Aula Trigonometria

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Aula Trigonometria"

Transcrição

1 Aula 4 4. Trigonometria A trigonometria estabelece relações precisas entre os ângulos e os lados de um triângulo. Definiremos as três funções (mesmo se a própria noção de função será estudada no próximo capítulo) trigonométricas elementares, sen (seno), cos (cosseno) e tan (tangente), e daremos as suas propriedades básicas. Nos próximos capítulos olharemos mais de perto as propriedades analíticas dessas funções Medir ângulos no plano Para começar, é importante escolher uma unidade (como "metros"para comprimentos, ou "litros"para volumes) para medir um ângulo determinado pela abertura entre duas retas. Descreveremos as duas unidades mais usadas, graus e radianos. Os ângulos serão medidos a partir de uma reta horizontal, em sentido antihorário. A abertura mínima, naturalmente, é definida como valendo zero, qualquer que seja a unidade. O que precisa ser definido é o valor do ângulo total. Se o ângulo for medido em graus, esse ângulo total é definido como valendo 360 graus: 1

2 Uma vez que o ângulo total foi fixado, a medição dos outros se faz proporcionalmente: a metade do ângulo total vale 180 graus, o ângulo reto mede 90 graus, etc. A vantagem dessa unidade é que os ângulos mais usados em geometria tomam valores inteiros: 30, 60,90, 180, 270, etc Observe que apesar da posição do ângulo total coincidir com o ângulo nulo, eles devem ser considerados como distintos. Um outro jeito natural de medir ângulos parte da seguinte idéia: desenhe o círculo de raio 1 centrado na origem e, partindo do ponto (1, 0) (que corresponde a um ângulo de 0),ande ao longo do círculo no sentido antihorário. Quando tiver percorrido uma distância igual ao raio do círculo (isto é, 1), o ângulo correspondente é definido como sendo de 1 (um) radiano: Observe que o ângulo total corresponde à circunferência de um círculo de raio 1: 2π. Em geral, nessa nessa apostila, os ângulos serão medidos em radianos. Se a medida de um ângulo em graus é α g e em radianos é α r, a conversão se faz da seguinte maneira: como o ângulo total mede 360 graus e 2π radianos, temos 360 2π = αg αr. Portanto, 2

3 Assim, verifica-se por exemplo que um ângulo de 90 graus corresponde a π 180 [90] = π 2 = radianos. (1) Exercício O ponteiro dos segundos de um relógio mede 20 centímetros. Qual distância a ponta desse ponteiro percorreu depois de uma hora e 15 minutos? Um ângulo negativo será interpretado como medido no sentido horário: 4.2. Seno, cosseno e tangente Para poder definir as ligações entre os ângulos e os lados de um triângulo, é necessário fazer umas simplificações. Trabalharemos com um triângulo retângulo, isto é, que possui um ângulo reto. Considere então o seguinte triângulo ABC, retângulo em C. Com respeito a α, b é chamado de cateto adjacente, a de cateto oposto, e c de hipotenusa. Se dois lados forem conhecidos, o terceiro pode ser calculado usando o Teorema de Pitágoras, e o valor do ângulo α é determinado. Como qualquer triângulo semelhante a ABC tem os mesmos ângulos, α é determinado uma vez que um dos quocientes a b, b c, ou a b for conhecido. A ligação entre α e esses quocientes é chamada respectivamente seno, cosseno e tangente de α, e denotada por 3

4 Observe que a seguinte relação sempre vale: Em alguns casos simples, senα, cosα e tanα podem ser calculados manualmente. Exemplo Considere α = π 4 (= 45 graus). Para calcular sen π 4, cosπ4, tanπ4, consideremos o seguinte triângulo: (2) Exercício Montando em cada caso um triângulo apropriado, calcule sen π 3, cos π 3, tan π 6. Faremos agora uma generalização, que permitirá enxergar melhor os três números senα, cosα e tanα, é que será também útil para considerá-las como funções de uma variável real, a partir do próximo capítulo. Para tanto, usaremos um triângulo cuja hipotenusa é de tamanho c = 1. Isto é, o ponto B do triângulo da figura anterior é posicionado no círculo de raio 1 centrado na origem, chamado círculo trigonométrico. As funções trigonométricas podem então ser medidas efetivamente olhando para os comprimentos da seguinte figura: 4

5 Observe como senα, cosα e tanα mudam à medida que B se movimenta ao longo do círculo. Em particular, B pode dar uma volta completa no círculo, o que permite extender as funções trigonométricas a qualquer ângulo 0 α 2π, e também para valores maiores ou até negativas. Os sinais das funções trigonométricas mudam dependendo do quadrante ao qual B pertence: Várias propriedades podem ser obtidas a partir do círculo trigonométrico. Por exemplo, observe que α e -α têm o mesmo cosseno, mas que ao transformar α em - α, o seno muda de sinal. Portanto, Exercício Prove as identidades: (3) 5

6 (4) (5) (6) (7) Exercício Complete a seguinte tabela: 4.3 Identidades trigonométricas As identidades de Exercício deram algumas ligações entre seno, cosseno e tangente. O Teorema de Pitágoras dá também a relação Provaremos agora a identidade (8) (9) usando o seguinte desenho: 6

7 Observe que sen(α+β) = d(a, C) = d(a, B) + d(b, C). Usando o ponto E (projeção ortogonal de A no segmento OD) e olhando para o triângulo OEA, temos d(o, E) = cos β e d(a, E) = senβ. Observe também que o ângulo BAE vale α. Portanto, d(a, B) = d(a, E)/ cosα = senβ / cosα e d(b, E) = d(a, B)senα. Por outro lado, d(b, C) = d(o, B)senα, mas como d(o, B) = d(o, E) d(b, E) temos, = cosβ d(a, B)senα = cosβ senβ senα = cosβ senβtanα, cosα o que prova (9) Exercício Prove as identidades: sen(α + β) = senβ + senα(cosβ senβtanα) cosα = senβ cosα + senαcosβ senβ sen2 (α) cosα = senαcosβ + senβcosα, sen(α β) = senαcosβ cosαsenβ cos(α + β) = cosαcosβ senαsenβ tan(α + β) = tanα + tanβ 1 tanαtangβ cos(α β) = cosαcosβ + senαsenβ tan(α β) = tanα tanβ 1 + tanαtanβ 7

8 Exercício Prove as identidades: sen(2a) = 2sen(α)cos(α) cos(2a) = cos 2 (α) sen 2 (α) = 2cos 2 (α) 1 = 1 2sen 2 (α), tan (α 2 = senα 1 + cosα Exercício Calcule a equação da reta r que passa pelo ponto (2, -1), cujo ângulo com a horizontal é igual a 60 graus. Exercício Resolva: 1. cosx = 0 2. senx = senx = cosx 4. senx = sen 2 x 5. sen 2 x senx = 1 6. senx cosx < (cosx + senx) 2 = sen(2x) = senx. 8

Aula 5 - Soluções dos Exercícios Propostos

Aula 5 - Soluções dos Exercícios Propostos Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 7. trigonometria Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Trigonometria Parte 7 Parte 7 Pré-Cálculo 1 Parte 7 Pré-Cálculo 2 Trigonometria trigonometria Trigonometria

Leia mais

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 6. trigonometria

Trigonometria. Trigonometria no Triângulo Retângulo. Pré-Cálculo. Trigonometria. Humberto José Bortolossi. Parte 6. trigonometria Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Trigonometria Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Trigonometria trigonometria Trigonometria

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

Extensão da tangente, cossecante, cotangente e secante

Extensão da tangente, cossecante, cotangente e secante Extensão da tangente, cossecante, cotangente e secante Definimos as funções trigonométricas tgθ = senθ cosθ para θ (k+1)π, onde k é inteiro. Note que os ângulos do tipo θ = (k+1)π secθ = 1 cosθ, são os

Leia mais

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas

Leia mais

Autores: Anderson L.G.Quilles, Cláudio H.Bitto, Sônia F.L.Toffoli e Ulysses Sodré Adaptado pelo Prof. Ardemirio de Barros

Autores: Anderson L.G.Quilles, Cláudio H.Bitto, Sônia F.L.Toffoli e Ulysses Sodré Adaptado pelo Prof. Ardemirio de Barros Autores: Anderson L.G.Quilles, Cláudio H.Bitto, Sônia F.L.Toffoli e Ulysses Sodré Adaptado pelo Prof. Ardemirio de Barros Seno: No plano cartesiano, consideremos uma circunferência trigonométrica, de centro

Leia mais

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME 2012.2 Parte II Kerolaynh Santos e Tássio Magassy Engenharia Civil Identidades Trigonométricas Definição:

Leia mais

Fig.6.1: Representação de um ângulo α.

Fig.6.1: Representação de um ângulo α. 6. Trigonometria 6.1. Conceitos Iniciais A palavra trigonometria vem do grego [trigōnon = "triângulo", metron "medida"], ou seja, está relacionada com as medidas de um triângulo, sendo estas medidas de

Leia mais

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M. Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício

Leia mais

O conhecimento é a nossa propaganda.

O conhecimento é a nossa propaganda. Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 18. Um reservatório, com capacidade para 680 litros, tem a forma de um cilindro circular reto. Se o raio da base deste reservatório mede 1 metro, sua altura mede: A) 1 m (Considere π =,14) B) 1,4 m C)

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A 11 O ANO DE ESCOLARIDADE Duração: 90 minutos Data: O teste é constituído por dois grupos, I e II O Grupo I inclui quatro questões de escolha múltipla O Grupo

Leia mais

Elementos de trigonometria

Elementos de trigonometria Escola de Ciências e Tecnologia Departamento de Matemática Curso de preparação para a Prova Específica de Matemática ******* Elementos de trigonometria 1. O triângulo [BC] é rectângulo no ponto B e os

Leia mais

Relações Trigonométricas nos Triângulos

Relações Trigonométricas nos Triângulos Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos

Leia mais

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática

Leia mais

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y.

LISTA DE EXERCICIOS TRIÂNGULOS QUAISQUER. 1) Na figura ao abaixo calcule o valor da medida x. 2) No triângulo abaixo, determine as medidas x e y. LISTA DE EXERCICIOS TRIÂNGULO RETÂNGULO 1) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 30 m de comprimento, a quantos metros o caminhão se eleva, verticalmente

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

Fórmulas da Soma e da Diferença

Fórmulas da Soma e da Diferença Fórmulas da Soma e da Diferença Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

Notas de Aula de Matemática Básica I

Notas de Aula de Matemática Básica I UFF/GMA Notas de aula de MB-I Maria Lúcia/Marlene 015-1 IME Instituto de Matemática e Estatística GMA Departamento de Matemática Aplicada Notas de Aula de Matemática Básica I Maria Lúcia Tavares de Campos

Leia mais

Aula 1 O seno, o cosseno e a tangente de um ângulo agudo

Aula 1 O seno, o cosseno e a tangente de um ângulo agudo ula 1 O seno, o cosseno e a tangente de um ângulo agudo MÓDULO 2 - UL 1 utor: elso osta Objetivos 1) ompreender a importância do conceito de seno e cosseno de um ângulo. 2) prender a construir uma tabela

Leia mais

Proposta de correcção

Proposta de correcção Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do

Leia mais

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 TRIGONOMETRIA

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 TRIGONOMETRIA E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 TRIGONOMETRIA 1 MATEMÁTICA ELEMENTAR CAPÍTULO 6 SUMÁRIO APRESENTAÇÃO -------------------------------------------- 3 6. Trigonometria---------------------------------------------4

Leia mais

3. (Ufscar) O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade.

3. (Ufscar) O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade. LISTA DE RECUPERAÇÃO ÁLGEBRA º ANO º TRIMESTRE. (G - ifce) Considere um relógio analógico de doze horas. O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o relógio marca

Leia mais

Estudo da Trigonometria (I)

Estudo da Trigonometria (I) Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da

Leia mais

A Determine o comprimento do raio da circunferência.

A Determine o comprimento do raio da circunferência. Lista de exercícios Trigonometria Prof. Lawrence 1. Um terreno tem a forma de um triângulo retângulo. Algumas de suas medidas estão indicadas, em metros, na figura. Determine as medidas x e y dos lados

Leia mais

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

Redução ao Primeiro Quadrante

Redução ao Primeiro Quadrante Redução ao Primeiro Quadrante Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que:

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Trigonometria no triângulo

Leia mais

Capítulo I Geometria no Plano e no Espaço

Capítulo I Geometria no Plano e no Espaço Resumo Té CaPítulo ICddf º ANO MATEMÁTICA RESUMO TEÓRICO Capítulo I Geometria no Plano e no Espaço (A) REVISÕES TEOREMA DE PITÁGORAS a e b são atetos é a hipotenusa Num triângulo retângulo verifia-se sempre

Leia mais

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 03

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 03 UNIVERSIDDE ESTDUL VLE DO CRÚ CENTRO DE CIÊNCIS EXTS E TECNOLOGI CURSO DE LICENCITUR EM MTEMÁTIC MTEMÁTIC ÁSIC II TRIGONOMETRI ula 03 Prof. Márcio Nascimento marcio@matematicauva.org 204. Razões Trigonométricas

Leia mais

REVISÃO DE TRIGONOMETRIA E GEOMETRIA ANALÍTICA

REVISÃO DE TRIGONOMETRIA E GEOMETRIA ANALÍTICA UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE ENGENHARIA DE BIOSSISTEMAS LEB340 TOPOGRAFIA E GEOPROCESSAMENTO I PROF. DR. CARLOS ALBERTO VETTORAZZI REVISÃO DE

Leia mais

Matemática 3 Módulo 3

Matemática 3 Módulo 3 Matemática Módulo COMENTÁRIOS ATIVIDADES PARA SALA 1. Lembrando... Se duas figuras são semelhantes, temos: 1 A = k; 1 = k, em que R 1 e R são medidas lineares A e A 1 e A são as áreas. Círculo I IV. =

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

FNT AULA 6 FUNÇÃO SENO E COSSENO

FNT AULA 6 FUNÇÃO SENO E COSSENO FNT AULA 6 FUNÇÃO SENO E COSSENO CIRCUNFERÊNCIA TRIGONOMÉTRICA Chama-se circunferência trigonométrica a circunferência de raio unitário (R=1), com centro na origem de um sistema cartesiano. +1 R = 1 360º

Leia mais

PET-FÍSICA TRIGONOMETRIA NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ

PET-FÍSICA TRIGONOMETRIA NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ PET-FÍSICA TRIGONOMETRIA Aula 5 NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ AGRADECIMENTOS Esse material foi produzido com apoio do Fundo Nacional de Desenvolvimento

Leia mais

Capítulo Aplicações do produto interno

Capítulo Aplicações do produto interno Cálculo - Capítulo 1.4 - Aplicações do produto interno - versão 0/009 1 Capítulo 1.4 - Aplicações do produto interno 1.4.1 - Ortogonalidade entre vetores 1.3.3 - Ângulo entre vetores 1.4. - Projeção ortogonal

Leia mais

Projeto de Recuperação 1º Semestre - 2ª Série (EM)

Projeto de Recuperação 1º Semestre - 2ª Série (EM) Projeto de Recuperação 1º Semestre - 2ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Exercícios Matrizes e Determinantes Classificação de matrizes (pag. 0) 1,2,,4,6,8 Matrizes

Leia mais

Trigonometria e relações trigonométricas

Trigonometria e relações trigonométricas Trigonometria e relações trigonométricas Em trigonometria, os lados dos triângulos retângulos assumem nomes particulares, apresentados na figura ao lado. O lado mais comprido, oposto ao ângulo de 90º (ângulo

Leia mais

4 Trigonometria no círculo trigonométrico

4 Trigonometria no círculo trigonométrico 37 4 Trigonometria no círculo trigonométrico Com o surgimento do cálculo infinitesimal e posteriormente da análise matemática as noções básicas da trigonometria ganharam uma nova dimensão. Passaremos a

Leia mais

Exercícios de Aplicação do Teorema de Pitágoras

Exercícios de Aplicação do Teorema de Pitágoras Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO MATEMÁTICA 11º ANO FICHA DE TRABALHO Nº 2 (Trigonometria)

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO MATEMÁTICA 11º ANO FICHA DE TRABALHO Nº 2 (Trigonometria) ESCOL SECUNDÁRI DE LBERTO SMPIO MTEMÁTIC º NO FICH DE TRBLHO Nº (Trigonometria) ESCOLH MÚLTIPL. De um ângulo α sabe-se que sen( α) é positivo e que cosα é negativo. Então α pertence a: º quadrante B º

Leia mais

Coeficiente angular. MA092 Geometria plana e analítica. Equação da reta a partir de um ponto e um ângulo. Exemplo 1

Coeficiente angular. MA092 Geometria plana e analítica. Equação da reta a partir de um ponto e um ângulo. Exemplo 1 Coeficiente angular MA092 Geometria plana e analítica. e perpendiculares Resultado Uma reta não vertical, y = mx + q, tem coeficiente angular m dado pela tangente do ângulo α medido no sentido anti-horário

Leia mais

Roteiro. Tela de entrada. Texto: Deive Barbosa Alves. Carlos Roberto Lopes Edinei Leandro dos Reis. Construindo Relações trigonométricas

Roteiro. Tela de entrada. Texto: Deive Barbosa Alves. Carlos Roberto Lopes Edinei Leandro dos Reis. Construindo Relações trigonométricas Roteiro Título da animação: Construindo Relações Tela de entrada Construindo Relações Botão entrar: o aluno irá para a próxima tela. No rodapé da página conterá o nome do objeto. 1 Tela de apresentação

Leia mais

Matemática Ensino Médio Anotações de aula Trigonometira

Matemática Ensino Médio Anotações de aula Trigonometira Matemática Ensino Médio Anotações de aula Trigonometira Prof. José Carlos Ferreira da Silva 2016 1 ÍNDICE Trigonometria Introdução... 04 Ângulos na circunferência...04 Relações trigonométricas no triângulo

Leia mais

Círculo Trigonométrico centro na origem raio 1 Ângulo central Unidades de medidas de ângulos; grau Grau: Grado: Radiano:

Círculo Trigonométrico centro na origem raio 1 Ângulo central Unidades de medidas de ângulos; grau Grau: Grado: Radiano: Círculo Trigonométrico A circunferência trigonométrica é de extrema importância para o nosso estudo da Trigonometria, pois é baseado nela que todos os teoremas serão deduzidos. Trata-se de uma circunferência

Leia mais

a) Triângulo retângulo: É o triângulo que possui um ângulo reto (90 ).

a) Triângulo retângulo: É o triângulo que possui um ângulo reto (90 ). Geometria Analítica Módulo 1 Revisão de funções trigonométricas, Vetores: Definições e aplicações Módulo, direção e sentido. Igualdades entre vetores 1. Revisão de funções trigonométricas a) Triângulo

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos.

Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica. ENG1705 Dinâmica de Corpos Rígidos. Pontifícia Universidade Católica do Rio de Janeiro / PUC-Rio Departamento de Engenharia Mecânica ENG1705 Dinâmica de Corpos Rígidos (Período: 2016.1) Notas de Aula Capítulo 1: VETORES Ivan Menezes ivan@puc-rio.br

Leia mais

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é:

Fazendo a decomposição dessas forças, um aluno escreveu o seguinte sistema de equações: log cotg 10º + log cotg 80º é: Módulos 9, 0, 7 e 8 Matemática º EM 1) (Exame de Qualificação UERJ 00) Um corpo de peso P encontra-se em equilíbrio, suspenso por três cordas inextensíveis. Observe, na figura, o esquema das forças T 1

Leia mais

Matemática. Relações Trigonométricas. Professor Dudan.

Matemática. Relações Trigonométricas. Professor Dudan. Matemática Relações Trigonométricas Professor Dudan www.acasadoconcurseiro.com.br Matemática RELAÇÕES TRIGONOMÉTRICAS Definição A Trigonometria (trigono: triângulo e metria: medidas) é o ramo da Matemática

Leia mais

Aula 10 Trigonometria

Aula 10 Trigonometria Aula 10 Trigonometria Metas Nesta aula vamos relembrar o teorema de Pitágoras, introduzir e aplicar as importantes razões trigonométricas, obtidas a partir dos lados de um triângulo retângulo. Objetivos

Leia mais

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ; APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 11º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº 2

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 11º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO Nº 2 ESL SEUNÁRI M º IL. INIS IMR º N E ESLRIE MTEMÁTI FIH E VLIÇÃ Nº Grupo I s cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas, das quais só uma está

Leia mais

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,

Leia mais

As funções Trigonométricas

As funções Trigonométricas Funções Periódicas Uma função diz-se periódica se se repete ao longo da variável independente com um determinado período constante. Quando se observam fenômenos que se repetem periodicamente, como temperatura

Leia mais

Trigonometria. 1 História. 2 Aplicações

Trigonometria. 1 História. 2 Aplicações Trigonometria 1 História As origens da trigonometria são incertas. É possível encontrar problemas que envolvem a cotangente no Papiro Rhind e uma notável tábua de secantes na tábua cuneiforme babilônica

Leia mais

Apostila de Matemática 06 Trigonometria

Apostila de Matemática 06 Trigonometria Apostila de Matemática 06 Trigonometria.0 Triângulo Retângulo. Introdução Quanto mais o ângulo ou o índice, mais íngreme o triângulo retângulo é. ÍNDICE Altura Afastamento Área do Triângulo Retângulo:

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

1. As funções tangente e secante As expressões para as funções tangente e secante são

1. As funções tangente e secante As expressões para as funções tangente e secante são CÁLCULO L1 NOTAS DA SETA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nesta aula definiremos as demais funções trigonométricas, que são obtidas a partir das funções seno e cosseno, e determinaremos

Leia mais

Cálculo 1. S. Friedli Departamento de Matemática Instituto de Ciências Exatas Universidade Federal de Minas Gerais. Versão de agosto de 2014

Cálculo 1. S. Friedli Departamento de Matemática Instituto de Ciências Exatas Universidade Federal de Minas Gerais. Versão de agosto de 2014 Cálculo S. Friedli Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais Versão.0 3 de agosto de 04 Apostila em acesso livre em www.mat.ufmg.br/~sacha. Cálculo, Versão.0

Leia mais

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?

Leia mais

Fun c oes Trigonom etricas Fun c oes Trigonom etricas ( ) Fun c oes Trigonom etricas Matem atica II 2008/2009

Fun c oes Trigonom etricas Fun c oes Trigonom etricas ( ) Fun c oes Trigonom etricas Matem atica II 2008/2009 Funções Trigonométricas (13-03-08) Funções periódicas Muitos dos fenómenos correntes têm um comportamento periódico, isto é, um comportamento que se repete em períodos de tempo iguais. Entre outros exemplos

Leia mais

Funções Trigonométricas8

Funções Trigonométricas8 Licenciatura em Ciências USP/Univesp FUNÇÕES TRIGONOMÉTRICAS 8 137 TÓPICO Gil da Costa Marques 8.1 Trigonometria nos Primórdios 8. Relações Trigonométricas num Triângulo Retângulo 8..1 Propriedades dos

Leia mais

Construindo o Ciclo Trigonométrico

Construindo o Ciclo Trigonométrico MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA (PIBID) MATERIAL CONCRETO Construindo o Ciclo Trigonométrico Autores: Francisco

Leia mais

Elementos de Matemática

Elementos de Matemática Elementos de Matemática Trigonometria Circular - 1a. parte Roteiro no. 6 - Atividades didáticas de 2007 Versão compilada no dia 23 de Maio de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré

Leia mais

Professor Dacar Lista de Exercícios - Revisão Trigonometria

Professor Dacar Lista de Exercícios - Revisão Trigonometria 1. Obtenha a medida, em graus, de um arco AB de comprimento π metros, sabendo que ele está contido em uma circunferência de diâmetro igual a metros. Resposta:. (UFPR) Em uma circunferência de 1 dm de comprimento,

Leia mais

Professor Dacar Lista de Exercícios - Revisão Trigonometria

Professor Dacar Lista de Exercícios - Revisão Trigonometria 1. Obtenha a medida, em graus, de um arco AB de comprimento π metros, sabendo que ele está contido em uma circunferência de diâmetro igual a metros. Resposta:. (UFPR) Em uma circunferência de 1 dm de comprimento,

Leia mais

TOPOGRAFIA GEOMETRIA E TRIGONOMETRIA

TOPOGRAFIA GEOMETRIA E TRIGONOMETRIA TOPOGRAFIA GEOMETRIA E TRIGONOMETRIA Prof. Dr. Daniel Caetano 2014-1 Objetivos Relação da Geometria e Trigonometria com Topografia Conceitos de Geometria Conceitos de Trigonometria ANTES DE MAIS NADA...

Leia mais

TOPOGRAFIA GEOMETRIA E TRIGONOMETRIA

TOPOGRAFIA GEOMETRIA E TRIGONOMETRIA TOPOGRAFIA GEOMETRIA E TRIGONOMETRIA Prof. Dr. Daniel Caetano 2016-1 Objetivos Relação da Geometria e Trigonometria com Topografia Conceitos de Geometria Conceitos de Trigonometria ANTES DE MAIS NADA...

Leia mais

Fun»c~oes trigonom etricas e o \primeiro limite fundamental"

Fun»c~oes trigonom etricas e o \primeiro limite fundamental Aula Fun»c~oes trigonom etricas e o \primeiro ite fundamental" Nesta aula estaremos fazendo uma pequena revis~ao de fun»c~oes trigonom etricas e apresentando um ite que lhes determina suas derivadas..

Leia mais

A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º

A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º A UA UL LA A lei dos co-senos Introdução Utilizando as razões trigonométricas nos triângulos retângulos, podemos resolver vários problemas envolvendo ângulos e lados. Esse tipo de problema é conhecido

Leia mais

Vamos conhecer mais sobre triângulos!

Vamos conhecer mais sobre triângulos! Vamos conhecer mais sobre triângulos! Aula 18 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Fonte: http://cache0.stormap.sapo.pt/fotostore0/fotos//f1/87/c6/06166_dfcbk.png Meta Apresentar

Leia mais

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Nome: Nº: Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Razões trigonométricas no triângulo

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

Cálculo I. Sacha Friedli Departamento de Matemática Universidade Federal de Minas Gerais

Cálculo I. Sacha Friedli Departamento de Matemática Universidade Federal de Minas Gerais Cálculo I Sacha Friedli Departamento de Matemática Universidade Federal de Minas Gerais Versão: 6 de março de 0 ii Sumário Fundamentos 3. Números reais.................................. 3.. Equações do

Leia mais

RAZÕES TRIGONOMÉTRICAS AULA ESCRITA

RAZÕES TRIGONOMÉTRICAS AULA ESCRITA RAZÕES TRIGONOMÉTRICAS AULA ESCRITA 1. Apresentação É hora de revisar as Razões Trigonométricas. Boas aulas! 2 INTRODUÇÃO Vimos que Trigonometria é o ramo da matemática que estuda as medidas do triângulo,

Leia mais

MATEMÁTICA. Questões de 01 a 12

MATEMÁTICA. Questões de 01 a 12 GRUPO 5 TIPO A MAT. 1 MATEMÁTICA Questões de 01 a 12 01. Um circo com a forma de um cone circular reto sobre um cilindro circular reto de mesmo raio está com a lona toda furada. O dono do circo, tendo

Leia mais

Funções Trigonométricas

Funções Trigonométricas Funções Trigonométricas 1) Na figura abaixo, a área do triângulo ABC é 5 A 120 3 C B (a) (15 3) / 4 (b) (15 3) / 2 (c) 15/2 (d) (15 2) / 4 (e) 15 / 4 2) Sabendo-se que tan(x) = - 4/3 e que x é um arco

Leia mais

2) O raio da circunferência que passa simultaneamente pelos pontos A = (1, 0), B = (4, 0) e C = (1, 3) é:

2) O raio da circunferência que passa simultaneamente pelos pontos A = (1, 0), B = (4, 0) e C = (1, 3) é: INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ CAMPUS JUAZEIRO DO NORTE EDITAL 04/2017 ESPECIALIZAÇÃO EM ENSINO DE MATEMÁTICA PROVA DE MATEMÁTICA 1) Considerando os pontos P = (1,3), Q =

Leia mais

tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem

tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem Resposta da questão : [C] 5 senα α 0 0 7,05 senβ 0,705 α 45 0 Portanto, AO B 0 + 45 75. Resposta da questão : [B] x x Tem-se que sen0 x 5 m. 0 0 Portanto, a resposta é 0 00% 00%. 5 Resposta da questão

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ] MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere

Leia mais

Dar significado aos conceitos de trigonometria com o GEOGEBRA

Dar significado aos conceitos de trigonometria com o GEOGEBRA Dar significado aos conceitos de trigonometria com o GEOGEBRA Ruth Ribas Itacarambi Faculdades Oswaldo Cruz ritacarambi@yahoo.com.br Rogério Chaparin IFSP - Campus Guarulhos rochaparin@gmail.com Objetivos

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente B

Gabarito Extensivo MATEMÁTICA volume 1 Frente B Gabarito Etensivo MATEMÁTICA volume Frente B sen cos tan 0 5 60 0) E 5 5 6 9 +y=+8= sen0 y y 8 cateto oposto ipotenusa 0) m Seja O a origem no solo alinado verticalmente com o bastão. A medida OB será

Leia mais

2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor.

2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor. Curso: Exercícios ESAF para Receita Federal 2013 Disciplina: Raciocínio Lógico-Quantitativo Assunto: Tópico 03 Geometria/Trigonometria Professor: Valdenilson Garcia 2013 Copyright. Curso Agora eu Passo

Leia mais

Exercícios sobre trigonometria em triângulos

Exercícios sobre trigonometria em triângulos Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Eercícios sobre

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

Cálculo 1. S. Friedli Departamento de Matemática Instituto de Ciências Exatas Universidade Federal de Minas Gerais

Cálculo 1. S. Friedli Departamento de Matemática Instituto de Ciências Exatas Universidade Federal de Minas Gerais Cálculo S. Friedli Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais Versão.0 6 de fevereiro de 05 Apostila em acesso livre em www.mat.ufmg.br/~sacha. Cálculo,

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

REVISÃO PROVA GLOBAL. Frações e números decimais. Prof. Danillo Alves

REVISÃO PROVA GLOBAL. Frações e números decimais. Prof. Danillo Alves Prof. Danillo Alves REVISÃO PROVA GLOBAL 1) ESTATÍSTICA; 2) TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO; 3) TRIÂNGULOS QUAISQUER. 4) Trigonometria na circunferência Frações e números decimais Professor: DANILLO

Leia mais

PROJETO DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CIÊNCIA, GRANDEZAS FÍSICAS E UNIDADES.

PROJETO DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CIÊNCIA, GRANDEZAS FÍSICAS E UNIDADES. PROJETO DE NIVELAMENTO ITEC/PROEX - UFPA EQUIPE FÍSICA ELEMENTAR DISCIPLINA: FÍSICA ELEMENTAR CONTEÚDO: CIÊNCIA, GRANDEZAS FÍSICAS E UNIDADES. TÓPICOS A SEREM ABORDADOS O conceito de física e sua natureza.

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (11º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (13 de setembro a 15 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

Elementos de Matemática

Elementos de Matemática Elementos de Matemática Exercícios de Trigonometria - atividades didáticas de 2007 Versão compilada no dia 23 de Maio de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré E-mail: ulysses@matematica.uel.br

Leia mais