roteiro de Estudos do 2º Trimestre 2ª Série Disciplina: Geometria Professor: Hugo P. Roteiro de Estudos do º Trimestre ª Série Disciplina: Geometria Professor: Hugo P Conteúdos para Avaliação Trimestral: Pirâmides; Cones; Cilindros; Cálculos de área lateral; área total; volume Problemas

Leia mais

Definição da pirâmide. Seja D uma superfície poligonal contida em um plano α, e V um ponto não pertencente a esse plano.

Definição da pirâmide. Seja D uma superfície poligonal contida em um plano α, e V um ponto não pertencente a esse plano. Unidade 9 - Pirâmide Introdução Definição de pirâmide Denominação de Pirâmides Pirâmide regular Medida da superfície (área) de uma pirâmide regular Volume da pirâmide Introdução A palavra pirâmide, normalmente,

Leia mais

Sólidos Inscritos e Circunscritos 3.º Ano

Sólidos Inscritos e Circunscritos 3.º Ano Sólidos Inscritos e Circunscritos 3.º Ano 1. (Fuvest 2013) Os vértices de um tetraedro regular são também vértices de um cubo de aresta 2. A área de uma face desse tetraedro é a) 2 3 b) 4 c) 3 2 d)3 3

Leia mais

Exercícios de Aprofundamento Mat Geometria Espacial I

Exercícios de Aprofundamento Mat Geometria Espacial I 1. (Fuvest 015) O sólido da figura é formado pela pirâmide SABCD sobre o paralelepípedo reto ABCDEFGH. Sabe-se que S pertence à reta determinada por A e E e que AE cm, AD 4cm e AB 5cm. A medida do segmento

Leia mais

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar Exercícios de Revisão 1º no Ensino Médio Prof. Osmar 1.- Sendo = { x Z / 0 x 2 } e = { y Z / 0 x 5}. esboce o gráfico da função f : tal que y = 2 x + 1 e dê seu conjunto imagem. 2.- No gráfico abaixo de

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2014 1ª. SÉRIE 1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: 2.-Ao fazer uma

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA

MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA MATEMÁTICA - 1 o ANO MÓDULO 53 TEOREMA DE TALES E SEMELHANÇA A A` r B B` s C C` t A B P C S t r 1 r 2 x 6-5 15 3 r 3 B a β b ka B β kb A α c γ C A α kc γ C B B A C A C B a ka B A c C A kc C B B kc ka c

Leia mais

Sólidos Inscritos e Circunscritos

Sólidos Inscritos e Circunscritos Sólidos Inscritos e Circunscritos 1. (Fuvest 01) Os vértices de um tetraedro regular são também vértices de um cubo de aresta. A área de uma face desse tetraedro é a) b) 4 c) d) e) 6. (Uerj 01) Um cristal

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Disciplina: Série: ª - Ensino Médio Professor: Elias Atividades para Estudos Autônomos Data: 8 / 3 / 016 QUESTÃO 1 (UEMG) O desenho ao lado representa uma caixa de madeira

Leia mais

singular Exercícios-Paralelepípedo

singular Exercícios-Paralelepípedo singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma

Leia mais

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! 1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,

Leia mais

Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro

Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro Poliedros 1 Os poliedros são sólidos cujo volume é definido pela interseção de quatro ou mais planos (poli + edro). A superfície poliédrica divide o espaço em duas regiões: uma região finita, que é a parte

Leia mais

Geometria Espacial. Parte I. Página 1

Geometria Espacial. Parte I.  Página 1 Geometria Espacial Parte I 1. (Insper 014) Uma empresa fabrica porta-joias com a forma de prisma hexagonal regular, com uma tampa no formato de pirâmide regular, como mostrado na figura. As faces laterais

Leia mais

Banco de questões. 25 Poliedros ( ) ( ) ( ) ( ) ( ) geometria UNIDADE V I I I

Banco de questões. 25 Poliedros ( ) ( ) ( ) ( ) ( ) geometria UNIDADE V I I I UNIDADE V I I I geometria CAPÍTULO 5 Poliedros 1 (UEL PR) Um retângulo é inscrito no triângulo eqüilátero de lado a, de modo que a base do retângulo está contida na base do triângulo, como ilustra a figura

Leia mais

Prof. Márcio Nascimento. 1 de abril de 2015

Prof. Márcio Nascimento. 1 de abril de 2015 Geometria dos Sólidos Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Geometria

Leia mais

Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no

Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Tema 6 Sólidos geométricos 15 Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Porto. O cubo tem metros de aresta. Determina: 1.1 o volume do cubo, em m ; 1. a

Leia mais

EXERCICIOS - ÁREAS E ÂNGULOS:

EXERCICIOS - ÁREAS E ÂNGULOS: EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos

Leia mais

Módulo de Geometria Espacial I - Fundamentos. Pontos, Retas e Planos. 3 ano/e.m.

Módulo de Geometria Espacial I - Fundamentos. Pontos, Retas e Planos. 3 ano/e.m. Módulo de Geometria Espacial I - Fundamentos Pontos, Retas e Planos. 3 ano/e.m. Geometria Espacial I - Fundamentos Pontos, Retas e Planos. 1 Exercícios Introdutórios 2 Exercícios de Fixação Exercício 4.

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 04 PRISMAS: PARALELEPÍPEDO E CUBO

MATEMÁTICA - 2 o ANO MÓDULO 04 PRISMAS: PARALELEPÍPEDO E CUBO MATEMÁTICA - 2 o ANO MÓDULO 04 PRISMAS: PARALELEPÍPEDO E CUBO C` D A` A C a D B` c D B b 10 x 2x Como pode cair no enem (ENEM) Uma fábrica produz barras de chocolates no formato de paralelepípedos e

Leia mais

Geometria Espacial Profº Driko

Geometria Espacial Profº Driko Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos

Leia mais

Seções de Prismas Julho/ 2009

Seções de Prismas Julho/ 2009 Seções de Prismas Heloiza Rangel da Silva Josie Pacheco de Vasconcellos Souza Paula Eveline da Silva dos Santos Orientadora: Gilmara Teixeira Barcelos Julho/ 2009 Apostila de atividades disponível em http://www.es.iff.edu.br/softmat/projeto_tic/prismas

Leia mais

Sólidos Inscritos. Interbits SuperPro Web

Sólidos Inscritos. Interbits SuperPro Web Sólidos Inscritos 1. (Uerj 014) Uma esfera de centro A e raio igual a 3dm é tangente ao plano de uma mesa em um ponto T. Uma fonte de luz encontra-se em um ponto F de modo que F, A e T são colineares.

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Inequações Modulares 1.- Resolver em IR a) x 1 < 2 b) 1-2x > 3 c) x 2 4x < 0 Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...)

Leia mais

O MÉTODO DAS DUPLAS PROJEÇÕES ORTOGONAIS

O MÉTODO DAS DUPLAS PROJEÇÕES ORTOGONAIS Expressão Gráfica II Geometria Descritiva Engenharia Civil - 2014 13 MÉTD DAS DUPLAS PRJEÇÕES RTGNAIS PARTE I REPRESENTAÇÃ D PNT 1. Planos fundamentais de referência (PFR) Consideremos π e π dois planos

Leia mais

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G MATEMÁTICA O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5,,,, 0 e. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados

Leia mais

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique. Universidade Federal de Uberlândia Faculdade de Matemática Disciplina: Geometria euclidiana espacial (GMA010) Assunto: Paralelisno e Perpendicularismo; Distância e Ângulos no Espaço. Prof. Sato 1 a Lista

Leia mais

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 52 POLÍGONOS E QUADRILÁTEROS

MATEMÁTICA - 1 o ANO MÓDULO 52 POLÍGONOS E QUADRILÁTEROS MTEMÁTI - 1 o NO MÓULO 52 POLÍGONOS E QURILÁTEROS B b a c d B E B E B β X γ Y W α Z θ B B B B B B B B B M N B M N Fixação 1) Qual o polígono convexo que tem 90 diagonais? Fixação F 2) diferença entre

Leia mais

Apostila de Geometria Descritiva. Anderson Mayrink da Cunha GGM - IME - UFF

Apostila de Geometria Descritiva. Anderson Mayrink da Cunha GGM - IME - UFF Apostila de Geometria Descritiva Anderson Mayrink da Cunha GGM - IME - UFF Novembro de 2013 Sumário Sumário i 1 Poliedros e sua Representação 1 1.1 Tipos de Poliedros.............................. 1 1.1.1

Leia mais

MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir.

MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: Observe os dados do quadro a seguir. MATEMÁTICA NESTA PROVA SERÃO UTILIZADOS OS SEGUINTES SÍMBOLOS E CONCEITOS COM OS RESPECTIVOS SIGNIFICADOS: sen x : seno de x cos x : cosseno de x x : módulo de x log x : logaritmo de x na base 10 6. Um

Leia mais

a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a)

a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a) 1 a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a) EB ED = GA b) EB ED = AG c) EB ED = EH d) EB ED = EA e)

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

LEIA ATENTAMENTE AS INSTRUÇÕES

LEIA ATENTAMENTE AS INSTRUÇÕES Matemática e suas Tecnologias CÓDIGO DA PROVA / SIMULADO Aluno(a): POMA - 3 Matemática Questões Professores: Guilherme Neydiwan 01-5 6-45 ª Série 3º Bimestre - N 30 / 09 / 016 LEIA ATENTAMENTE AS INSTRUÇÕES

Leia mais

REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini

REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... Questão 1 - (FUVEST SP/014) GEOMETRIA PLANA Uma das piscinas do Centro de Práticas Esportivas da USP tem o formato de três hexágonos

Leia mais

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir.

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercícios Propostos Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercício 2: As bissetrizes de dois ângulos adjacentes AÔB e BÔC são,

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ Departamento de Expressão Gráfica

UNIVERSIDADE FEDERAL DO PARANÁ Departamento de Expressão Gráfica UNIVERSIDADE FEDERAL DO PARANÁ Departamento de Expressão Gráfica Projeto de Extensão: Produção de material de apoio para o ensino na área de projetos gráficos tridimensionais. Disciplina: Geometria Descritiva

Leia mais