TRANSFERÊNCIA DE CALOR E MASSA

Tamanho: px
Começar a partir da página:

Download "TRANSFERÊNCIA DE CALOR E MASSA"

Transcrição

1 UNIVERSIDADE DE SANTA CRUZ DO SUL DEPARTAMENTO DE ENGENHARIA, ARQUITETURA E CIÊNCIAS AGRÁRIAS CURSO DE ENGENHARIA MECÂNICA TRANSFERÊNCIA DE CALOR E MASSA Atualizado por: Prof. Anderson Fávero Porte Santa Cruz do Sul, agosto 007.

2 Apostila de Transferência de Calor e Massa 1) GENERALIDADES 1.1) INTRODUÇÃO Sempre que um corpo está a uma temperatura maior que a de outro ou, inclusive, no mesmo corpo existam temperaturas diferentes, ocorre uma cessão de energia da região de temperatura mais elevada para a mais baixa, e a esse fenômeno dá-se o nome de transmissão de calor. O objetivo de presente curso é estudar as leis e os princípios que regem a transmissão de calor, bem como suas aplicações, visto que é de fundamental importância, para diferentes ramos de Engenharia, o domínio dessa área de conhecimento. Assim como o Engenheiro Mecânico enfrente problemas de refrigeração de motores, de ventilação, ar condicionado etc., o Engenheiro Metalúrgico não pode dispensar a transmissão de calor nos problemas relacionados a processos pirometalúrgicos ou hidrometalúrgicos, ou nos projetos de fornos ou de regeneradores. Em nível idêntico, o Engenheiro Químico ou Nuclear necessita da mesma ciência em estudos sobre evaporação, condensação ou em trabalhos de refinaria e reatores, enquanto o Eletricista a utiliza no cálculo de transformadores e geradores e o Engenheiro Naval aplica em profundidade a transmissão de calor em caldeiras, máquinas térmicas, etc. Até mesmo o Engenheiro Civil e o arquiteto, especialmente em países frios, sentem a importância de, em seus projetos, preverem tubulações interiores nas alvenarias das edificações, objetivando o escoamento de fluidos quentes, capazes de permitirem conforto maior mediante aquecimento ambiental. Esses são, apenas, alguns exemplos, entre as mais diversas aplicações que a Transmissão de Calor propicia no desempenho profissional da Engenharia. Conforme se verá no desenvolvimento da matéria, é indispensável aplicar recursos de Matemática e de Mecânica dos Fluidos em muitas ocasiões, bem como se perceberá a ligação e a diferença entre Transmissão de calor e Termodinâmica.. A Termodinâmica relaciona o calor com outras formas de energia e trabalha com sistemas em equilíbrio, enquanto a Transmissão de calor preocupa-se com o mecanismo, a duração e as condições necessárias para que o citado sistema atinja o equilíbrio. É evidente que os processos de Transmissão de Calor respeitem a primeira e a segunda Lei da Termodinâmica, mas, nem por isto, pode-se esperar que os conceitos básicos da Transmissão de calor possam simplesmente originar-se das leis fundamentais da Termodinâmica. Evidente também é, sem dúvida, que o calor se transmite sempre no sentido da maior para a menor temperatura, e só haverá transmissão de calor se houver diferença de temperatura, da mesma forma que a corrente elétrica transita do maior para o menor potencial e só haverá passagem de corrente elétrica se houver uma diferença de potencial; percebe-se, de início, sensível analogia entre os fenômenos térmico e elétrico, o que é absolutamente correto, pois que, de fato, o fenômeno é de transporte e pode ser, inclusive, estudado de forma global, como calor, eletricidade, massa, quantidade de movimento, etc., resultando daí a absoluta identidade entre as diferentes leis que comandam deferentes setores do conhecimento humano.

3 Apostila de Transferência de Calor e Massa 3 1.) REGIMES DE TRANSMISSÃO DE CALOR Seja uma parede em forma de paralelepípedo, com todas as faces suficientemente isoladas, exceto duas opostas e paralelas; de início estas faces estão à mesma temperatura T i, logo não há transmissão de calor através da parede. Em determinado instante, eleva-se subitamente uma das faces à temperatura T f e haverá transporte de calor na direção x (Fig. 1.4) Fig. 1.4 Imaginando-se que T i e T f sejam temperaturas mantidas inalteradas, haverá, para cada instante t que se considere, uma curva representativa de T = f(x), isto é, um mesmo ponto de uma mesma seção reta terá temperaturas diferentes no decorrer do tempo, daí as curvas para os tempos t 1, t, t 3, etc. Desde que se conservem T i e T f, ocorrerá um determinado momento, a partir do qual os pontos de uma mesma seção reta não mais variarão sua temperatura com o tempo. Com esse exemplo é possível caracterizar os dois regimes em que podem suceder as formas de transmissão de calor. Durante o período em que um mesmo ponto da parede alterou sua temperatura com o tempo, diz-se que a parede estava em regime transitório, e, quando a temperatura do mesmo ponto conservou-se constante, diz-se que na parede reinava regime estacionário ou permanente; são esses os dois regimes de transmissão de calor. O regime transitório pode ser particularmente um caso de periodicidade, no qual as temperaturas de um mesmo ponto variem ciclicamente segundo uma determinada lei, como, por exemplo, uma variação senoidal ou a variação da temperatura na cobertura de um edifício, exposta dia e noite às condições atmosféricas. A esse regime costuma-se denominar regime periódico. É possível, e inclusive muito útil, definir regime estacionário e regime transitório em termos de fluxo de calor. Assim, regime estacionário é aquele em que o fluxo de calor é constante no interior da parede, pois os pontos interiores já apresentam saturação térmica e

4 Apostila de Transferência de Calor e Massa 4 não alterarão mais suas temperaturas, logo o fluxo de calor que entra é igual ao fluxo de calor que sai; e regime transitório é aquele em que o fluxo de calor é variável nas diferentes seções da parede ou, em outras palavras, o fluxo que entra é diferente do fluxo de calor que sai. 1.3) FORMAS DE TRANSMISSÃO DE CALOR Existem três formas de transmissão de calor: condução, convecção e radiação. Tais formas são fundamentalmente diferentes, regidas por leis próprias, mas que, na realidade, podem ocorrer em simultaneidade, o que torna, por vezes, muito complexa a solução absolutamente exata de um problema de transmissão de calor. O bom senso do engenheiro, sua experiência e o adequado conhecimento da matéria ensejar-lhe-ão a oportunidade de desprezar uma ou até duas formas de transmissão de calor, no projeto ou num problema de Engenharia, desde que as formas não consideradas tenham presença insignificante, não ocasionando falhas nos resultados finais e oferecendo, autenticamente, uma solução de Engenharia não deixando um problema sem solução, dada a preocupação com a exatidão, que, conforme se poderá perceber no desenvolvimento de assunto, é em várias ocasiões, absolutamente dispensável. Em capítulos seguintes será estudada, em detalhe, cada uma das formas de transmissão de calor, mas cabe aqui definir corretamente as diferenças entre as três citadas, para que o acompanhamento do assunto possa ser feito com maior segurança e categoria ) Transferência de Calor por Condução Quando existe um gradiente de temperatura num corpo, a experiência mostra que ocorre uma transferência de energia de alta temperatura para a região de baixa temperatura. Diz-se que a energia é transferida por condução e a taxa de transferência de calor por unidade de área é proporcional ao gradiente normal de temperatura q T A x Quando a constante de proporcionalidade é inserida T q = ka 1-1 x onde q é a taxa de transferência de calor e T/ x é o gradiente de temperatura na direção do fluxo de calor. A constante positiva k é chamada condutividade térmica do material, sendo o sinal de menos inserido para satisfazer o segundo princípio da termodinâmica, ou seja, o calor deve fluir no sentido da temperatura decrescente, como indicado no sistema de coordenadas da Fig. 1-1

5 Apostila de Transferência de Calor e Massa 5 Fig. 1-1 Esquema mostrando a direção do fluxo de calor A equação 1-1 é chamada de lei de Fourier da condução de calor, em homenagem ao físico matemático francês Joseph Fourier que trouxe contribuições significativas ao tratamento analítico da transferência de calor por condução. É importante observar que a Eq. 1-1 é a equação de definição de condutividade térmica e que k tem unidade de watt por metro por grau Celsius [W/(m. o C)] no Sistema Internacional de Unidades (SI). O problema a ser tratado agora é o da determinação da equação básica que governa a transferência de calor através de um sólido utilizando a Eq. 1-1 como ponto de partida. Considere o sistema unidimensional mostrado na Fig. 1-. Se o sistema está em regime permanente, isto é, se a temperatura não varia com o tempo, então o problema é simples devendo-se somente integrar a Eq. 1-1 e substituir os valores apropriados para a solução nas quantidades desejadas. Entretanto, se a temperatura do sólido varia com o tempo, ou se existem fontes ou sumidouros de calor no interior do sólido, a situação é mais complicada. Consideremos o caso geral onde a temperatura pode variar com o tempo e fontes de calor podem ocorrer no interior do corpo. Para o elemento de espessura dx, o seguinte balanço de energia pode ser feito: Fig. 1- Volume elementar para a análise da condução de calor unidimensional Energia conduzida para dentro pela face esquerda + calor gerado no interior do elemento = variação de energia interna + energia conduzida para fora pela face direita. Estas quantidades de energia são dadas pelas seguintes expressões: Energia conduzida para dentro pela face esquerda:

6 Apostila de Transferência de Calor e Massa 6 T q x = ka x Calor gerado no interior do elemento: q x = q& Adx T Variação da energia interna: E = ρca dx τ Energia conduzida para fora pela face direita: T T T q x = ka ] + = A k + k + dx dx x dx x x x x onde q& = energia gerada por unidade de volume c = calor específico do material ρ = densidade A combinação das relações acima fornece: T T T T ka + qadx & = ρca dx A k + k dx x τ x x x T T ou k + q& = ρc 1- x x τ Esta é equação da condução de calor unidimensional. Para tratar do fluxo de calor em mais de uma dimensão deve-se considerar o calor conduzido para dentro e para fora do volume elementar em todas as três direções coordenadas, como mostrado na Fig O balanço de energia conduz a: Fig.1.3 q x + q + q + q = q + + q + + q + sendo as quantidades de energia dadas por T q x = kdydz x y z ger x dx y dy z dz de + dτ

7 Apostila de Transferência de Calor e Massa 7 q x + dx q y + dy q z + dz T T = k + k dx dydz x x x T q y = kdxdz y T T = k + k dy dxdz y y y T q z = kdxdy z T T = k + k dz dxdy z z z = qdxdydz & q ger de T = ρcdxdydz dτ τ Assim a equação geral tridimensional da condução fica: T T T T k + k + k + q& = ρc 1.3 x x y y z z τ Para condutividade constante a Eq. 1.3 pode ser escrita T T T q 1 T = x y z k α τ & 1.4 onde a quantidade α = k/ρc é chamada de difusividade térmica do material. Quanto maior o valor de α, mais rapidamente o calor irá se difundir através do material. Isto pode ser visto observando-se as quantidades que compõem α. Um valor elevado de α pode resultar tanto de um valor elevado da condutividade térmica quanto de um valor baixo da capacidade térmica ρc. Um valor baixo da capacidade térmica significa que menor quantidade de energia em trânsito através do material é absorvida e utilizada para elevar a temperatura do material; assim, mais energia encontra-se disponível para ser transferida. Nas deduções acima, a expressão da derivada x + dx foi escrita na forma de uma expansão de Taylor onde somente os dois primeiros termos da série foram considerados no desenvolvimento. Muitos problemas práticos envolvem somente casos especiais das equações gerais apresentadas acima. Como uma orientação pata desenvolvimento em capítulos futuros, é conveniente mostrar a forma reduzida da equação geral para alguns casos de interesse prático. - Fluxo de calor unidimensional em regime permanente (sem geração de calor) d T dx = 0 1.5

8 Apostila de Transferência de Calor e Massa 8 - Fluxo de calor unidimensional em regime permanente com fontes de calor T x q& + k = Condução bidimensional em regime permanente sem fontes de calor ) Condutividade Térmica T x T + y = A Eq. 1-1 é a equação de definição para a condutividade térmica. Com base nesta definição, podem ser feitas medidas experimentais para a determinação da condutividade térmica de diferentes materiais. Tratamentos analíticos da teoria cinética podem ser usados para gases em temperaturas moderadamente baixas para antecipar com precisão os valores observados experimentalmente. Em alguns casos existem teorias para o cálculo da condutividade térmica em líquidos e sólidos, mas em geral nestas situações os conceitos não são muito claros, permanecendo várias questões em aberto. O mecanismo da condução térmica num gás é simples. A energia cinética de uma molécula é identificada com sua temperatura; assim, numa região de alta temperatura as moléculas têm velocidades maiores do que numa região de baixa temperatura. As moléculas estão em movimento contínuo ao acaso, colidindo umas com as outras e trocando energia e quantidade de movimento.esta movimentação ao acaso das moléculas independe da existência de um gradiente de temperatura no gás. Se uma molécula se movimenta de uma região de alta temperatura para uma de baixa temperatura, ela transporta energia cinética para esta região de baixa temperatura do sistema perdendo esta energia através de colisões com moléculas de energia mais baixa. Foi dito que a unidade da condutividade térmica é watts por metro por grau Celsius [W/(m. o C)] no SI. Note que existe uma taxa de calor envolvida, e o valor numérico da condutividade térmica indica a rapidez com que o calor será transferido num dado material. Qual é a taxa de transferência de energia levando-se em consideração o modelo molecular discutido acima? Quanto mais veloz o movimento das moléculas, mais rapidamente a energia será transportada. Portanto, a condutividade térmica de um gás deve ser dependente da temperatura. Um tratamento analítico simplificado mostra que a condutividade térmica de um gás varia com a raiz quadrada da temperatura absoluta. (Convém lembrar que a velocidade do som em um gás varia com a raiz quadrada da temperatura absoluta v = krt ; esta velocidade é aproximadamente a velociade média das moléculas.) O mecanismo físico da condução de energia térmica em líquidos é qualitativamente o mesmo dos gases; entretanto, a situação é consideravelmente mais complexa, uma vez que o espaçamento das moléculas é menor e os campos de força molecular exercem uma forte influência na troca de energia no processo de colisão. A energia térmica pode ser conduzida em sólidos de duas maneiras: vibração da grade e transporte por elétrons livres. Em bons condutores elétricos um grande número de elétrons move-se sobre a estrutura do material. Como estes elétrons podem transportar carga elétrica, podem também conduzir energia de uma região de alta temperatura para uma

9 Apostila de Transferência de Calor e Massa 9 região de baixa temperatura, como nos gases. A energia também pode ser transmitida como energia de vibração na estrutura do material. Entretanto, este último modo de transferência de energia não é tão efetivo quanto o transporte por elétrons, sendo esta a razão pela qual bons condutores elétricos são quase sempre bons condutores de calor, como por exemplo o cobre, o alumínio e a prata, e isolantes elétricos geralmente são bons isolantes térmicos. Um problema técnico importante é o armazenamento e o transporte, por longos períodos, de líquidos criogênicos como o hidrogênio líquido. Tais aplicações causaram o desenvolvimento de superisolantes para serem usados em temperaturas mais baixas (até aproximadamente 50 o C). O superisolamento mais efetivo é constituído de múltiplas camadas de materiais altamente refletivos separados por espaçadores isolantes. O sistema é evacuado para minimizar as perdas pela condução no ar, sendo possível atingir condutividades térmicas tão baixas quanto 0,3 mw/(m. o C). 1.3.) Transferência de Calor por Convecção É sabido que uma placa de metal aquecida irá se resfriar mais rapidamente quando colocada em frente ao ventilador do que exposta ao ar parado. Este processo é chamado de transferência de calor por convecção. O termo convecção fornece ao leitor uma noção intuitiva em relação ao processo de transferência de calor; entretanto, esta noção intuitiva deve ser ampliada para que se possa conseguir um tratamento analítico adequado do problema. Por exemplo, sabemos que a velocidade do ar sobre a placa aquecida influencia a taxa de transferência de calor. Mas esta influência sobre o resfriamento será linear, ou seja, dobrando-se a velocidade do ar estaremos dobrando a taxa de calor transferido? Devemos supor que a taxa de transferência de calor será diferente se a placa for resfriada com água em vez de ar. Porém de quanto será essa diferença? Estas questões podem ser respondidas com o auxílio de algumas análises básicas a serem apresentadas nos próximos capítulos. Agora, o mecanismo físico da transferência de calor por convecção será esquematizado e mostrada a sua relação com o processo de condução. Considere a placa aquecida mostrada na fig 1.5. A temperatura da placa é T p, e a temperatura do fluido é T. Nesta está representado o comportamento da velocidade do escoamento, que se reduz a zero na superfície da placa como resultado da ação viscosa. Como a velocidade da camada de fluido junto à parede é zero, o calor deve ser transferido somente por condução neste ponto. Assim devemos calcular o calor transferido, usando a Eq. 1-1, com a condutividade térmica do fluido e o gradiente de temperatura junto à parede. Por que, então, se o calor é transferido por condução nesta camada, falamos em transferência de calor por convecção e precisamos considerar a velocidade do fluido? A resposta é que o gradiente de temperatura depende da razão na qual o calor é removido; uma velocidade alta produz um gradiente elevado de temperatura, e assim por diante. Portanto, o gradiente de temperatura junto à parede depende do campo de velocidade; conseqüentemente, em análises posteriores, desenvolveremos uma expressão que relaciona essas duas quantidades. Deve ser lembrado, entretanto, que o mecanismo de transferência de calor na parede é um processo de condução. O efeito global da convecção é expresso através da lei de Newton do resfriamento q = ha(t p - T ) 1.8

10 Apostila de Transferência de Calor e Massa 10 Fig. 1-5 transferência de calor por convecção Aqui a taxa de transferência de calor é relacionada à diferença de temperatura entre a parede e o fluido e à área superficial A. A quantidade h é chamada de coeficiente de transferência de calor por convecção, e a Eq. 1.8 é a equação de definição deste parâmetro. Para alguns sistemas é possível o cálculo analítico de h. Para situações complexas e determinação é experimental o coeficiente de transferência é algumas vezes chamado de condutância de película devido à sua relação com o processo da condução na fina camada de fluido estacionário junto à superfície da parede. Pela Eq. 1.8 a unidade de h é watt por metro quadrado por grau Celsius [W/(m. o C)] no SI. Em vista desta discussão, pode-se antecipar que a transferência de calor por convecção irá exibir uma dependência da viscosidade do fluido além da sua dependência das propriedades térmicas do fluido (condutividade térmica, calor específico, densidade). Isto é esperado porque a viscosidade influência o perfil de velocidade e, portanto, a taxa de transferência de energia na região junto à parede. Se uma placa aquecida estiver exposta ao ar ambiente sem uma fonte externa de movimentação de fluido, o movimento do ar será devido aos gradientes de densidade nas proximidades da placa. Esta convecção é chamada natural ou livre em oposição à convecção forçada, que ocorre no caso de se ter um ventilador movimentando o ar sobre a placa. Os fenômenos de ebulição e condensação são também agrupados dentro desse assunto de transferência de calor por convecção 1.3.3) Transferência de Calor por Radiação Em contraste com os mecanismos de condução e convecção, onde a energia é transferida através de um meio natural, o calor pode também ser transferido em regiões onde existe o vácuo perfeito. O mecanismo neste caso é a radiação eletromagnética que é propagada como resultado de uma diferença de temperatura; trata-se da radiação térmica. Considerações termodinâmicas mostram que um radiador ideal, ou corpo negro, emite energia numa taxa proporcional à quarta potência da temperatura absoluta do corpo. Quando dois corpos trocam calor por radiação, a troca líquida de calor é proporcional à diferença T 4. Assim q = σa(t 1 4 T 4 ) 1-9 Onde σ é a constante de proporcionalidade chamada de constante de Stefan-Boltzmann que vale σ = 5,669 x 10-8 W/(m.K 4 ). A Eq. 1-9 é chamada de lei de Stefan-Boltzmann da

11 Apostila de Transferência de Calor e Massa 11 radiação térmica e vale somente para corpos negros. É importante observar que esta equação é válida somente para radiação térmica; outros tipos de radiação eletromagnética podem não ser tratados com esta simplicidade. Foi mencionado que um corpo negro é um corpo que emite energia de acordo com a lei T 4. Tal corpo é denominado negro porque superfícies negras, como um pedaço de metal coberto por negro de fumo, se aproxima desse tipo de comportamento. Outros tipos de superfícies, como uma superfície pintada ou uma placa metálica polida, não emitem tanta energia quanto o corpo negro; entretanto, a radiação total emita por estes corpos ainda é proporcional a T 4. Para levar em consideração a natureza cinzenta destas superfícies é introduzido um outro fator na Eq. 1-9, a emissividade ε, que relaciona a radiação de uma superfície cinzenta com a de uma superfície negra ideal. Além disso devemos levar em conta que nem toda a radiação que deixa uma superfície atinge a outra superfície, uma vez que a radiação eletromagnética se propaga segundo linhas retas havendo perdas para o ambiente. Portanto, para considerar estas duas situações, são introduzidos dois novos fatores na Eq. 1-9 Q = F ε F G σa(t 1 4 T 4 ) 1.10 onde F ε é a função emissividade e F G é a função fator de forma geométrico. A determinação da forma destas funções para configurações específicas é objeto de um capítulo subseqüente. Entretanto, é importante alertar para o fato destas funções em geral não serem independentes uma da outra como indicado na Eq O fenômeno da transferência de calor por radiação pode ser muito complexo e os cálculos raramente são simples como indicado pela Eq No momento, interessa-nos somente enfatizar as diferenças entre o mecanismo físico da transferência de calor pela radiação e os sistemas condução e convecção.

12 Apostila de Transferência de Calor e Massa 1. CONDUÇÃO UNIDIMENSIONAL EM REGIME PERMANENTE.1) INTRODUÇÃO Agora serão examinadas as aplicações da lei de Fourier da condução de calor para o cálculo da transferência de calor em sistemas unidimensionais. Muitos formatos físicos diferentes podem ser incluídos na categoria de sistemas unidimensionais. Sistemas cilíndricos e esféricos são unidimensionais quando a temperatura no corpo é função somente da distância radial e independe do ângulo azimutal ou da distância axial. Em alguns problemas bidimensionais os efeitos da segunda coordenada espacial podem ser tão pequenos a ponto de serem desprezados, e o problema de fluxo de calor multidimensional pode ser aproximado por uma análise unidimensional. Nestes casos as equações diferenciais são simplificadas e as soluções são obtidas mais facilmente como resultados destas simplificações..) A PAREDE PLANA Inicialmente considere a parede plana onde pode ser feita uma aplicação direta da lei de Fourier (Eq. 1-1). Da integração resulta ka q = ( T T 1 ) -1 x para condutividade constante. A espessura da parede é x, e as temperaturas das faces da parede são T 1 e T. Se a condutividade térmica varia com a temperatura de acordo com alguma relação linear k = k o (1 + βt), a equação resultante para o fluxo de calor é ko A q = x ( T T ) + ( T T ) 1 β 1. Se mais de um material estiver presente, como é o caso da parede composta mostrada na Fig. -1, o fluxo de calor poderá ser escrito T T1 T3 T T4 T3 q = k AA = k BA = k ca x A x B x c Observe que o fluxo de calor deve ser o mesmo através de todas as seções. Resolvendo estas equações simultaneamente, o fluxo de calor é dado por T1 T4 q = -3 x / k A + x / k A + x / k A A A B B C c

13 Apostila de Transferência de Calor e Massa 13 Aqui é conveniente introduzir um ponto de vista conceitual diferente para a lei de Fourier. A taxa de transferência de calor pode ser considerada como um fluxo, a combinação da condutividade térmica, espessura do material, e a área como uma resistência a este fluxo. A temperatura, e a função potencial, ou motora, para este fluxo de calor, e a equação de Fourier pode ser escrita Diferença de potencial Fluxo de calor = -4 Resistência elétrica que é uma relação semelhante à lei de Ohm na teoria de circuitos elétricos. Fig. -1 Transferência de calor unidimensional através de uma parede composta e analogia elétrica Fig. - Transferência de calor em série e em paralelo através de uma parede composta e a analogia elétrica. Na Eq. -1 a resistência a resistência térmica é x/ka, e na Eq..3 á soma dos três termos do denominador. Esta situação é esperada na Eq..3 porque as três paredes lado a lado agem como três resistências térmicas em série.

14 Apostila de Transferência de Calor e Massa 14 A analogia elétrica pode ser empregada para resolver problemas mais complexos envolvendo resistências térmicas em série e em paralelo. Um problema típico e o seu circuito análogo estão mostrados na Fig. -. A equação do fluxo de calor unidimensional para este tipo de problema pode ser escrita Ttotal q = -5 R onde R t são as resistências térmicas dos vários materiais. É interessante mencionar que em alguns sistemas como o da Fig. - pode resultar um fluxo de calor bidimensional se as condutividades térmicas dos materiais B, C e D forem muito diferentes. Nesses casos outras técnicas devem ser empregadas para a obtenção de uma solução. t.4) SISTEMAS RADIAIS CILINDROS Considere um cilindro longo de raio interno r i, raio externo r e, e comprimento L, tal como mostrado na Fig. -3. Este cilindro é submetido a um diferencial de temperatura(t i T e ) e deseja-se saber qual será o fluxo de calor. Pode-se considerar que o fluxo é transmitido na direção radial e assim a única coordenada espacial que deve ser especificada é r. Fig. -3 Fluxo de calor unidimensional através de uma parede cilíndrica e a analogia elétrica Fig..4 Fluxo de calor unidimensional através de seções cilíndricas múltiplas e a analogia elétrica Mais uma vez é usada a lei de Fourier, inserindo-se a relação de áreas apropriadas. A área para o fluxo de calor em sistemas cilíndricos é A r = πrl E, portanto a lei de Fourier fica

15 Apostila de Transferência de Calor e Massa 15 ou com as condições de contorno q r q r = ka r dt dr dt = πkrl -7 dr T =T i em r = r i T = T e em r = r e A solução da Eq. -7 é ( i Te ) ( r r ) kl T q = π -8 ln e i e a resistência térmica pode ser usado para paredes cilíndricas compostas, da mesma maneira que para paredes planas. Para o sistema de três camadas mostrado na Fig. -4 a solução é q = ln πl( T1 T4 ) ( r r1 ) k A + ln ( r3 r ) k B + ln ( r4 r3 ) kc -9 O circuito térmico é mostrado na Fig. -4b. Sistemas esféricos também podem ser tratados como udimensionais quando a temperatura é somente função do raio. O fluxo de calor é então q 4πk(T T ) 1 r 1 r i e = -10 i e.5) O COEFICIENTE GLOBAL DE TRANSFERÊNCIA DE CALOR Considere a parede plana mostrada na Fig. -5, exposta a um fluido quente A em um dos lados. O calor transferido é dado por ka q = h1a( TA T1 ) = ( T1 T ) = h A( T TB ) x

16 Apostila de Transferência de Calor e Massa 16 Fig. -5 Fluxo de calor através de uma parede plana O processo de transferência de calor pode ser representado pelo circuito da resistência da Fig. -5, e o calor total transferido é calculado como razão entre a diferença total de temperatura e a soma das resistências térmicas TA TB q =.11 1 h A + x ka + h A 1 1 Observe que o valor 1/ha é usado para representar a resistência de convecção. O calor total transferido pelos mecanismos combinados de condução e convecção é freqüentemente expresso em termos de um coeficiente global de transferência de calor U, definido pela relação q = UA.1 T total onde A é uma área adequada para a transferência de calor. De acorda com a Eq..11, o coeficiente global de transferência de calor é 1 U = 1 h1 + x k + 1 h A analogia elétrica para um cilindro oco, que troca calor por convecção interna e externamente, está representada na Fig. -6, onde T A e T B são as temperaturas dos fluidos. Fig. -6 Analogia elétrica para um cilindro oco com troca de calor por convecção nas superfícies interna e externa Observe que a área para convecção não é a mesma para os dois fluidos neste caso. Estas áreas dependem do diâmetro interno do tubo e da espessura da parede. Neste caso, o fluxo total de calor é dado por

17 Apostila de Transferência de Calor e Massa 17 q = 1 h A i i TA T ln e i + πkl B ( r r ) 1 + h A e e.13 de acorda com o circuito térmico da Fig. -6. Os termos A i e A e reapresentam as áreas das superfícies interna e externa do tubo. O coeficiente global de transferência de calor pode ser baseado tanto na área interna como na externa. U i = 1 h i + 1 Ai ln e πkl ( r r ) i + Ai A e 1 h e -14 U e = A A e i 1 h i + A e 1 ln ( r r ) e πkl i 1 + h e -15.6) ESPESSURA CRÍTICA DE ISOLAMENTO Considere uma camada de isolamento que pode ser instalada ao redor de um tubo circular, como mostrado na Fig. -7. A temperatura interna do isolamento é fixada em T i, e a superfície externa troca calor com o ambiente a T. Do circuito térmico, o calor transferido vale Fig -7 Espessura crítica de isolamento πl( Ti T ) ( r r ) 1 q = -16 ln e i + k re h Vamos agora manipular esta expressão para determinar o raio externo de isolamento r e que irá maximizar a transferência de calor. A condição de máximo é 1 1 πl( T ) i T dq 0 kre hre = = dr ln( re ri ) 1 + k re h

18 Apostila de Transferência de Calor e Massa 18 que fornece como resultado k r e =.17 h A equação.17 expressa o conceito de raio crítico de isolamento. Se o raio externo for menor que o valor dado por esta equação, então a transferência de calor será aumentada com a colocação de mais isolante. Para raios externos maiores que o valor crítico, um aumento de espessura de isolamento causará um decréscimo da transferência de calor. O conceito central é que para valores de h suficientemente pequenos as perdas de calor por convecção podem aumentar com o aumento da espessura do isolamento, porque isto aumenta a superfície externa do isolamento..7) SISTEMAS COM GERAÇÃO DE CALOR Algumas aplicações interessantes dos princípios da transferência de calor estão relacionadas com sistemas onde o calor pode ser gerado internamente. Os reatores nucleares são um exemplo, assim como condutores elétricos e sistemas quimicamente reagentes. Nossa discussão aqui ficará limitada aos sistemas unidimensionais ou, mais especificamente, sistemas onde a temperatura é função única de uma variável espacial..7.1) Parede plana com geração de calor Considere a parede plana com fontes de calor uniformemente distribuídas como mostrado na Fig. -8. A espessura da parede na direção x é L, e é admitido que as dimensões nas outras direções são suficientemente grandes para que o fluxo de calor seja considerado unidimensional. O calor gerado por unidade de volume é q& e a condutividade térmica é considerada constante, não variando coma temperatura. Esta situação pode ser produzida na prática passando-se uma corrente elétrica através de um condutor. Do Capítulo 1, a equação diferencial para esta situação é d T dx q& + k = 0-18 Para as condições de contorno, especificamos as temperaturas dos dois lados da placa, isto é, T = T p em x = L -19 A solução geral da Eq.-18 é q& k T = x + C1x + C -0 Como a temperatura deve ser a mesma nos dois lados da parede, C 1 deve ser zero. A temperatura do plano médio é denotado por T o ; da Eq -0 T o = C

19 Apostila de Transferência de Calor e Massa 19 Portanto, a distribuição de temperatura é T q& k x To = -1a T T T p o T o = x L -1b que é uma distribuição parabólica. Uma expressão para a temperatura do plano médio T o pode ser obtida através de um balanço de energia. Em regime permanente, o calor total gerado deve ser igual ao calor perdido pelas duas faces. Assim, dt ka = qa & L dx x= L onde A é a área de seção transversal da placa. O gradiente de temperatura na parede é obtido diferenciando-se a Eq. -1b: dt dx x= L = x ( Tp To ) = ( Tp To ) L L x= L To = q& L ql & T o = + T k Então k( T ) L e p p - Fig -8 Esquema ilustrativo do problema da condução unidimensional com geração de calor.7.) CILINDRO COM GERAÇÃO DE CALOR Considere um cilindro de raio R com fontes de calor uniformemente distribuídas e condutividade térmica constante. Se o cilindro for suficientemente longo para que a

20 Apostila de Transferência de Calor e Massa 0 temperatura possa ser considerada somente uma função do raio, a equação diferencial apropriada pode ser obtida da equação d T 1 dt q& + + = 0-3 dr r dr k As condições de contorno são T = T p em r = R e o calor gerado pode ser igual ao calor perdido na superfície dt q& πr L = kπrl dr r= R Como a função temperatura pode ser contínua no centro do cilindro, pode-se especificar que dt = 0 em r = 0 dr Entretanto, não será necessário usar esta condição, pois isto será verificado automaticamente quando as duas condições de contorno forem satisfeitas. A Eq. -3 pode ser escrita d T dt qr & r + = dr dr k sendo que d T dt d dt r + = r dr dr dr dr Portanto a integração fornece dt qr & r = + C1 e dr k qr & T = + C1 ln r + C 4k Da segunda condição de contorno acima, dt qr & qr & C1 dr = = + r = R k k R e, portanto C 1 = 0 A solução final para a distribuição de temperatura é q& T Tp = R r 4k ou, na forma adimensional T Tp r = 1 To Tp R onde T o é a temperatura em r = 0 dada por qr & T o = + T p 4 k ( ) -4

21 Apostila de Transferência de Calor e Massa 1 3. CONDUÇÃO TRANSIENTE E USO DE CARTAS DE TEMPERATURA Se a temperatura da face de um corpo sólido for alterada repentinamente, a temperatura no interior do sólido principia a variar com o tempo. Passa-se algum tempo antes que seja atingida a distribuição de temperatura estacionária. A determinação da distribuição de temperatura é assunto complicado, pois a temperatura varia tanto com a posição como com o tempo. Em muitas aplicações práticas, a variação da temperatura com a posição é desprezível durante o estado transiente e, por isso, considera-se a temperatura função exclusiva do tempo. A análise da transferência de calor com esta hipótese é a análise global do sistema; por ser a temperatura função exclusiva do tempo, a análise é muito simples. Por isso, neste capítulo, principiamos com a análise global de condução transiente de calor. O emprego de cartas de temperatura é ilustrado para resolver a condução de calor transiente, simples, numa placa, num cilindro ou numa esfera, nas quais a temperatura varia com o tempo e com a posição. 3.1) ANÁLISE GLOBAL DO SISTEMA Considere um sólido de forma arbitrária, volume V, área superficial total A, condutividade térmica k, densidade ρ, calor específico c p, a uma temperatura uniforme T o, que é repentinamente imerso, no instante t = 0, em um fluido agitado e mantido a uma temperatura uniforme T. A fig. 3-1 ilustra o sistema da transferência de calor considerado. A transferência de calor entre o sólido e o líquido se realiza por convecção, com um coeficiente de transferência de calor h. Admite-se que a distribuição de temperatura dentro do sólido, em qualquer instante seja suficientemente uniforme, de tal modo que a temperatura de sólido pode ser considerada função exclusiva do tempo, isto é, T(t). A equação de energia na transferência de calor no sólido pode ser escrita como Fig.3.1 Nomenclatura da análise global do sistema durante o fluxo transiente de calor Taxa de fluxo de calor afluente ao sólido de volume V = Taxa de aumento da energia interna do sólido de volume V.

22 Apostila de Transferência de Calor e Massa Escrevendo-se as expressões matemáticas apropriadas a cada um destes termos, obtém-se: dt ( t) Ah[ T T ( t) ] = ρc pv 3.1 dt ou dt ( t) Ah + [ T ( t) T ] = 0 em t > 0 3. dt ρc V p sujeito à condição inicial T(t) = T o em t = 0 Para conveniência da análise, define-se uma nova temperatura θ(t) θ(t) T(t) - T Então a equação 3- torna-se dθ ( t) + mθ ( t) = 0 dt em t > e θ(t) = T o - T θ o em t = 0 onde definimos Ah m ρc V 3.4 A Eq. 3-3 é uma equação diferencial ordinária na temperatura θ(t), cuja solução geral é dada por θ(t) = C e -mt 3.5 A aplicação da condição inicial dá a constante de integração C = θ o. Então, a temperatura do sólido em função do tempo é p θ ( t) T ( t) T mt = = e 3.6 θ o To T A fig. 3- mostra um gráfico da temperatura adimensional da Eq 3.6 em função do tempo. A temperatura decai exponencialmente com o tempo, e a forma da curva é determinada pelo valor do expoente m. Aqui, m tem a dimensão de (tempo) -1. É claro que as curvas na fig. 3- se tornam cada vez mais inclinadas à medida que o valor de m cresce. Isto é, qualquer acréscimo de m fará com que o sólido responda mais rapidamente a uma variação de temperatura ambiente. O exame dos parâmetros na definição de m revela que o aumento da área superficial, para um dado volume, e o coeficiente de transferência de calor provocam o aumento de m. Aumentando-se a densidade, o calor específico, ou o volume, haverá diminuição de m.

23 Apostila de Transferência de Calor e Massa 3 Fig. 3. A temperatura adimensional θ(t)/θ o em função do tempo. Para estabelecer alguns critérios com que a distribuição de temperatura possa ser considerada uniforme no interior do sólido, e com que a análise global do sistema seja aplicável, vamos definir um comprimento característico L s como V L s = 3.7 A e o número de Biot, Bi, como hls Bi = 3.8 k onde k é a condutividade térmica do sólido. Em sólidos que tenham a forma de placa, ou cilindro longo ou esfera, a distribuição de temperatura dentro do sólido, no estado transiente, em qualquer instante, é uniforme, com um erro menor do que cerca de 5%, se hls Bi = 0,1 3.9 ks Discutiremos mais adiante este assunto, que se tornará então mais claro. Aqui, admitiremos que a análise global do sistema é aplicável nas situações em que Bi < 0,1. O significado físico do número de Biot visualiza-se melhor se for escrito na forma h Bi = ks Ls que é a razão entre o coeficiente de transferência de convectiva calor na superfície do sólido e a condutância específica do sólido. Portanto, a hipótese de temperatura uniforme no interior do sólido é válida se a condutância específica do sólido for muito maior do que o coeficiente de transferência convectiva de calor. 3.) CONDIÇÃO DE CONTORNO MISTA Na discussão precedente, consideramos uma situação em que todas as fronteiras da região estavam sujeitas a convecção. Este método também se aplica quando parte da fronteira está sujeita a convecção e o restante está sujeito a um certo fluxo de calor, como vamos ilustrar agora. Considere uma placa de espessura L, inicialmente a uma temperatura uniforme T o. Em qualquer instante t > 0, fornece-se calor à placa através de uma de suas superfícies com uma constante de q (W/m ), enquanto se dissipa calor por convecção pela outra superfície,

24 Apostila de Transferência de Calor e Massa 4 para um ambiente com temperatura uniforme T com um coeficiente de transferência de calor h. A fig. 3.3 mostra a geometria e as condições de contorno do problema. Fig. 3.3 Nomenclatura para análise global do fluxo transiente de calor em uma placa. Vamos admitir áreas iguais A na transferência de calor em ambas as faces da placa. O balanço de energia, neste caso particular dá com a condição inicial Aq dt ( t) Ah[ T T ( t)] = ρc p AL dt dt ( t) q + h[ T T ( t)] = ρc pl em t > a dt + T(t) = T o em t = b Para conveniência na análise, definimos uma nova temperatura θ(t) θ(t) = T(t) - T Dessa forma, as Eqs. = 3.10 são escritas onde definimos dθ ( t) + mθ ( t) = Q dt em t > a θ(t) = T o - T θ o em t = b h m e ρc L p Q q ρc L A solução da Eq. 3-11a é a soma da solução da parte homogênea da 3-11a com a solução particular na forma p θ(t) = Ce -mt + θ p 3-1 onde C é a constante de integração. A solução particular θ p é dada por Combinando as Eqs. 3-1 e 3-13, obtemos θ = Q p m 3-13

25 Apostila de Transferência de Calor e Massa 5 mt Q θ ( t) = Ce m A constante de integração C é determinada pela aplicação da condição inicial 3-11b como Q θ o = C m Substituindo a Eq na 3-14, obtemos a solução deste problema da transferência de calor: mt Q ( e ) m mt θ ( t) = θ e + 1 ou o mt q ( e ) h mt θ ( t) = θ e o Para t, esta solução simplifica-se em Q q θ ( ) = = 3-17 m h que é a temperatura estacionária da placa. 3.3) PLACA EMPREGO DAS CARTAS DE TEMPERATURA TRANSIENTE Em muitas situações, os gradientes de temperatura no interior dos sólidos não são desprezíveis, e não é aplicável a análise global do sistema. Neste caso, a análise dos problemas da condução de calor envolve a determinação da distribuição de temperaturas no interior do sólido em função do tempo e da posição, e é um tema bastante complicado. Vários métodos de análise para resolver estes problemas são discutidos em diversos textos, com tratamento avançado da condução de calor. Problemas simples, como a condução de calor, unidimensional, dependente do tempo, em uma placa sem geração interna de energia, podem ser resolvidos facilmente pelo método da separação de variáveis, como será descrito mais adiante neste capítulo. Além disso, a distribuição de temperatura em tais situações foi calculada, e os resultados, apresentados na forma de cartas de temperaturas transientes em várias obras. Apresentaremos as cartas de temperaturas transientes e de fluxo de calor e discutiremos seu significado físico e seu emprego. Considere uma placa (por exemplo, uma parede plana) de espessura L confinada na região L x L. Inicialmente, a placa está a uma temperatura uniforme T i. De repente, a t = 0, ambas as superfícies de contorno da placa são sujeitas a convecção com um coeficiente de transferência de calor h para o ambiente à temperatura T e assim mantida nos instantes t > 0. A fig 3.4a mostra a geometria, coordenadas e condições de contorno deste problema particular. Porém, neste problema, há simetria geométrica e térmica em torno do plano x = 0, de forma que podemos considerar o problema de condução do calor numa metade da região, digamos 0 x L. Com essa consideração, o problema da condução do calor numa placa de espessura L confinada à região L x L, como está ilustrado na fig 3.4a, é equivalente ao problema de uma placa de espessura L confinada na região 0 x L, como está ilustrado 3.4b. Então, a formação matemática deste problema da condução do calor dependente do tempo, com a geometria e as condições de contorno de fig. 3.4b, é dada por

26 Apostila de Transferência de Calor e Massa 6 (a) (b) Fig. 3.4 Geometria, coordenadas e condições de contorno da condução de calor transiente em uma placa ) Equações Adimensionais T 1 T = x α t em 0 < x < L, e t > a T = 0 x em x = 0, e t > b T k + ht = ht x em x = L, e t > c T = T i em t = 0, e 0 x L 3.18d O problema da condução transiente de calor, dado pelas Eqs. 3.18, pode ser expresso em forma adimensional introduzindo-se as seguintes variáveis adimensionais: T ( x, t) T θ = = temperatura adimensional 3.19a Ti T x X = = coordenada adimensional 3.19b L hl Bi = = número de Biot k 3.19c = αt τ = tempo adimensional, ou número de Fourier L 3.19d Desta forma, o problema da condução de calor dado pelas Eqs 3.19 se transforma em θ θ = X τ em 0 < X < 1, e τ > 0 3.0a θ = 0 X em X = 0, e τ > 0 3.0b θ + Biθ = 0 X em X = 1, e τ > 0 3.0c θ = 1 em 0 X 1, e τ = 0 3.0d O significado físico do tempo adimensional τ, ou número de Fourier, visualiza-se melhor se a equação 3.19d for reordenada na forma

27 Apostila de Transferência de Calor e Massa 7 taxa de condução de calor ao longo de L no volume 3 o αt k(1/ L) L L, W/ C τ = = = 3.1a 3 L ρc L / t taxa de retenção de calor p ao longo de L no volume 3 o L, W/ C Portanto, o número de Fourier é uma medida da razão entre a taxa de condução e a taxa de retenção de calor, num elemento de volume. Por isso, quanto maior o número de Fourier, mais profunda é a penetração do calor num sólido durante um certo intervalo de tempo. O significado físico do número de Biot compreende-se melhor se a Eq. 3.19c for escrita na forma coeficiente de transferência de calor na superfície do hl h sólido Bi = = = 3.1b k k / L condutância do sólido no comprimento L Assim, o número de Biot é a razão entre o coeficiente de transferência de calor e a condutância do sólido sobre o comprimento característico. Comparando os problemas de condução de calor expressos pelas Eq e 3.0, concluímos que o número de parâmetros independentes que afetam a distribuição de temperatura no sólido reduz-se significativamente quando se exprime o problema na sua forma adimensional. No problema dado pelas Eqs. 3.18, a temperatura depende dos oito seguintes parâmetros físicos: x, t, L, k, α, h, T i, T Porém, no problema adimensional expresso pelas Eqs. 3.0, a temperatura depende dos três seguintes parâmetros adimensionais: X, Bi, e τ Fica evidente que, se exprimirmos o problema na forma adimensional, o número de parâmetros que afetam a distribuição de temperatura reduz-se significativamente. Por isso, é prático resolver o problema de uma vez por todas e expor os resultados na forma de cartas para referência rápida. 3.3.) Carta de Temperatura Transiente numa Placa O problema definido pelas Eqs. 3.0 já foi resolvido e os resultados para a temperatura adimensional estão nas Figs 3.5a e 3.5b. A Fig.35a dá a temperatura no plano central T o ou θ(0, τ) em X = 0, em função do tempo adimensional τ com diferentes valores do parâmetro 1/Bi. A curva com 1/Bi = 0 corresponde ou a h, ou então as faces da placa estão mantidas na temperatura ambiente T. Nos grandes valores de 1/Bi, o número de Biot é pequeno, ou a condutância interna do sólido é grande em relação ao coeficiente de transferência de calor na superfície. Isto, por sua vez, implica que a distribuição de temperatura dentro do sólido é suficientemente uniforme, e, portanto, pode-se adotar a

28 Apostila de Transferência de Calor e Massa 8 análise global do sistema. A Fig. 3.5b relaciona as temperaturas em diferentes posições dentro da placa com a temperatura do plano central, T o. Se soubermos a temperatura T o, saberemos as temperaturas nas diferentes posições dentro da placa. Um exame da Fig 3.5b revela que, nos valores de 1/Bi maiores do que 10, ou Bi < 0,1, a distribuição de temperaturas na placa pode ser considerada uniforme, com um erro menor do que cerca de 5%. Devemos recordar que o critério Bi < 0,1, foi utilizado para que a análise global do sistema fosse aplicável. Fig. 3.5 Carta de temperaturas transientes numa placa de espessura L sujeita a convecção em ambas as faces. (a) Temperatura To no plano central x=0; (b) correção de posição para utilizar com a parte (a).

29 Apostila de Transferência de Calor e Massa 9 A Fig.3.6 Mostra o calor adimensional transferido Q/Q o em função do tempo adimensional, em vários valores do número de Biot, numa placa de espessura L. Aqui, Q representa a quantidade total de energia perdida pela placa até certo tempo t, durante a transferência de calor. A quantidade Q o, definida como Q o = ρc p V(T i - T ) 3. representa a energia interna inicial da placa na temperatura ambiente. Fig. 3.6 Calor adimensional transferido Q/Qo numa placa de espessura L. 3.4) CILINDRO LONGO E ESFERA EMPREGO DAS CARTAS DE TEMPERATURAS TRANSIENTES A distribuição das temperaturas adimensionais transientes e os resultados da transferência de calor, semelhantes aos que estão nas Figs 3.5 e 3.6, também podem ser calculados nos casos de um cilindro longo e no de uma esfera ) Carta de temperaturas transientes num cilindro longo Considere a condução de calor, unidimensional, transiente, num cilindro longo de raio b, inicialmente a uma temperatura uniforme T i. Repentinamente, no tempo t = 0, a superfície em r = b é sujeita a convecção, com um coeficiente de transferência de calor h para um ambiente à temperatura T e mantida assim em t > 0. A formulação matemática deste problema de condução de calor é dada em forma adimensional como 1 θ θ R = em 0 < R < 1, e τ > 0 3.3a R R R τ

30 Apostila de Transferência de Calor e Massa 30 θ = 0 R em R = 0, e τ > 1 3.3b θ + Biθ = 0 R em R = 1, e τ > 0 3.3c θ = 1 em 0 R 1, e τ = 0 3.3d onde as várias grandezas adimensionais são definidas da forma seguinte hb Bi = = número de Biot 3.4a k αt τ = = tempo adimensional, ou número de Fourier 3.4b b T ( r, t) T θ = = temperatura adimensional 3.4c Ti T r R = = coordenada radial adimensional 3.4d b O problema da Eq. 3. já foi resolvido, e os resultados para temperatura no centro T o ou θ(0,τ) estão na Fig. 3.7a, em função do tempo adimensional, com vários valores do parâmetro 1/Bi. A fig.3.7b relaciona as temperaturas em diferentes posições dentro do cilindro com a temperatura no plano médio T o. Por isso, dada T o, as temperaturas nas diferentes posições internas do cilindro podem ser determinadas a partir da Fig. 3.7b.

31 Apostila de Transferência de Calor e Massa 31 Fig. 3.7 Carta de temperaturas transientes num cilindro maciço longo, de raio r=b sujeito a convecção na superfície r=b. (a) Temperatura To no eixo do cilindro; (b) correção de posição para utilizar com a parte (a). A Fig. 3.8 mostra o calor adimensional transferido Q/Q o em função do tempo adimensional com diversos valores do número de Biot, no problema do cilindro dado pelas Eqs. 3.. Aqui Q o, tem o significado definido pela equação 3., e Q representa a quantidade total de energia perdida pelo cilindro até certo tempo t, durante a transferência transiente de calor.

32 Apostila de Transferência de Calor e Massa 3 Fig. 3.8 Calor adimensional transferido Q/Qo num cilindro longo de raio b 3.4.) Carta de temperaturas transientes numa esfera Numa esfera de raio b, inicialmente a uma temperatura uniforme T i e em t > 0, sujeita a convecção na superfície r = b, com um coeficiente de transferência de calor h, para um ambiente à temperatura T, o problema da condução transiente de calor é dado na forma adimensional como 1 θ θ R = R R R τ em 0 < R < 1, e τ > 0 3.4a θ = 0 R em R = 0, e τ > 0 3.4b θ + Biθ = 0 R em R = 1, e τ > 0 3.4c θ = 1 em 0 R 1, se for τ = 0 3.5c Aqui, os parâmetros adimensionais Bi, θ e R são definidos como as Eqs A Fig. 3.9a mostra a temperatura no centro T o, ou θ (0,τ), da esfera em função do tempo adimensional τ com diferentes valores do parâmetro 1/Bi. A Fig. 3.9b apresenta a relação entre as temperaturas em diferentes posições dentro da esfera e a temperatura no centro T o.

33 Apostila de Transferência de Calor e Massa 33 Fig. 3.9 Carta de temperaturas transientes numa esfera maciça, de raio r=b sujeito a convecção na superfície r=b. (a) Temperatura To no centro da esfera; (b) correção de posição para empregar com a parte (a). A Fig mostra o calor adimensional Q/Q o em função do tempo adimensional com diferentes valores do número de Biot. Aqui, Q e Q o são definidos como previamente.

34 Apostila de Transferência de Calor e Massa 34 Fig Calor adimensional transferido Q/Qo numa esfera de raio b

Capitulo 8 Transferência de Calor por Condução

Capitulo 8 Transferência de Calor por Condução Fenômenos de Transporte Capitulo 8 Transferência de Calor por Condução Prof. Dr. Christian J. Coronado Rodriguez IEM - UNIFEI TRANSFERÊNCIA DE CALOR POR CONDUÇÃO Quando existe um gradiente de temperatura

Leia mais

Lei de Fourier. Considerações sobre a lei de Fourier. A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados.

Lei de Fourier. Considerações sobre a lei de Fourier. A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados. Condução de Calor Lei de Fourier A lei de Fourier é fenomenológica, isto é, desenvolvida de fenômenos observados Considerações sobre a lei de Fourier q x = ka T x Fazendo Δx 0 q taxa de calor [J/s] ou

Leia mais

Condições variam com o tempo. 1 ) Temperatura na superfície de um sólido é alterada e a temperatura no interior do sólido começa a variar

Condições variam com o tempo. 1 ) Temperatura na superfície de um sólido é alterada e a temperatura no interior do sólido começa a variar Condução de calor em regime transiente Condições variam com o tempo ) Temperatura na superfície de um sólido é alterada e a temperatura no interior do sólido começa a variar ) Passa-se algum tempo antes

Leia mais

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia Transmissão de calor 3º ano Aula 3 Equação diferencial de condução de calor Condições iniciais e condições de fronteira; Geração de Calor num Sólido;

Leia mais

Transferência de calor

Transferência de calor Transferência de calor 1.1 Calor: Forma de energia que se transmite espontaneamente de um corpo para o outro quando entre eles existir uma diferença de temperatura. O calor é uma energia em trânsito provocada

Leia mais

Capítulo 08 - TRANSFERÊNCIA DE CALOR POR CONDUÇÃO EM REGIME TRANSIENTE

Capítulo 08 - TRANSFERÊNCIA DE CALOR POR CONDUÇÃO EM REGIME TRANSIENTE Os exercícios e figuras deste texto foram retirados de diversas referências bibliográficas listadas no programa da disciplina 1 FENÔMENOS DE TRANSPORTE Capítulo 08 - TRANSFERÊNCIA DE CALOR POR CONDUÇÃO

Leia mais

ENGENHARIA DE MATERIAIS. Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa)

ENGENHARIA DE MATERIAIS. Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa) ENGENHARIA DE MATERIAIS Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa) Prof. Dr. Sérgio R. Montoro sergio.montoro@usp.br srmontoro@dequi.eel.usp.br TRANSFERÊNCIA DE

Leia mais

FENÔMENOS DE TRANSPORTES AULA 12 E 13 INTRODUÇÃO À CONVECÇÃO E CONDUÇÃO

FENÔMENOS DE TRANSPORTES AULA 12 E 13 INTRODUÇÃO À CONVECÇÃO E CONDUÇÃO FENÔMENOS DE TRANSPORTES AULA 12 E 13 INTRODUÇÃO À CONVECÇÃO E CONDUÇÃO PROF.: KAIO DUTRA Convecção Térmica O modo de transferência de calor por convecção é composto por dois mecanismos. Além da transferência

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Condução em Regime Transiente Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal

Leia mais

ENGENHARIA DE MATERIAIS. Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa)

ENGENHARIA DE MATERIAIS. Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa) ENGENHARIA DE MATERIAIS Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa) Prof. Dr. Sérgio R. Montoro sergio.montoro@usp.br srmontoro@dequi.eel.usp.br TRANSFERÊNCIA DE

Leia mais

Transferência de Calor Condução de Calor

Transferência de Calor Condução de Calor Transferência de Calor Condução de Calor Material adaptado da Profª Tânia R. de Souza de 2014/1. 1 Lei de Fourier A Lei de Fourier é fenomenológica, ou seja, foi desenvolvida a partir da observação dos

Leia mais

Capítulo 8: Transferência de calor por condução

Capítulo 8: Transferência de calor por condução Capítulo 8: ransferência de calor por condução Condução de calor em regime transiente Condução de calor em regime transiente Até o momento só foi analisada a transferência de calor por condução em regime

Leia mais

OPERAÇÕES UNITÁRIAS II AULA 1: REVISÃO TRANSFERÊNCIA DE CALOR. Profa. Dra. Milena Martelli Tosi

OPERAÇÕES UNITÁRIAS II AULA 1: REVISÃO TRANSFERÊNCIA DE CALOR. Profa. Dra. Milena Martelli Tosi OPERAÇÕES UNITÁRIAS II AULA 1: REVISÃO TRANSFERÊNCIA DE CALOR Profa. Dra. Milena Martelli Tosi A IMPORTÂNCIA DA TRANSFERÊNCIA DE CALOR NA INDÚSTRIA DE ALIMENTOS Introdução Revisão: Mecanismos de transferência

Leia mais

Aula 6 de FT II. Prof. Gerônimo

Aula 6 de FT II. Prof. Gerônimo Aula 6 de FT II Prof. Gerônimo Transferência de calor em superfícies estendidas Superfície estendida é comumente usado para descrever um caso especial importante envolvendo a transferência de calor por

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Aletas e Convecção em Escoamento Interno e Externo Prof. Universidade Federal do Pampa BA000200 Campus Bagé 19 de junho de 2017 Transferência de Calor: Convecção 1 / 30 Convecção

Leia mais

CONDUÇÃO DE CALOR APLICADO AO ESTUDO DE CONCEITOS MATEMÁTICOS DO ENSINO MÉDIO. Douglas Gonçalves Moçato*** Luiz Roberto Walesko*** Sumário

CONDUÇÃO DE CALOR APLICADO AO ESTUDO DE CONCEITOS MATEMÁTICOS DO ENSINO MÉDIO. Douglas Gonçalves Moçato*** Luiz Roberto Walesko*** Sumário CONDUÇÃO DE CALOR APLICADO AO ESUDO DE CONCEIOS MAEMÁICOS DO ENSINO MÉDIO Douglas Gonçalves Moçato*** Luiz Roberto Walesko***. Introdução. Conceitos de transmissão de calor. Convecção. Radiação.3 Condução

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL LOM3083 e LOM3213 Fenômenos de Transporte Prof. Luiz T. F. Eleno Lista de exercícios 2 1. Considere uma parede aquecida por convecção de um

Leia mais

Capítulo 8: Transferência de calor por condução

Capítulo 8: Transferência de calor por condução Capítulo 8: Transferência de calor por condução Aletas Condução de calor bidimensional Transferência de calor É desejável em muitas aplicações industriais aumentar a taxa de transferência de calor de uma

Leia mais

Condução de calor Transiente

Condução de calor Transiente Fenômenos de Transporte Capitulo 8 cont. Condução de calor Transiente Prof. Dr. Christian J. Coronado Rodriguez IEM - UNIFEI Condução de calor transitória Se as condições de contorno térmica são dependentes

Leia mais

PNV-2321 TERMODINÂMICA E TRANSFERÊNCIA DE CALOR

PNV-2321 TERMODINÂMICA E TRANSFERÊNCIA DE CALOR PNV-31 TERMODINÂMICA E TRANSFERÊNCIA DE CALOR TRANSMISSÃO DE CALOR 1) INTRODUÇÃO Sempre que há um gradiente de temperatura no interior de um sistema ou quando há contato de dois sistemas com temperaturas

Leia mais

ENGENHARIA DE MATERIAIS. Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa)

ENGENHARIA DE MATERIAIS. Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa) ENGENHARIA DE MATERIAIS Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa) Prof. Dr. Sérgio R. Montoro sergio.montoro@usp.br srmontoro@dequi.eel.usp.br AULA 5 CONDUÇÃO

Leia mais

5S.1 Representação Gráfica da Condução Unidimensional Transiente na Parede Plana, no Cilindro Longo e na Esfera

5S.1 Representação Gráfica da Condução Unidimensional Transiente na Parede Plana, no Cilindro Longo e na Esfera 5S.1 Representação Gráfica da Condução Unidimensional Transiente na Parede Plana, no Cilindro Longo e na Esfera Nas Seções 5.5 e 5.6, foram desenvolvidas aproximações pelo primeiro termo para a condução

Leia mais

ENGENHARIA DE MATERIAIS. Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa)

ENGENHARIA DE MATERIAIS. Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa) ENGENHARIA DE MATERIAIS Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa) Prof. Dr. Sérgio R. Montoro sergio.montoro@usp.br srmontoro@dequi.eel.usp.br AULA 3 REVISÃO E

Leia mais

1 ) Temperatura na superfície de um sólido é alterada e a temperatura no interior do sólido começa a variar

1 ) Temperatura na superfície de um sólido é alterada e a temperatura no interior do sólido começa a variar CONDUÇÃO DE CALOR EM REGIME TRANSIENTE Condições variam com o tempo problema transiente ocorre quando as condições de contorno variam. ) Temperatura na superfície de um sólido é alterada e a temperatura

Leia mais

Equação Geral da Condução

Equação Geral da Condução Equação Geral da Condução Para um sistema unidimensional demonstrouse: q x = k A T x x Para um sistema multidimensional o fluxo de calor é vetorial: q,, =q x,, i q y,, j q z,, k = k T i k T j k T k =k

Leia mais

Condução unidimensional em regime estacionário, Sistemas Radiais

Condução unidimensional em regime estacionário, Sistemas Radiais Com freqüência, em sistemas cilíndricos e esféricos há gradientes de temperatura somente na direção radial, o que permite analisá-los como sistemas unidimensionais. Um exemplo comum é o cilindro oco, cujas

Leia mais

Capítulo 4 Condução Bidimensional em Regime Estacionário. Prof. Dr. Santiago del Rio Oliveira

Capítulo 4 Condução Bidimensional em Regime Estacionário. Prof. Dr. Santiago del Rio Oliveira Capítulo 4 Condução Bidimensional em Regime Estacionário Prof. Dr. Santiago del Rio Oliveira 4. Considerações Gerais A distribuição de temperaturas é caracterizada por duas coordenadas espaciais, ou seja:

Leia mais

CAP 3 CONDUÇÃO UNIDIMENSIONAL EM REGIME PERMANENTE EM PAREDES CILÍNDRICAS (SISTEMAS RADIAIS)

CAP 3 CONDUÇÃO UNIDIMENSIONAL EM REGIME PERMANENTE EM PAREDES CILÍNDRICAS (SISTEMAS RADIAIS) CAP 3 CONDUÇÃO UNIDIMENSIONAL EM REGIME PERMANENTE EM PAREDES CILÍNDRICAS (SISTEMAS RADIAIS) Prof. Antonio Carlos Foltran EXEMPLOS DE APLICAÇÃO 2 Carregamento de forno LD em aciaria Fonte: Companhia Siderúrgica

Leia mais

ESZO Fenômenos de Transporte

ESZO Fenômenos de Transporte Universidade Federal do ABC ESZO 001-15 Fenômenos de Transporte Profa. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Bloco A, torre 1, sala 637 Mecanismos de Transferência de Calor Calor Calor pode

Leia mais

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1

PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1 PME-2350 MECÂNICA DOS SÓLIDOS II AULA #7: VASOS DE PRESSÃO DE PAREDE ESPESSA 1 7.1. Introdução e hipóteses gerais Vimos na aula anterior as equações necessárias para a solução de um problema geral da Teoria

Leia mais

Fenômenos de transporte AULA 5. Transporte de Calor. Professor Alberto Dresch Webler

Fenômenos de transporte AULA 5. Transporte de Calor. Professor Alberto Dresch Webler Fenômenos Resistências de dos Transporte Materiais - Aula 5 Fenômenos de transporte AULA 5 Transporte de Calor Professor Alberto Dresch Webler Veremos Transporte de calor Condução, Convecção, Radiação.

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Condução em Paredes Planas e Cilíndricas Prof. Universidade Federal do Pampa BA000200 Campus Bagé 15 de maio de 2017 Transferência de Calor: Condução 1 / 28 Condução: Lei de Fourier

Leia mais

Prof. Felipe Corrêa Maio de 2016

Prof. Felipe Corrêa Maio de 2016 Prof. Felipe Corrêa Maio de 2016 IMPORTÂNCIA Praticamente todos os sistemas envolvidos na engenharia estão direta ou indiretamente ligados com a transferência de calor. Portanto, para que estes sistemas

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Introdução e Modos de Transferência Prof. Universidade Federal do Pampa BA000200 Campus Bagé 08 de maio de 2017 Transferência de Calor: Introdução 1 / 29 Introdução à Transferência

Leia mais

EP34D Fenômenos de Transporte

EP34D Fenômenos de Transporte EP34D Fenômenos de Transporte Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br Introdução à Transferência de Calor 2 Introdução à Transferência de Calor O que é Transferência de Calor? Transferência de

Leia mais

Condução de Calor Bidimensional

Condução de Calor Bidimensional Condução de Calor Bidimensional Soluções analíticas para condução térmica em casos 2D requer um esforço muito maior daquelas para casos 1D. Há no entanto inúmeras soluções baseadas em técnicas da Física-Matemática,

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Condução Unidimensional, em Regime Permanente e Sem Geração Interna de Calor Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Condução Bidimensional Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Introdução à transferência de calor Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade

Leia mais

Descrição Macroscópica de um Gás ideal

Descrição Macroscópica de um Gás ideal Descrição Macroscópica de um Gás ideal O gás não tem volume fixo ou uma pressão fixa O volume do gás é o volume do recipiente A pressão do gás depende do tamanho do recipiente A equação de estado relaciona

Leia mais

Aula 4 de FT II. Prof. Gerônimo

Aula 4 de FT II. Prof. Gerônimo Aula 4 de FT II Prof. Gerônimo Equação diferencial de Condução Vamos considerar a taxa de geração interna de calor q = E g. Coordenada x, y e z. Regime transiente. Considerando: q = q Volume de controle

Leia mais

Elementos de Circuitos Elétricos

Elementos de Circuitos Elétricos Elementos de Circuitos Elétricos Corrente e Lei de Ohm Consideremos um condutor cilíndrico de seção reta de área S. Quando uma corrente flui pelo condutor, cargas se movem e existe um campo elétrico. A

Leia mais

Modelagem Matemática de Sistemas Térmicos

Modelagem Matemática de Sistemas Térmicos Modelagem Matemática de Sistemas Térmicos INTODUÇÃO Sistemas térmicos são sistemas nos quais estão envolvidos o armazenamento e o fluxo de calor por condução, convecção ou radiação A rigor, sempre estão

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Condução Unidimensional, em Regime Permanente com Geração Interna de Calor Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica

Leia mais

CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA

CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA CONDUÇÃO DE CALOR UNIDIMENSIONAL EXERCÍCIOS EM SALA 1) Uma casa possui uma parede composta com camadas de madeira, isolamento à base de fibra de vidro e gesso, conforme indicado na figura. Em um dia frio

Leia mais

ESTE Aula 2- Introdução à convecção. As equações de camada limite

ESTE Aula 2- Introdução à convecção. As equações de camada limite Universidade Federal do ABC ESTE013-13 Aula - Introdução à convecção. As equações de camada limite EN 41: Aula As equações de camada limite Análise das equações que descrevem o escoamento em camada limite:

Leia mais

Programa Analítico de Disciplina ENG278 Transferência de Calor e Massa

Programa Analítico de Disciplina ENG278 Transferência de Calor e Massa 0 Programa Analítico de Disciplina ENG78 Transferência de Calor e Massa Departamento de Engenharia Agrícola - Centro de Ciências Agrárias Número de créditos: Teóricas Práticas Total Duração em semanas:

Leia mais

CONDUÇÃO DE CALOR PÁTRICIA KUERTEN GUIZONI SUELI ALBERTON SALVALAGIO

CONDUÇÃO DE CALOR PÁTRICIA KUERTEN GUIZONI SUELI ALBERTON SALVALAGIO CONDUÇÃO DE CALOR PÁTRICIA KUERTEN GUIZONI SUELI ALBERTON SALVALAGIO CONTEÚDO TRANSFERÊNCIA DE CALOR CONDUÇÃO LEI DE FOURIER CONDUTIVIDADE TÉRMICA DIFUSIVIDADE TÉRMICA CONDUÇÃO DE CALOR UNIDIMENSIONAL

Leia mais

ENGENHARIA DE MATERIAIS. Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa)

ENGENHARIA DE MATERIAIS. Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa) ENGENHARIA DE MATERIAIS Fenômenos de Transporte em Engenharia de Materiais (Transferência de Calor e Massa) Prof. Dr. Sérgio R. Montoro sergio.montoro@usp.br srmontoro@dequi.eel.usp.br AULA 1 INTRODUÇÃO

Leia mais

Mecanismos de Transferência de Calor. Gustavo Dalpian

Mecanismos de Transferência de Calor. Gustavo Dalpian Mecanismos de Transferência de Calor Gustavo Dalpian Monitoria Segunda: 14 18hs (Sala 405, disponível a par8r de 26/10) 14 16 hs Luiz Felipe Lopes 16 18 hs Felipe Marcilio Terca: 10 12hs Mariana Barbosa

Leia mais

Colégio Técnico de Lorena (COTEL)

Colégio Técnico de Lorena (COTEL) Colégio Técnico de Lorena (COTEL) Operações Unitárias Transferência de Calor Prof. Lucrécio Fábio dos Santos Departamento de Engenharia Química LOQ/EEL Atenção: Estas notas destinam-se exclusivamente a

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Convecção Natural - Parte 2 Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal

Leia mais

FENÔMENOS DE TRANSPORTES

FENÔMENOS DE TRANSPORTES FENÔMENOS DE TRANSPORTES AULA 11 FUNDAMENTOS DE TRANSFERÊNCIA DE CALOR PROF.: KAIO DUTRA Transferência de Calor Transferência de calor (ou calor) é a energia em trânsito devido a uma diferença de temperatura.

Leia mais

Capítulo 3 CONDUÇÃO DE CALOR 1-D, REGIME PERMANENTE

Capítulo 3 CONDUÇÃO DE CALOR 1-D, REGIME PERMANENTE Capítulo 3 CONDUÇÃO DE CALOR 1-D, REGIME PERMANENTE Parede plana T 1 T s1 T s2! x k T $ # &+! " x % y k T $ # &+! " y % z k T $ T # &+!q ρc p " z % t d " dx k dt % $ ' 0 q # dx & x ka dt dx cte T( x) ax

Leia mais

Expansão Térmica de Sólidos e Líquidos. A maior parte dos sólidos e líquidos sofre uma expansão quando a sua temperatura aumenta:

Expansão Térmica de Sólidos e Líquidos. A maior parte dos sólidos e líquidos sofre uma expansão quando a sua temperatura aumenta: 23/Mar/2018 Aula 8 Expansão Térmica de Sólidos e Líquidos Coeficiente de expansão térmica Expansão Volumétrica Expansão da água Mecanismos de transferência de calor Condução; convecção; radiação 1 Expansão

Leia mais

Mecanismos de transferência de calor

Mecanismos de transferência de calor Mecanismos de transferência de calor Condução Potência calor: Q cond A T 1 T x : condutibilidde térmica; A: área de transferência x: espessura ao longo da condução T 1 T : diferença de temperatura ifusividade

Leia mais

EP34D Fenômenos de Transporte

EP34D Fenômenos de Transporte EP34D Fenômenos de Transporte Prof. Dr. André Damiani Rocha arocha@utfpr.edu.br Transferência de Calor por Condução 2 Transferência de Calor por Condução Análise da Condução A análise da condução diz respeito

Leia mais

Profa.. Dra. Ana Maria Pereira Neto

Profa.. Dra. Ana Maria Pereira Neto 5/09/0 Universidade Federal do ABC BC309 Termodinâmica Aplicada Profa.. Dra. Ana Maria Pereira Neto ana.neto@ufabc.edu.br Bloco A, torre, sala 637 Calor, Trabalho e Primeira Lei da Termodinâmica 5/09/0

Leia mais

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano

UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia. Transmissão de calor. 3º ano UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia ransmissão de calor 3º ano 4. ransmissão de Calor em Regime ransiente Introdução Sistemas Concentrados Condução de Calor em regime ransiente com Efeitos

Leia mais

EN Escoamento interno. Considerações fluidodinâmicas e térmicas

EN Escoamento interno. Considerações fluidodinâmicas e térmicas Universidade Federal do ABC EN 411 - Escoamento interno. Considerações fluidodinâmicas e térmicas Considerações fluidodinâmicas Escoamento laminar dentro de um tubo circular de raio r o, onde o fluido

Leia mais

Automação 2 semestre de 2014

Automação 2 semestre de 2014 FENÔMENO DOS TRANSPORTES II Automação 2 semestre de 2014 PROF. Panesi CALOR E TEMPERATURA teoria do calor James Prescott Joule calor poderia ser convertido em trabalho e vice-versa criando dessa forma

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Escoamento Interno - Parte 2 Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal

Leia mais

Recursos Energéticos e Meio Ambiente (REMA) Engenharia Ambiental 1º semestre/2018

Recursos Energéticos e Meio Ambiente (REMA) Engenharia Ambiental 1º semestre/2018 Recursos Energéticos e Meio Ambiente (REMA) Engenharia Ambiental 1º semestre/2018 CALOR E TRABALHO Capítulo 4 HINRICHS, R.A. e KLEINBACH, M. Energia e Meio Ambiente. 4ª. Ed. São Paulo: Ed. Thompson, 2011.

Leia mais

EM-524 Fenômenos de Transporte

EM-524 Fenômenos de Transporte EM-524 Fenômenos de Transporte Livro : Introdução às Ciências Térmicas F.W. Schmidt, R.E. Henderson e C.H. Wolgemuth Editora Edgard Blücher Denilson Boschiero do Espirito Santo DE FEM sala : ID301 denilson@fem.unicamp.br

Leia mais

Exame de Transmissão de Calor Mestrado Integrado em Engenharia Mecânica e Engenharia Aeroespacial 30 de Janeiro de º Semestre

Exame de Transmissão de Calor Mestrado Integrado em Engenharia Mecânica e Engenharia Aeroespacial 30 de Janeiro de º Semestre Eame de Transmissão de Calor Mestrado Integrado em Engenharia Mecânica e Engenharia Aeroespacial 30 de Janeiro de 2012 1º Semestre Observações: 1- Duração do eame: 3 h 2- Tempo aconselhado para a parte

Leia mais

Introdução a radiação Térmica (Parte 2)

Introdução a radiação Térmica (Parte 2) Fenômenos de Transporte Capitulo 9 cont. Introdução a radiação Térmica (Parte 2) Prof. Dr. Christian J. Coronado Rodriguez IEM - UNIFEI Seassuperfíciesforemcorposnegros,entãoε 1 =ε 2 = 1 ; α 1 = α 2 =

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Convecção Natural - Parte 1 Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal

Leia mais

3ª Lista de Exercícios: TRANSFERÊNCIA DE CALOR (RESOLUCIONÁRIO)

3ª Lista de Exercícios: TRANSFERÊNCIA DE CALOR (RESOLUCIONÁRIO) UNIVESIDADE FEDEA FUMINENSE Escola de Engenharia HidroUFF aboratório de Hidráulica Disciplina: FENÔMENOS DE ANSPOE E HIDÁUICA Professores: Gabriel Nascimento (Depto. de Eng. Agrícola e Meio Ambiente) Elson

Leia mais

Aula 3 de FT II. Prof. Geronimo

Aula 3 de FT II. Prof. Geronimo Aula 3 de FT II Prof. Geronimo Raio crítico de isolamento O conceito de raio crítico de isolamento, é introduzido para geometrias onde a área de troca de calor varia com uma dimensão especificada. Por

Leia mais

TRANSFERÊNCIA DE CALOR

TRANSFERÊNCIA DE CALOR UNIVERSIDADE DE SÃO PAULO Faculdade de Ciências Farmacêuticas FBT0530 - Física Industrial TRANSFERÊNCIA DE CALOR A maioria dos processos que acontecem nas indústrias farmacêutica e de alimentos envolve

Leia mais

Fundamentos de Transferência de Calor e Massa

Fundamentos de Transferência de Calor e Massa Fundamentos de Transferência de Calor e Massa Prof. Marcelo Reis Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais IFSULDEMINAS - Câmpus Inconfidentes marcelo.reis@ifsuldeminas.edu.br

Leia mais

Termodinâmica 6. Alexandre Diehl. Departamento de Física - UFPel

Termodinâmica 6. Alexandre Diehl. Departamento de Física - UFPel Termodinâmica 6 Alexandre Diehl Departamento de Física - UFPel Transferência de calor Definição Processo gerado num sistema termodinâmico, como resultado de uma diferença de temperatura entre duas porções

Leia mais

Transferência de Calor Condução e Convecção de Calor

Transferência de Calor Condução e Convecção de Calor Transferência de Calor Condução e Material adaptado da Profª Tânia R. de Souza de 2014/1. 1 O calor transferido por convecção, na unidade de tempo, entre uma superfície e um fluido, pode ser calculado

Leia mais

Resistências Térmicas em Paralelo 53 Exercícios 54 Exercícios recomendados 54 III. Transporte por convecção 55 Alguns fatos do cotidiano 55

Resistências Térmicas em Paralelo 53 Exercícios 54 Exercícios recomendados 54 III. Transporte por convecção 55 Alguns fatos do cotidiano 55 SUMÁRIO I. Introdução Portfolio de Fenômenos de Transporte II 1 Algumas palavras introdutórias 2 Senso comum ciência 4 Uma pequena história sobre o nascimento da ciência 4 Das Verdades científicas 6 Tese

Leia mais

Transmissão de calor

Transmissão de calor UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenharia Transmissão de calor 3º ano Prof. Doutor Engº Jorge Nhambiu 1 Aula 7 * 3.6 Superfícies Estendidas Balanço de energia para uma face Alhetas com secção

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Condução em Superfícies Estendidas Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade

Leia mais

OPERAÇÕES UNITÁRIAS II AULA 10: ESTERILIZAÇÃO. Profa. Dra. Milena Martelli Tosi

OPERAÇÕES UNITÁRIAS II AULA 10: ESTERILIZAÇÃO. Profa. Dra. Milena Martelli Tosi OPERAÇÕES UNITÁRIAS II AULA 10: ESTERILIZAÇÃO Profa. Dra. Milena Martelli Tosi Tratamento Térmico por Esterilização Métodos de Cálculo para avaliação do TT TT por esterilização em batelada : líquidos e

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Escoamento Interno - Parte 1 Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal

Leia mais

CALORIMETRIA E TERMOLOGIA

CALORIMETRIA E TERMOLOGIA CALORIMETRIA E TERMOLOGIA CALORIMETRIA Calor É a transferência de energia de um corpo para outro, decorrente da diferença de temperatura entre eles. quente Fluxo de calor frio BTU = British Thermal Unit

Leia mais

Convecção (natural e forçada) Prof. Dr. Edval Rodrigues de Viveiros

Convecção (natural e forçada) Prof. Dr. Edval Rodrigues de Viveiros Convecção (natural e forçada) Prof. Dr. Edval Rodrigues de Viveiros Convecção natural Convecção forçada Convecção natural A transmissão de calor por convecção natural ocorre sempre quando um corpo é

Leia mais

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como Lei de Gauss REVISÃO DE PRODUTO ESCALAR Antes de iniciarmos o estudo do nosso próximo assunto (lei de Gauss), consideramos importante uma revisão sobre o produto escalar entre dois vetores. O produto escalar

Leia mais

LISTA DE EXERCÍCIOS Nº 4

LISTA DE EXERCÍCIOS Nº 4 LISTA DE EXERCÍCIOS Nº 4 Questões 1) Materiais A, B e C são sólidos que estão em suas temperaturas de fusão. O material A requer 200J para fundir 4kg, o material B requer 300J para fundir 5kg e o material

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL LOM3228 - MÉTODOS EXPERIMENTAIS DA FÍSICA I Prof. Dr. Durval Rodrigues Junior Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia

Leia mais

Transmissão de Calor

Transmissão de Calor Transmissão de Calor Revisão de Conceitos da Termodinâmica 11/08/2006 Referência: capítulos 7, 8 e 10 do livro de H. Moysés Nussenzveig, Curso de Física Básica 2 Fluidos. Oscilações e Ondas. Calor. 4 ed.

Leia mais

Transferência de Calor

Transferência de Calor Transferência de Calor Introdução à Convecção Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departamento de Ciências Exatas e Naturais 3 ermologia Física II Prof. Roberto Claudino Ferreira Prof. Roberto Claudino 1 ÍNDICE 1. Conceitos Fundamentais; 2.

Leia mais

Cap. 5 - Corrente, Resistência e Força Eletromotriz

Cap. 5 - Corrente, Resistência e Força Eletromotriz Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 5 - Corrente, Resistência e Força Eletromotriz Prof. Elvis Soares Nesse capítulo, estudaremos a definição de corrente,

Leia mais

Propagação do calor. Condução térmica

Propagação do calor. Condução térmica Propagação do calor A propagação do calor entre dois sistemas pode ocorrer através de três processos diferentes: a condução, a convecção e a irradiação. Condução térmica A condução térmica é um processo

Leia mais

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Modelagem matemática

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Modelagem matemática Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica Modelagem matemática Definição inicial do sistema 1 3 4 8 7 6 5 1 Processo físico, sistemas e componentes

Leia mais

25/Mar/2015 Aula /Mar/2015 Aula 9

25/Mar/2015 Aula /Mar/2015 Aula 9 20/Mar/2015 Aula 9 Processos Politrópicos Relações politrópicas num gás ideal Trabalho: aplicação aos gases perfeitos Calor: aplicação aos gases perfeitos Calor específico politrópico Variação de entropia

Leia mais

Transferência de Calor Condução: paredes planas. Prof. Marco A. Simões

Transferência de Calor Condução: paredes planas. Prof. Marco A. Simões Transferência de Calor Condução: paredes planas Prof. Marco A. Simões Objetivosda aula Entender o processo da condução térmica Aplicar a Lei de Fourier à condução térmica Entender o significado do coeficiente

Leia mais

5 Resfriamento de Gás

5 Resfriamento de Gás 5 Resfriamento de Gás Para analisar o tempo de resfriamento e o fluxo de calor através das paredes do duto, para o caso do gás, foram consideradas as mesmas condições iniciais já apresentadas para o caso

Leia mais

Cap. 4 - Capacitância e Dielétricos

Cap. 4 - Capacitância e Dielétricos Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 4 - Capacitância e Dielétricos Prof. Elvis Soares Nesse capítulo, estudaremos o conceito de capacitância, aplicações de

Leia mais

Refrigeração e Ar Condicionado

Refrigeração e Ar Condicionado Refrigeração e Ar Condicionado Revisão Filipe Fernandes de Paula filipe.paula@engenharia.ufjf.br Departamento de Engenharia de Produção e Mecânica Faculdade de Engenharia Universidade Federal de Juiz de

Leia mais

FÍSICA (ELETROMAGNETISMO) CORRENTE ELÉTRICA E RESISTÊNCIA

FÍSICA (ELETROMAGNETISMO) CORRENTE ELÉTRICA E RESISTÊNCIA FÍSICA (ELETROMAGNETISMO) CORRENTE ELÉTRICA E RESISTÊNCIA FÍSICA (Eletromagnetismo) Nos capítulos anteriores estudamos as propriedades de cargas em repouso, assunto da eletrostática. A partir deste capítulo

Leia mais

Mecanismos de Transferência de Calor

Mecanismos de Transferência de Calor Mecanismos de Transferência de Calor Bibliografia de Aula: Halliday, Resnick e Walker, 8 a Ed; Vol 2, capítulo 18. Já estudamos como ocorrem as trocas de calor entre sistemas físicos. Aprendemos que em

Leia mais

Termodinâmica e Estrutura da Matéria

Termodinâmica e Estrutura da Matéria e Estrutura da Matéria A 1ª Lei da Parte 2 J. Seixas 1ª Lei da Processos não Imaginemos um processo que leva do estado 1 ao estado 2 através do caminho C. Nesse caso 0 C 2 1ª Lei da Processos não Imaginemos

Leia mais