CAMPO ELÉCTRICO E POTENCIAL

Tamanho: px
Começar a partir da página:

Download "CAMPO ELÉCTRICO E POTENCIAL"

Transcrição

1 TRALHO PRÁTICO Nº 5 CAMPO ELÉCTRICO E POTENCIAL Objectivo - O objectivo deste trabalho é estudar a forma do campo eléctrico criado por algumas distribuições de carga. Experimentalmente determinam-se linhas equipotenciais e a partir delas visualizar o campo eléctrico. 1. Introdução Diz-se que numa dada região do espaço existe um campo eléctrico E r se em cada ponto desse espaço for exercida força sobre uma partícula de carga q tal que: r r F( x, y, z) = qe( x, y, z) (1) Deste modo, o vector campo eléctrico é definido como a força exercida pelo campo sobre uma carga pontual positiva q = 1 C (chama-se carga de prova). O campo eléctrico pode ser representado por linhas que indicam a direcção do campo em qualquer ponto do espaço. São as linhas de campo, ou linhas de força, pois mostram a direcção da força que se exerce sobre uma carga (positiva) colocada no campo. O campo criado por uma carga pontual, isolada, as linhas de campo têm simetria radial, divergem de cargas positivas e convergem em cargas negativas. Para cargas distribuídas à superfície de condutores em equilíbrio as linhas de campo partem de pontos onde há carga positiva e terminam em pontos onde há carga negativa; à superfície do condutor as linhas de campo são perpendiculares à mesma. Para preparação do trabalho é indispensável que aceda a um site de Internet onde pode visualizar linhas de campo para várias distribuições de carga, como por exemplo: Experimentalmente não é possível obter de modo directo as linhas de campo, medindo a força que se exerce sobre uma carga de prova. No entanto, uma outra grandeza associada ao campo eléctrico - a diferença de potencial, pode ser medida de modo relativamente fácil (com um multímetro, por exemplo) O conceito de energia potencial está relacionado com o cálculo do trabalho de uma força conservativa, aplicada sobre uma partícula. O valor desse trabalho depende apenas das posições inicial e final da partícula. O campo eléctrico é sempre conservativo, seja qual for a sua origem. Como tal é possível associar a cada ponto do campo uma energia potencial ou um potencial (eléctricos). O potencial eléctrico num dado ponto é definido como a energia potencial de uma carga pontual unitária e positiva (carga de prova) colocada neste ponto. Sabendo o potencial, podese determinar a energia potencial de uma carga q através da equação E p = qv. A diferença de energia potencial de uma carga q entre dois pontos A e B do campo eléctrico é igual ao trabalho que o campo realiza para a deslocar entre esses mesmos pontos: E p r r r r ( A) E ( B) = W = F dr = qe dr (2) p A diferença de potencial entre dois pontos A e B do campo eléctrico é igual ao trabalho que o campo realiza para deslocar a carga q = 1 entre esses mesmos pontos: r r r r V ( A) V ( B) = W = F dr = E dr (3) Departamento de Física da FCTUC 1/6

2 O potencial eléctrico, bem como a diferença de potencial, são medidos em Volts (V). A unidade de energia potencial é o Joule (J). Conhecido o potencial (grandeza escalar) em pontos de um campo eléctrico, é possível calcular o vector campo associado a esse potencial. Para tal note-se que a expressão (3) é o simétrico da variação de (energia) potencial, i. é: Para um deslocamento elementar da carga ter-se-ia: r r r r V ( A) V ( B) = W = F dr = E dr = V (4) r r E dr = dv. Ora r r E dr = E dx E dy anterior, tem-se: x y E E x z dz e = x dv E y = dx dy dz. Substituindo na expressão x y z = y E z = (5) z As igualdades (5) mostram que a grandeza das componentes do campo eléctrico num ponto são iguais às derivadas parciais em ordem a x, y e z, nesse mesmo ponto. Portanto, as componentes do campo são o simétrico da variação do potencial segundo cada uma das orientações. É a partir destas igualdades que se deduzem as relações entre campo e potencial eléctrico. Designam-se por equipotenciais as zonas de um campo (eléctrico) onde o potencial é constante. Se o campo for tratado a 3 dimensões, essas zonas constituem superfícies e usa-se a designação de superfície equipotencial. Se o campo for tratado apenas a duas dimensões, como é o caso de uma folha de papel, as mesmas zonas constituem linhas que se designam por linhas equipotenciais. Como exemplo, a figura 1 mostra linhas equipotenciais do campo gravítico. Trata-se de um mapa onde estão indicadas as curvas de nível (igual altura equivale a igual Figura 1. Linhas equipotenciais no campo gravítico energia potencial gravítica - E = mgh). Em cada ponto de uma superfície (ou linha) equipotencial o vector campo eléctrico é perpendicular e aponta no sentido dos potenciais decrescentes. É fácil perceber esta afirmação tendo em conta que a energia potencial de uma carga q colocada num dado ponto A é E p ( A) = qv ( A) e que um sistema físico tende sempre para um estado com a energia potencial menor. Assim, conhecendo a representação do potencial, é possível obter a representação das linhas do campo eléctrico que lhe está associado. De novo se recomenda o acesso a um site de Internet onde pode visualizar linhas equipotenciais, relativas a várias distribuições de carga. Aceder, por exemplo, a Observar em simultâneo as linhas equipotenciais e as linhas de campo para perceber o relacionamento entre elas. Departamento de Física da FCTUC 2/6

3 2. Material e métodos Antes de mais chama-se a atenção para o facto de que o relatório deste trabalho deve ser elaborado, na sua maior parte, durante a realização das medidas. Por isso, o mesmo relatório é proposto na aula e será preenchido à medida que os dados são recolhidos. A análise dos dados baseia-se na resposta a algumas perguntas, para o que é necessário estudar e perceber adequadamente a teoria exposta de modo resumido na introdução. O campo eléctrico vai ser analisado a partir de diferenças de potencial que serão medidas utilizando um multímetro. Ter o cuidado de seleccionar uma escala que possibilite boa precisão. O mesmo campo eléctrico vai ser estudado (a duas dimensões) sobre folhas de papel impregnadas de carbono. As folhas são condutoras, mas apresentam uma resistência algo elevada, que varia entre 5 kω e 20 kω para cada centímetro na folha. Sobre as folhas estão desenhados dois eléctrodos condutores, com resistência muito menor, da ordem de 0,03 a 0,05 Ω por centímetro. Entre os eléctrodos vai ser aplicada uma diferença de potencial de 10 a 15 V fornecida por uma fonte de tensão contínua. É esta diferença de potencial que vai "criar" o campo eléctrico a estudar sobre o papel de carbono. As folhas de carbono são reutilizáveis e, por isso, pede-se que não escrevam sobre elas. Tomem nota dos valores sobre as folhas que são fornecidas para o efeito. Não devem tocar com a mão na folha condutora! 3. Execução experimental 3.1. Duas cargas simétricas - "dipolo" Fixar sobre a placa de cortiça a folha que contém o desenho de duas cargas. Vai-se admitir que essas cargas são pontuais, o que é, obviamente, uma aproximação. Efectuar de seguida as ligações que se esquematizam na figura 2. Notar que os terminais e - da fonte de alimentação são ligados a cada uma das marcas sobre a folha. Deste modo consegue-se uma distribuição de cargas simétricas. Sobre ambas as cargas fixar "pioneses" metálicos para servirem de ligadores, através de fichas tipo crocodilo. Como sugere a figura, ligar a ponta preta do multímetro ao terminal negativo da fonte. Nas medições sobre a folha será utilizada apenas a ponta vermelha do multímetro. - Figura 2. Esquema de ligações para analisar o campo eléctrico de duas cargas opostas Departamento de Física da FCTUC 3/6

4 Ligar a fonte de corrente contínua e ligar o multímetro em Volts-DC. Ajustar a tensão da fonte para 15 V. Para tal tocar com a ponta não ligada do multímetro (ponta vermelha) no ponto de ligação do terminal positivo e observar a leitura do multímetro enquanto se ajusta a tensão Nas vizinhanças do ponto (Linha = 10; Coluna = 14) 1 procurar com a ponta vermelha um ponto em que o multímetro indica 7.5 V (i.e. metade da tensão aplicada aos eléctrodos) e marcar a sua posição na folha de registo. Procurar outros pontos com a mesma diferença de potencial a fim de traçar a linha equipotencial que lhe corresponde. PERGUNTA 1. Observe e comente a forma da linha equipotencial nas proximidades da linha 10. Qual será a orientação do vector campo eléctrico nessa zona? Justifique a sua resposta. Indique o vector do campo na folha com as equipotenciais registadas Obter a localização da linha equipotencial de 10 V. Para o efeito, procurar com a ponta vermelha, sobre a folha, a localização dos pontos onde o multímetro indica esse valor. Registar esses pontos sobre a folha adicional. Após o registo de pontos suficientes, unir esses pontos de modo a desenhar a equipotencial de 10 V Obter a localização das linhas equipotenciais de 3 V, 4.5 V, e de 6 V. Proceder como no ponto anterior. PERGUNTA 2. Compare a forma geométrica das linhas equipotenciais obtidas com a que se obteria se apenas uma das cargas estivesse presente. Qual será a orientação do vector campo eléctrico sobre os pontos de cada uma das linhas equipotenciais registadas? Indique-o na folha com as equipotenciais registadas Medir e registar na folha adicional o valor do potencial em cada uma das "cruzes" marcadas entre os pontos 18 e 10 da linha horizontal 10. Notar que se trata da direcção entre as cargas. PERGUNTA 3. Tendo presentes as equações (5), calcule o valor médio da intensidade do campo eléctrico em cada um dos pontos onde foi medido o potencial. Com base nos valores calculados, desenhe no seu relatório a recta correspondente aos pontos entre cargas (10 a 18) e a meio de cada ponto da escala (10.5, 11.5, 12.5, ) desenhe o vector que aí representa o campo eléctrico tal como sugere a Fig.3. Note que o comprimento dos diversos vectores deve ser proporcional à intensidade do campo. Por isso, defina uma escala tal que os vectores não se sobreponham. Campo eléctrico Posição Figura 3. Sugestão de figura para desenhar o vector campo eléctrico em diversos pontos 1 Daqui para diante os pontos da folha serão referidas pelo número de linha e coluna: L = xx, C = xx Departamento de Física da FCTUC 4/6

5 3.2. Dois anéis concêntricos - "condensador cilíndrico" A folha anterior vai ser substituída pela folha que contém o desenho de dois anéis concêntricos. A tensão a aplicar terá o mesmo valor de 15 V e também o multímetro será usado em DC. Por isso, desligar apenas os terminais aplicados sobre a folha anterior e ligá-los à nova folha, como se indica na figura 4. Tal como na experiência 3.1, a medida sobre vários pontos da folha será efectuada encostando a ponta vermelha e lendo no multímetro os correspondentes valores de tensão. Todos os valores lidos serão registados na folha adicional que é fornecida. Deverão ser lidos pontos suficientes para desenhar com exactidão as linhas equipotenciais que são solicitadas. - Figura 4. Esquema de ligações para analisar o campo eléctrico de dois anéis concêntricos Obtenha e registe valores da d.d.p. relativamente a pontos do interior do anel menor. PERGUNTA 4. Comente os valores obtidos. Qual será o campo eléctrico nesses pontos? Diga, justificando, como se distribuem as cargas sobre esse anel Obtenha valores e desenhe pelo menos duas linha equipotencial no espaço entre os dois anéis. PERGUNTA 5. Comente os valores obtidos. Como será o campo eléctrico nesse espaço? Indique o vector do campo na folha com as equipotenciais registadas Obtenha e registe valores da d.d.p. entre o anel exterior e pontos que estão fora dos anéis. PERGUNTA 6. Comente os valores obtidos. Como será o campo eléctrico nesse espaço? Diga, justificando, como se distribuem as cargas sobre o anel exterior. Departamento de Física da FCTUC 5/6

6 3.3. Duas linhas paralelas - "condensador plano" A folha anterior vai ser substituída pela folha que contém o desenho de duas linhas paralelas. Mantém-se o valor da tensão e o multímetro continua a ser usado em DC. Por isso, desligar apenas os terminais aplicados sobre a folha anterior e ligá-los à nova folha, como indicado na figura 5. Tal como nas experiências anteriores, a medida sobre vários pontos da folha será efectuada encostando a ponta vermelha e lendo no multímetro os correspondentes valores de tensão. Todos os valores lidos serão registados na folha adicional que é fornecida. Deverão ser lidos pontos suficientes para desenhar com exactidão as linhas equipotenciais que são solicitadas. - Figura 5. Esquema de ligações para analisar o campo eléctrico de duas linhas paralelas Começando no ponto (L = 12; C = 14), obter e registar valores da d.d.p. que permitam desenhar a linha equipotencial que passa por esse ponto Proceder do mesmo modo relativamente ao ponto (L = 8; C = 14) e também ao ponto (L = 10; C = 14). PERGUNTA 7. Comente a forma geométrica das linhas equipotenciais obtidas. Poderá considerar-se que o campo eléctrico é constante em pontos situados entre as duas linhas de carga? E qual será a sua grandeza e orientação? Justifique. Indique o vector do campo na folha com as equipotenciais registadas Obter valores de potencial que permitam calcular o campo eléctrico em pontos situados entre as linhas 14 e 6 (em todos os pontos marcados com uma cruz) da coluna 14. PERGUNTA 8. Com base nos valores obtidos calcular o campo eléctrico nesses pontos. Justificar os cálculos. Bibliografia [1] M.M.R.R. Costa e M.J.B.M. de Almeida, Fundamentos de Física, 2ª edição, Coimbra, Livraria Almedina (2004). [2] Paul Tipler, Física, Editora Guanabara-Koogan, 4ª Edição (2000). Departamento de Física da FCTUC 6/6

CAMPO ELÉCTRICO E POTENCIAL

CAMPO ELÉCTRICO E POTENCIAL TRALHO PRÁTICO Nº 5 CAMPO ELÉCTRICO E POTENCIAL Objectivo - O objectivo deste trabalho é ilustrar a forma do campo eléctrico criado por algumas distribuições de carga. Experimentalmente determinam-se linhas

Leia mais

2ª sessão na área da Física de preparação para a EUSO2010

2ª sessão na área da Física de preparação para a EUSO2010 FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE NOVA DE LISBOA 2ª sessão na área da Física de preparação para a EUSO2010 1 OBJECTIVO Determinar o módulo de Young de um elástico de borracha. 2 INTRODUÇÃO

Leia mais

Mapeamento de Campos Eléctricos

Mapeamento de Campos Eléctricos defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Mapeamento de Campos Eléctricos Instituto Superior de Engenharia do Porto- Departamento de Física Rua Dr. António Bernardino de Almeida,

Leia mais

ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE

ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE TRABALHO PRÁTICO ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE Objectivo Pretende-se estudar o movimento rectilíneo e uniformemente acelerado medindo o tempo gasto

Leia mais

GUIA DE LABORATÓRIO LABORATÓRIO 1 TANQUE ELECTROLÍTICO

GUIA DE LABORATÓRIO LABORATÓRIO 1 TANQUE ELECTROLÍTICO GUIA DE LABORATÓRIO LABORATÓRIO 1 TANQUE ELECTROLÍTICO 1. RESUMO Estudo do campo eléctrico estático entre superfícies equipotenciais. Determinação experimental das linhas equipotenciais e do campo eléctrico.

Leia mais

FICHA DE TRABALHO DE FÍSICA E QUÍMICA A DEZEMBRO 2010

FICHA DE TRABALHO DE FÍSICA E QUÍMICA A DEZEMBRO 2010 FICHA DE TRABALHO DE FÍSICA E QUÍMICA A DEZEMBRO 2010 APSA Nº11 11º Ano de Escolaridade 1- Classifique como verdadeiras ou falsas cada uma das seguintes afirmações, corrigindo estas últimas sem recorrer

Leia mais

ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE

ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE TRABALHO PRÁTICO ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE Objectivo Pretende-se estudar o movimento rectilíneo e uniformemente acelerado medindo o tempo gasto

Leia mais

Electromagnetismo e Física Moderna. Conhecer um método para a determinação da capacidade eléctrica

Electromagnetismo e Física Moderna. Conhecer um método para a determinação da capacidade eléctrica Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia Departamento de Física 1 Compreender o que é um condensador eléctrico Electromagnetismo e Física Moderna Capacidade e condensadores Conhecer

Leia mais

defi departamento de física

defi departamento de física defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Estudo de um Amperímetro Instituto Superior de Engenharia do Porto- Departamento de Física Rua Dr. António Bernardino de Almeida,

Leia mais

1ª sessão de preparação para a EUSO2010. Características eléctricas de saída de um painel fotovoltaico

1ª sessão de preparação para a EUSO2010. Características eléctricas de saída de um painel fotovoltaico FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE NOVA DE LISBOA 1ª sessão de preparação para a EUSO2010 Características eléctricas de saída de um painel fotovoltaico 1 OBJECTIVO Determinação e interpretação

Leia mais

Curva Característica de um Díodo de Junção

Curva Característica de um Díodo de Junção Curva Característica de um Díodo de Junção Ano Lectivo 2003/2004-2º Semestre O presente trabalho prático é composto por duas secções : Protocolo Descrição dos procedimentos a efectuar pelo aluno. O protocolo

Leia mais

RESISTÊNCIA E CIRCUITOS ELÉCTRICOS

RESISTÊNCIA E CIRCUITOS ELÉCTRICOS TLHO PÁTCO Nº 6 - QUÍMC QUÍMC NDUSTL SSTÊNC CCUTOS LÉCTCOS Objectivo - Neste trabalho pretende-se clarificar o conceito de resistência eléctrica e verificar leis aplicáveis a circuitos eléctricos. Considera-se

Leia mais

MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO

MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO TRABALHO PRÁTICO MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO Objectivo - Este trabalho tem como objectivo a familiarização com alguns dos equipamentos e técnicas de medida

Leia mais

A.L.2.1 CAMPO ELÉCTRICOE SUPERFÍCIES EQUIPOTENCIAIS

A.L.2.1 CAMPO ELÉCTRICOE SUPERFÍCIES EQUIPOTENCIAIS A.L.2.1 CAMPO ELÉCTRICOE SUPERFÍCIES EQUIPOTENCIAIS FÍSICA 12.ºANO BREVE INTRODUÇÃO As cargas eléctricas criam campos eléctricos cuja forma está relacionada com o valor dessas cargas e com a sua distribuição

Leia mais

Laboratório de Física

Laboratório de Física SUPERFÍCIES EQUIPOTENCIAIS I Laboratório de Física OBJETIVOS Identificar e descrever linhas de força a partir de superfícies euipotenciais. Medir a diferença de potencial elétrico entre dois pontos. Comparar

Leia mais

Regras de Kirchoff dos circuitos eléctricos. Descarga de um condensador. Verificar experimentalmente as regras de Kirchoff para circuitos eléctricos.

Regras de Kirchoff dos circuitos eléctricos. Descarga de um condensador. Verificar experimentalmente as regras de Kirchoff para circuitos eléctricos. Guião de Laboratório Física MEC FEUP DEF egras de Kirchoff dos circuitos eléctricos. Descarga de um condensador Objectivos: Uso de instrumentos de medida eléctricos. Verificar experimentalmente as regras

Leia mais

EXPERIMENTO 4: SUPERFÍCIES EQUIPOTENCIAIS

EXPERIMENTO 4: SUPERFÍCIES EQUIPOTENCIAIS EXPERIMENTO 4: SUPERFÍCIES EQUIPOTENCIAIS 4.1 OBJETIVOS Fazer um mapeamento das linhas equipotenciais e das de força de um campo elétrico, através da simulação do caso eletrostático. 4.2 INTRODUÇÃO Imaginemos

Leia mais

5.5. Linhas do Campo Eléctrico

5.5. Linhas do Campo Eléctrico 5.5. Linhas do Campo Eléctrico Uma representação pictórica especializada conveniente para visualizar padrões de campo eléctrico é criada desenhando-se linhas que mostram a direcção do vector do campo eléctrico

Leia mais

Medição de Tensões e Correntes Eléctricas. Leis de Ohm e de Kirchhoff

Medição de Tensões e Correntes Eléctricas. Leis de Ohm e de Kirchhoff Ano lectivo: 2010 2011 Medição de Tensões e Correntes Eléctricas. Leis de Ohm e de Kirchhoff 1. OBJECTIVO Aprender a utilizar um osciloscópio e um multímetro digital. Medição de grandezas AC e DC. Conceito

Leia mais

Escoamentos Exteriores em torno de Corpos Não-fuselados

Escoamentos Exteriores em torno de Corpos Não-fuselados Mecânica dos Fluidos II Guia do trabalho laboratorial Escoamentos Exteriores em torno de Corpos Não-fuselados António Sarmento Março de 2006 Objectivos 1. Determinar experimentalmente e relacionar entre

Leia mais

Departamento de Matemática e Ciências Experimentais

Departamento de Matemática e Ciências Experimentais Departamento de Matemática e Ciências Experimentais Física e Química A 10.º Ano Atividade Prático-Laboratorial AL 2.1 Física Assunto: Características de uma pilha Objetivo geral Determinar as características

Leia mais

ELECTROMAGNETISMO E ÓPTICA 1 o Trabalho de Laboratório: MEFT

ELECTROMAGNETISMO E ÓPTICA 1 o Trabalho de Laboratório: MEFT ELECTROMAGNETISMO E ÓPTICA 1 o Trabalho de Laboratório: MEFT ESTUDO DE UM QUADRIPOLO ELÉCTRICO 1 - INTRODUÇÃO TEÓRICA 1.1 - Circuitos eléctricos invariantes no tempo, lineares e passivos Um sistema diz-se

Leia mais

SINAIS E SISTEMAS MECATRÓNICOS

SINAIS E SISTEMAS MECATRÓNICOS SINAIS E SISTEMAS MECATRÓNICOS Laboratório #1: Introdução à utilização de aparelhos de medida e geração de sinal: multímetro, osciloscópio e gerador de sinais Mestrado Integrado em Engenharia Mecânica

Leia mais

MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO

MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO TRABALHO PRÁTICO MEDIÇÃO DE GRANDEZAS ELÉCTRICAS UTILIZAÇÃO DO OSCILOSCÓPIO E DO MULTÍMETRO Objectivo Este trabalho tem como objectivo a familiarização com alguns dos equipamentos e técnicas de medida

Leia mais

Energia potencial elétrica

Energia potencial elétrica Energia potencial elétrica Foi descoberto empiricamente que a força elétrica é uma força conservativa, portanto é possível associar a ela uma energia potencial. Quando uma força eletrostática age sobre

Leia mais

CONDENSADORES E DIELÉCTRICOS

CONDENSADORES E DIELÉCTRICOS TRABALHO PRÁTICO Nº 4 - LICENCIATURA EM FÍSICA CONDENSADORES E DIELÉCTRICOS Objectivo - Este trabalho pretende ilustrar a constituição e o funcionamento de um condensador, bem como determinar, de uma forma

Leia mais

E03 - CAMPO ELÉTRICO E MAPEAMENTO DE EQUIPOTENCIAIS. Figura 1: Materiais necessários para a realização desta experiência.

E03 - CAMPO ELÉTRICO E MAPEAMENTO DE EQUIPOTENCIAIS. Figura 1: Materiais necessários para a realização desta experiência. E03 - CAMPO ELÉTRICO E MAPEAMENTO DE EQUIPOTENCIAIS 1- OBJETIVOS Traçar as equipotenciais de um campo elétrico, em uma cuba eletrolítica. Determinar o campo elétrico, em módulo, direção e sentido, devido

Leia mais

LABORATÓRIO DE ELETROTECNIA E CIRCUITOS

LABORATÓRIO DE ELETROTECNIA E CIRCUITOS LABORATÓRIO DE ELETROTECNIA E CIRCUITOS TRABALHO PRÁTICO 8 Divisor de tensão e divisor de corrente Para preparar este trabalho prático, deve começar por ler todo o enunciado. As questões que exigem experiências

Leia mais

DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO)

DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO) TRABALHO PRÁTICO Nº 6 DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO) Objectivo - Este trabalho pretende ilustrar a constituição e o funcionamento de um condensador,

Leia mais

2 Campos Elétricos. 2-2 Campos elétricos. Me. Leandro B. Holanda,

2 Campos Elétricos. 2-2 Campos elétricos. Me. Leandro B. Holanda, 2 Campos Elétricos No capítulo anterior vimos como determinar a força elétrica exercida sobre uma partícula 1 de carga +q 1 quando a partícula é colocada nas proximidades de uma partícula 2 de carga +q

Leia mais

6.1 Exemplos - potencial eléctrico de um anel carregado

6.1 Exemplos - potencial eléctrico de um anel carregado 1/Out/212 Aula 6 6. Potencial eléctrico - distribuições contínuas de carga 6.1 Exemplos: Anel, Disco, Plano infinito, Linha infinita, Esfera 6.2 Condutores em equilíbrio 6.3 Contacto eléctrico 6.4 Energia

Leia mais

RESISTÊNCIA E CIRCUITOS ELÉCTRICOS

RESISTÊNCIA E CIRCUITOS ELÉCTRICOS TLHO PÁTCO Nº 6 - LCENCTU EM FÍSC ESSTÊNC E CCUTOS ELÉCTCOS Objectivo - Neste trabalho pretende-se clarificar o conceito de resistência eléctrica e verificar leis aplicáveis a circuitos eléctricos. Considera-se

Leia mais

7. Potencial eletrostático

7. Potencial eletrostático 7. Potencial eletrostático Em 1989 Wolfgang Paul recebeu o prémio Nobel da física pela sua invenção da armadilha de iões que permite isolar um ião. Com essa invenção tornou-se possível estudar um átomo

Leia mais

Mecânica dos Fluidos I Trabalho Prático «Caudal de quantidade de movimento e equação de Bernoulli»

Mecânica dos Fluidos I Trabalho Prático «Caudal de quantidade de movimento e equação de Bernoulli» Mecânica dos Fluidos I Trabalho Prático «Caudal de quantidade de movimento e equação de Bernoulli» Este trabalho consta de uma série de demonstrações no laboratório com o objectivo de: ilustrar a relação

Leia mais

DETERMINAÇÃO DA RESISTÊNCIA INTERNA DE UMA PILHA

DETERMINAÇÃO DA RESISTÊNCIA INTERNA DE UMA PILHA TLHO PÁTCO DETEMNÇÃO D ESSTÊNC NTEN DE UM PLH Objectivo Este trabalho compreende as seguintes partes: comparação entre as resistências internas de dois voltímetros, um analógico e um digital; medida da

Leia mais

1. Objectivos Verificação experimental de uma relação exponencial entre duas grandezas físicas. Fazer avaliações numéricas.

1. Objectivos Verificação experimental de uma relação exponencial entre duas grandezas físicas. Fazer avaliações numéricas. Ciências Experimentais P9: Carga e descarga do condensador 1. Objectivos Verificação experimental de uma relação exponencial entre duas grandezas físicas. Fazer avaliações numéricas. 2. Introdução O condensador

Leia mais

Laboratório 4 Fontes do campo magnético GUIA DE LABORATÓRIO LABORATÓRIO 4 FONTES DO CAMPO MAGNÉTICO

Laboratório 4 Fontes do campo magnético GUIA DE LABORATÓRIO LABORATÓRIO 4 FONTES DO CAMPO MAGNÉTICO GUIA DE LABORATÓRIO LABORATÓRIO 4 FONTES DO CAMPO MAGNÉTICO 1. RESUMO Verificação do campo de indução magnética criado por um fio longo, um anel de corrente e uma bobine. Confirmação da lei de Biot-Savarts

Leia mais

ELECTROTECNIA TEÓRICA MEEC IST

ELECTROTECNIA TEÓRICA MEEC IST ELECTROTECNIA TEÓRICA MEEC IST º Semestre 07/8 º TRABALHO LABORATORIAL DETERMINAÇÃO EXPERIMENTAL DA MATRIZ DE COEFICIENTES DE CAPACIDADE DE UM SISTEMA DE N+ CONDUTORES (VIA ANALOGIA REO-ELÉCTRICA) Prof.

Leia mais

Aula Prática 6. Carga e Descarga de Capacitores. Depto Química e Física - CCENS/UFES

Aula Prática 6. Carga e Descarga de Capacitores. Depto Química e Física - CCENS/UFES Aula Prática 6 Carga e Descarga de Capacitores Depto Química e Física - CCENS/UFES Estratégia: Montagem e operação de circuitos elétricos visando ao estudo de leis fundamentais de análises de circuitos.

Leia mais

Física Experimental III GFB025 Prof. Raul F. Cuevas

Física Experimental III GFB025 Prof. Raul F. Cuevas Curvas Equipotencias e Campo Elétrico Objetivos: Estudar a distribuição das curvas equipotenciais em uma regiao onde existe um campo elétrico definido por uma configuração especifica de eletrodos. Constroir

Leia mais

2 Ressonância e factor de qualidade

2 Ressonância e factor de qualidade Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia Departamento de Física Electromagnetismo e Física Moderna 2 Ressonância e factor de qualidade Os circuitos RLC Observar a ressonância em

Leia mais

Aula Prática 3. Superfícies Equipotenciais. Depto de Química e Física - CCENS/UFES

Aula Prática 3. Superfícies Equipotenciais. Depto de Química e Física - CCENS/UFES Aula Prática 3 Superfícies Equipotenciais Depto de Química e Física - CCENS/UFES Estratégia: Identificação de superfícies equipotenciais nas vizinhanças de pares de eletrodos submetidos a uma diferença

Leia mais

CAMPO ELÉCTRICO NUM CONDUTOR EXTENSO A DUAS DIMENSÕES PERCORRIDO POR CORRENTE ELÉCTRICA ESTACIONÁRIA.

CAMPO ELÉCTRICO NUM CONDUTOR EXTENSO A DUAS DIMENSÕES PERCORRIDO POR CORRENTE ELÉCTRICA ESTACIONÁRIA. CAMPO ELÉCTRICO NUM CONDUTOR EXTENSO A DUAS DIMENSÕES PERCORRIDO POR CORRENTE ELÉCTRICA ESTACIONÁRIA. 1. Resumo Este trabalho laboratorial tem por objectivo a determinação experimental das linhas equipotenciais

Leia mais

Tópico 4 ELETROSTÁTICA

Tópico 4 ELETROSTÁTICA 1 CADERNO DE ATIVIDADES Tópico 4 ELETROSTÁTICA Estas atividades constituem-se no foco das atividades presenciais quando dúvidas serão dirimidas e os conceitos envolvidos, aprofundados. Por isso, sugerimos

Leia mais

ESCOLA SECUNDÁRIA FILIPA DE VILHENA. Utilização e Organização dos Laboratórios Escolares. Actividade Laboratorial Física 12º Ano

ESCOLA SECUNDÁRIA FILIPA DE VILHENA. Utilização e Organização dos Laboratórios Escolares. Actividade Laboratorial Física 12º Ano ESCOLA SECUNDÁRIA FILIPA DE VILHENA Utilização e Organização dos Laboratórios Escolares Actividade Laboratorial Física 12º Ano Característica de um LED e determinação da constante de Planck (Actividade

Leia mais

Medição de Tensões e Correntes Eléctricas. Leis de Ohm e de Kirchoff

Medição de Tensões e Correntes Eléctricas. Leis de Ohm e de Kirchoff Medição de Tensões e Correntes Eléctricas. Leis de Ohm e de Kirchoff. Objectivo: Aprender a medir tensões e correntes eléctricas com um oscioscopio e um multímetro digital. Conceito de resistência intema

Leia mais

Duração do exame: 2:30h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova.

Duração do exame: 2:30h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova. Duração do exame: :3h Leia o enunciado com atenção. Justifique todas as respostas. Identifique e numere todas as folhas da prova. Problema Licenciatura em Engenharia e Arquitetura Naval Mestrado Integrado

Leia mais

Halliday Fundamentos de Física Volume 3

Halliday Fundamentos de Física Volume 3 Halliday Fundamentos de Física Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

Física III-A /1 Lista 1: Carga Elétrica e Campo Elétrico

Física III-A /1 Lista 1: Carga Elétrica e Campo Elétrico Física III-A - 2018/1 Lista 1: Carga Elétrica e Campo Elétrico Prof. Marcos Menezes 1. Duas partículas com cargas positivas q e 3q são fixadas nas extremidades de um bastão isolante de comprimento d. Uma

Leia mais

6 O campo magnético terrestre

6 O campo magnético terrestre Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia Departamento de Física Electromagnetismo e Física Moderna 6 O campo magnético terrestre Determinação da sua intensidade e orientação Demonstrar

Leia mais

Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I /08 FORÇA GRAVÍTICA

Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I /08 FORÇA GRAVÍTICA Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T2 FÍSICA EXPERIMENTAL I - 2007/08 1. Objectivo FORÇA GRAVÍTICA Comparar a precisão de diferentes processos de medida; Linearizar

Leia mais

Física II. Laboratório 1 Instrumentação electrónica

Física II. Laboratório 1 Instrumentação electrónica Física II Laboratório 1 Instrumentação electrónica OBJECTIVO Utilizar instrumentos electrónicos: osciloscópios, geradores de sinais, fontes de corrente e tensão, multímetros. 1. INTRODUÇÃO Com o multímetro

Leia mais

DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO)

DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO) TRABALHO PRÁTICO DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO) Objectivo Este trabalho pretende ilustrar a constituição e o funcionamento de um condensador,

Leia mais

. Medição de tensões contínuas (DC) : Volt [V]. Medição de tensões alternas (AC)

. Medição de tensões contínuas (DC) : Volt [V]. Medição de tensões alternas (AC) Medição de Tensões e de Correntes Eléctricas. Leis de Ohm e de Kirchoff 1. Objectivo: Aprender a medir tensões e correntes eléctricas com um osci1oscópio e um multímetro digital. Conceito de resistência

Leia mais

defi departamento de física

defi departamento de física defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Instituto Superior de Engenharia do Porto- Departamento de Física Rua Dr. António Bernardino de Almeida, 431 4200-072 Porto. T 228

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO

EXAME NACIONAL DO ENSINO SECUNDÁRIO EXAME NACIONAL DO ENSINO SECUNDÁRIO PROVA 115110 Págs. 12.O Ano de Escolaridade (Decreto-Lei n.o 286189, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos Duraçiio da prova: 120 minutos 2002 I." FASE

Leia mais

Física III-A /2 Lista 1: Carga Elétrica e Campo Elétrico

Física III-A /2 Lista 1: Carga Elétrica e Campo Elétrico Física III-A - 2018/2 Lista 1: Carga Elétrica e Campo Elétrico 1. (F) Duas partículas com cargas positivas q e 3q são fixadas nas extremidades de um bastão isolante de comprimento d. Uma terceira partícula

Leia mais

Um campo em Física é definido como uma entidade intermediária na interacção entre partículas que está distribuida por todo ou

Um campo em Física é definido como uma entidade intermediária na interacção entre partículas que está distribuida por todo ou Conceitos básicos de electromagnetismo Um campo em Física é definido como uma entidade intermediária na interacção entre partículas que está distribuida por todo ou parte do espaço cujas propriedades podem

Leia mais

EXPERIMENTO 2: ASSOCIAÇÃO DE RESISTORES E A LEI DE OHM

EXPERIMENTO 2: ASSOCIAÇÃO DE RESISTORES E A LEI DE OHM EXPERIMENTO 2: ASSOCIAÇÃO DE RESISTORES E A LEI DE OHM 2.1 OBJETIVOS Ler o valor nominal de cada resistor através do código de cores. Medir as resistências equivalentes das associações Verificar o comportamento

Leia mais

Electromagnetismo e Óptica 2º Semestre /12 1º Teste - 12/04/ :30h

Electromagnetismo e Óptica 2º Semestre /12 1º Teste - 12/04/ :30h Electromagnetismo e Óptica 2º Semestre - 2011/12 1º Teste - 12/04/2012 18:30h Licenciatura em Matemática Aplicada e Computação Mestrado Integrado em Engenharia Biomédica Mestrado Integrado em Engenharia

Leia mais

Instituto Politécnico de Tomar. Escola Superior de Tecnologia de Tomar. Departamento de Engenharia Electrotécnica ELECTRÓNICA DE INSTRUMENTAÇÃO

Instituto Politécnico de Tomar. Escola Superior de Tecnologia de Tomar. Departamento de Engenharia Electrotécnica ELECTRÓNICA DE INSTRUMENTAÇÃO Instituto Politécnico de Tomar Escola Superior de Tecnologia de Tomar Departamento de Engenharia Electrotécnica ELECTRÓNICA DE INSTRUMENTAÇÃO Trabalho Prático N.º 1 MEDIÇÃO DO VALOR DE UMA RESISTÊNCIA

Leia mais

1. Considere a figura abaixo, que representa uma carga elétrica pontual, Q, e um ponto P, onde é colocada uma carga de prova, q.

1. Considere a figura abaixo, que representa uma carga elétrica pontual, Q, e um ponto P, onde é colocada uma carga de prova, q. ESCOLA SECUNDÁRIA DE CASQUILHOS Ficha Formativa de FÍSICA 20 março 2018 12.º Ano Turmas A e B Professora: Maria do Anjo Albuquerque Duração do teste: 90 minutos. Este teste é constituída por 4 páginas

Leia mais

ELECTRÓNICA I. ANÁLISE EM CORRENTE ALTERNADA DE UM CIRCUITO RC Guia de Montagem do Trabalho Prático

ELECTRÓNICA I. ANÁLISE EM CORRENTE ALTERNADA DE UM CIRCUITO RC Guia de Montagem do Trabalho Prático Universidade do Minho Circuito RC - Guia de Montagem Escola de Engenharia Dep. Electrónica Industrial 1/8 ELECTRÓNICA I ANÁLISE EM CORRENTE ALTERNADA DE UM CIRCUITO RC Guia de Montagem do Trabalho Prático

Leia mais

Nome do Aluno: Nº Ensino Médio 2º ano.

Nome do Aluno: Nº Ensino Médio 2º ano. Valor do trabalho: 10 pontos NOTA: Nome do Aluno: Nº Ensino Médio 2º ano. Trabalho de recuperação paralela de Física Setor A Prof. Douglas Rizzi Data: / / INSTRUÇÕES GERAIS: Responda os testes com atenção

Leia mais

ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz!

ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! ESCOLA ESTADUAL JOÃO XXIII A Escola que a gente quer é a Escola que a gente faz! NATUREZA DA ATIVIDADE: EXERCÍCIOS DE FIXAÇÃO - ELETROSTÁTICA DISCIPLINA: FÍSICA ASSUNTO: CAMPO ELÉTRICO, POTENCIAL ELÉTRICO,

Leia mais

Colisões Guia de Ensaio Laboratorial

Colisões Guia de Ensaio Laboratorial Colisões Guia de Ensaio Laboratorial Mecânica Aplicada II Cursos MEAer, MEMec, LEAN Abril 2017 Conteúdo 1 Introdução 1 1.1 Objectivo do Ensaio....................................... 1 2 Fundamentos Teóricos

Leia mais

Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel

Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel. 3091-6647 hbarbosa@if.usp.br http://www.fap.if.usp.br/~hbarbosa ESTA AULA Discussão das sínteses: Simulação na cuba Simulação numérica (FEEM/Excel)

Leia mais

e em paralelo Dipolo eléctrico, momento dipolar eléctrico nua

e em paralelo Dipolo eléctrico, momento dipolar eléctrico nua Bioelectricidade - Electricidade BásicaB Condensadores associação em série s e em paralelo Dipolo eléctrico, momento dipolar eléctrico Densidade da corrente eléctrica Lei de Ohm da corrente contínua nua

Leia mais

INSTITUTO SUPERIOR DE AGRONOMIA UC Física I ( ) FICHA DE TRABALHO PRÁTICO Nº 5 Máquina de Atwood OBJECTIVO

INSTITUTO SUPERIOR DE AGRONOMIA UC Física I ( ) FICHA DE TRABALHO PRÁTICO Nº 5 Máquina de Atwood OBJECTIVO INSTITUTO SUPERIOR DE AGRONOMIA UC Física I (2016-2007) FICHA DE TRABALHO PRÁTICO Nº 5 Máquina de Atwood OBJECTIVO Analisar a 2ª lei de Newton, aplicada a um sistema de 2 massas ligadas por um fio que

Leia mais

LEE 2006/07. Guia de Laboratório. Trabalho 4. Circuitos Dinâmicos. Resposta em Frequência

LEE 2006/07. Guia de Laboratório. Trabalho 4. Circuitos Dinâmicos. Resposta em Frequência Análise de Circuitos LEE 2006/07 Guia de Laboratório Trabalho 4 Circuitos Dinâmicos Resposta em Frequência INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Electrotécnica e de Computadores Paulo Flores

Leia mais

ELETRICIDADE: Cuba Eletrolítica Mapeando Campos Elétricos

ELETRICIDADE: Cuba Eletrolítica Mapeando Campos Elétricos FÍSICA 8 ELETRICIDADE: Cuba Eletrolítica Mapeando Campos Elétricos NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA OBJETIVOS Obter superfícies equipotenciais em uma cuba eletrolítica. Mapear o campo elétrico a partir

Leia mais

defi departamento de física

defi departamento de física defi departamento de física Laboratórios de Física www.defi.isep.ipp.pt Diâmetro de um fio com laser Instituto Superior de Engenharia do Porto Departamento de Física Rua Dr. António Bernardino de Almeida,

Leia mais

POTENCIAL ELÉTRICO. Prof. Bruno Farias

POTENCIAL ELÉTRICO. Prof. Bruno Farias CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III POTENCIAL ELÉTRICO Prof. Bruno Farias Introdução Um dos objetivos da Física é determinar

Leia mais

UNIVERSIDADE DE CABO VERDE PROVA DE INGRESSO - ANO LETIVO 2018/ 2019 PROVA DE FÍSICA CONTEÚDOS E OBJETIVOS

UNIVERSIDADE DE CABO VERDE PROVA DE INGRESSO - ANO LETIVO 2018/ 2019 PROVA DE FÍSICA CONTEÚDOS E OBJETIVOS UNIVERSIDADE DE CABO VERDE PROVA DE INGRESSO - ANO LETIVO 2018/ 2019 PROVA DE FÍSICA CONTEÚDOS E OBJETIVOS CONTEÚDOS ENERGIA INTERNA TRABALHO E CALOR SISTEMAS TERMODINÂMICOS CALOR e TEMPERATURA LEIS DOS

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges O Potencial Elétrico Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php

Leia mais

Trabalho 4 - Traçado de linhas equipotenciais e linhas de força.

Trabalho 4 - Traçado de linhas equipotenciais e linhas de força. Trabalho 4 - Traçado de linhas euipotenciais e linhas de força. Objectivo:Obtenção e análise de curvas euipotenciais numa superfície a duas dimensões, para duas distribuições de carga. Pretende-se ainda

Leia mais

ESTUDO EXPERIMENTAL DA FORÇA CENTRÍPETA

ESTUDO EXPERIMENTAL DA FORÇA CENTRÍPETA TRABALHO PRÁTICO ESTUDO EXPERIMENTAL DA FORÇA CENTRÍPETA Objectivo Com este trabalho pretende-se determinar a força centrípeta necessária para manter uma massa em movimento circular uniforme e estudar

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

ESCOLA SECUNDÁRIA C/3º CEB DE RIO TINTO. Nome: Nº: Classificação: O EE:

ESCOLA SECUNDÁRIA C/3º CEB DE RIO TINTO. Nome: Nº: Classificação: O EE: V/V ESCOLA SECUNDÁRIA C/3º CEB DE RIO TINTO QA 1: Lei de Ohm 7 1. Complete os espaços em branco. (A) Um amperímetro é um aparelho que serve para medir a da corrente eléctrica e a sua unidade no SI é o.

Leia mais

EFEITO FOTOELÉCTRICO

EFEITO FOTOELÉCTRICO EFEITO FOTOELÉCTRICO 1. Resumo Neste trabalho pretende se efectuar a verificação experimental do efeito fotoeléctrico e, partindo daí, determinar o valor de uma das constantes fundamentais da natureza,

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Eletromagnetismo Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC

Leia mais

Temática Circuitos Eléctricos Capítulo Teoria dos Circuitos LEIS DE KIRCHHOFF INTRODUÇÃO

Temática Circuitos Eléctricos Capítulo Teoria dos Circuitos LEIS DE KIRCHHOFF INTRODUÇÃO Temática Circuitos Eléctricos Capítulo Teoria dos Circuitos LEIS DE KIRCHHOFF INTRODUÇÃO Nesta secção, apresenta-se o conceito de nó e malha de um circuito eléctrico. Enunciam-se as duas leis de Kirchhoff,

Leia mais

Curso Científico-Humanístico de Ciências e Tecnologias Disciplina de Física e Química A 10ºAno

Curso Científico-Humanístico de Ciências e Tecnologias Disciplina de Física e Química A 10ºAno Agrupamento de Escolas João da Silva Correia DEPARTAMENTO DE CIÊNCIAS NATURAIS E EXPERIMENTAIS Curso Científico-Humanístico de Ciências e Tecnologias Disciplina de Física e Química A 10ºAno FICHA DE TRABALHO

Leia mais

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como Lei de Gauss REVISÃO DE PRODUTO ESCALAR Antes de iniciarmos o estudo do nosso próximo assunto (lei de Gauss), consideramos importante uma revisão sobre o produto escalar entre dois vetores. O produto escalar

Leia mais

DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO)

DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO) TRABALHO PRÁTICO DETERMINAÇÃO EXPERIMENTAL DA CONSTANTE DIELÉCTRICA DE UM FILME DE POLIÉSTER (FOLHA DE ACETATO) 1. Noções básicas Consideremos dois condutores A e B, isolados e inicialmente descarregados,

Leia mais

Terceira Lista - Potencial Elétrico

Terceira Lista - Potencial Elétrico Terceira Lista - Potencial Elétrico FGE211 - Física III Sumário Uma força F é conservativa se a integral de linha da força através de um caminho fechado é nula: F d r = 0 A mudança em energia potencial

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A /2 Data: 17/09/2018

Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A /2 Data: 17/09/2018 Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A - 2018/2 Data: 17/09/2018 Seção 1: Múltipla Escolha (7 0,8 = 5,6 pontos) 3. O campo elétrico

Leia mais

LABORATÓRIO DE ELECTROTECNIA E CIRCUITOS

LABORATÓRIO DE ELECTROTECNIA E CIRCUITOS LABORATÓRIO DE ELECTROTECNIA E CIRCUITOS TRABALHO PRÁTICO 10 Métodos de análise de circuitos Teorema de Thévenin; Condição de máxima transferência de potência Para preparar este trabalho prático, deve

Leia mais

A.L.2.2 CONDENSADOR PLANO

A.L.2.2 CONDENSADOR PLANO A.L.2.2 CONDENSADOR PLANO FÍSICA 12.ºANO BREVE INTRODUÇÃO Os condensadores têm inúmeras aplicações. Há condensadores de várias formas e tamanhos e são estas características geométricas que determinam a

Leia mais

Exame de Conhecimento de Física

Exame de Conhecimento de Física Exame de Conhecimento de Física Duração: 2h + 30m de tolerância (Este Exame é composto por 6 páginas.) I) Um corpo com 2,0 kg de massa desloca-se em linha recta, segundo a vertical, tendo partido da posição

Leia mais

ESTUDO EXPERIMENTAL DA FORÇA CENTRÍPETA

ESTUDO EXPERIMENTAL DA FORÇA CENTRÍPETA TRABALHO PRÁTICO ESTUDO EXPERIMENTAL DA FORÇA CENTRÍPETA Objectivo Com este trabalho pretende-se determinar a força centrípeta necessária para manter uma massa em movimento circular uniforme e estudar

Leia mais

Trabalho prático nº 5 de Electrónica 2009/2010

Trabalho prático nº 5 de Electrónica 2009/2010 Trabalho prático nº 5 de Electrónica 29/21 Título: Circuito amplificador com um transístor em montagem de emissor comum (com e sem degenerescência do emissor). Sumário Proceder se á à montagem de um circuito

Leia mais

EQUIVALENTE ELÉCTRICO DO CALOR

EQUIVALENTE ELÉCTRICO DO CALOR EQUIVALENTE ELÉCTRICO DO CALOR 1. Resumo Neste trabalho, considerando que qualquer tipo de energia se pode transformar noutro, coloca-se em evidência que o calor é uma forma de energia estabelecendo uma

Leia mais

Técnicas de medida. Algumas considerações

Técnicas de medida. Algumas considerações Técnicas de medida Algumas considerações Divisão das grandezas a medir Dimensionais Físicas Eléctricas (DC, baixa e alta frequência) Outras (químicas, ópticas, analíticas e radiação) Tipos de medida Medida

Leia mais

2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão)

2.1 Translação, rotação e deformação da vizinhança elementar Variação relativa do comprimento (Extensão) Cap.. Deformação 1. Deslocamento. Gradiente de deformação.1 ranslação, rotação e deformação da vizinhança elementar 3. ensor de deformação de agrange 4. ensor das pequenas deformações 4.1 Caracter tensorial

Leia mais

Resistência elétrica de uma barra (prismática ou cilíndrica) de área A e comprimento L

Resistência elétrica de uma barra (prismática ou cilíndrica) de área A e comprimento L Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Física III Prof. Dr. Ricardo uiz Viana Referências bibliográficas: H. 28-4, 29-4, 29-6 S. 26-4, 27-2 T. 22-2 ula Resistores

Leia mais

Corrente contínua e Campo de Indução Magnética: CCB

Corrente contínua e Campo de Indução Magnética: CCB CCB 01 Corrente contínua e Campo de Indução Magnética: CCB Um condutor elétrico cilíndrico encontra-se disposto verticalmente em uma região do espaço, percorrido por uma intensidade de corrente Oersted

Leia mais

Olimpíadas de Física Prova Experimental B

Olimpíadas de Física Prova Experimental B Sociedade Portuguesa de Física Olimpíadas de Física 2009 Selecção para as provas internacionais Prova Experimental B 16/Maio/2009 Olimpíadas de Física 2009 Selecção para as provas internacionais Prova

Leia mais