Material Teórico - Módulo Porcentagem - Parte 1. Porcentagem. Oitavo Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M.

Tamanho: px
Começar a partir da página:

Download "Material Teórico - Módulo Porcentagem - Parte 1. Porcentagem. Oitavo Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M."

Transcrição

1 Matrial Tórico - Módulo Porcntagm - Part 1 Porcntagm Oitavo Ano Autor: Prof. Ulisss Lima Parnt Rvisor: Prof. Antonio Caminha M. Nto

2 1 Porcntagm Suponha qu, durant os anos d , as produçõs (m unidads d vículos) d duas fábricas d automóvis foram dadas d acordo com a tabla abaixo: Fábrica A B Obsrv qu a quantidad d vículos produzidos pla fábrica A m 2016 tv um aumnto d 200 unidads m rlação a 2015, nquanto qu a fábrica B tv um aumnto d 210unidads no msmo príodo. É claroqu, m númros absolutos, o crscimnto da fábrica B foi maior do quodafábricaa.entrtanto,sconsidramosarazãontr o aumntoda produção m 2016 o númrod vículos produzidos m 2015, trmos: Not ainda qu Fábrica Razão A B = = 7. As fraçõs 10, qu têm dnominador igual a, são chamadas fraçõs cntsimais, rprsntam, m cada caso, o crscimnto prcntual ou porcntual das produçõs d vículos nas fábricas A B, rspctivamnt. Altrnativamnt, podmos dizr qu tais fraçõs rprsntam, m cada caso, a porcntagm ou porcntagm do crscimnto das produçõs nas fábricas. Dss modo, podmos dizr qu, m trmos prcntuais, o crscimnto da produçãonafábricaafoi d10%(lê-sdz por cnto), na fábrica B foi d 7% (lê-s st por cnto). Esss númros fracionários nos prmitm afirmar qu, prcntualmnt, a produção d vículos crscu mais na fábrica A do qu na fábrica B. Uma outra forma d rprsntar um prcntual é através d um númro dcimal. No xmplo acima, tmos 7 Exmplo 1. Calcul: (a) 12% d 200. (b) 35% d % = 10 = 0,10 = 0,1 7% = 7 = 0,07. (c) 18% d 750. (d) 45,5% d Solução. (a) 12% d 200 = = 12 2 = 24. (b) 35% d 540 = = 10 = = 189. (c) 18% d 750 = = 10 = = 135. (d) 45,5% d 5000 = 45, = 45,5 50 = Exmplo 2. O salário dos profsors das scolas públicas d Ensino Médio d um crto stado ra d R$2600,00 no ano d 2014 tv uma aumnto prcntual d 6% m janiro d Calcul o valor do salário dos profsors após o aumnto. Solução. Inicialmnt, dvmos calcular o aumnto, qu foi d 6% sobr o valor do salário d 2014, ou sja, 6% Então, o valor do aumnto foi d = 6 26 = 156 rais. Portanto, o salário após o aumnto passou a sr R$2600,00+R$156,00= R$2756,00. Exmplo 3. Um rsrvatório com capacidad para l d água stava compltamnt chio. Dvido a um vazamnto, l prdu 15% do volum inicial, até qu o problma do vazamnto foi rsolvido. Calcul o volum d água qu rstou no rsrvatório após a prda com o vazamnto. Solução. Primiramnt, calculamos o volum d água prdido com o vazamnto, qu corrspondu a 15% do total d 17000l, ou sja, a = = 2550 litros. Dss modo, o volum rstant após a prda com o vazamnto passou a sr d 17000l 2550l = 14450l. Exmplo 4. As lojas Prço Justo Compra Crta vndm uma msma biciclta, da marca Pdalar, por R$ 1250, 00. Durant um fim d smana, a biciclta stava m ofrta m ambas as lojas. Na loja Prço Justo, a biciclta stava sndo vndida por R$ 1, 00, nquanto a loja Compra Crta stava concdndo um dsconto d 11% m todos os sus produtos. Em qual das lojas o dsconto ofrtado foi maior? 1 matmatica@obmp.org.br

3 Solução. A loja Prço Justo stava concdndo um dsconto d R$1250,00 R$1,00= R$150,00. Por outro lado, a Compra Crta stava ofrcndo um dsconto d 11% sobr o valor d R$1250,00, ou sja, = 11 12,50 = 137,50. Portanto, o maior dsconto foi o ofrcido pla loja Prço Justo. Exmplo 5. Em crto país, o valor do Imposto d Rnda mnsal pago plos trabalhadors formais obdc às sguints rgras: (i) Qum rcb salário d até $1500,00 é isnto. (ii) A fatia do salário ntr $1500,00 $3500,00 é tributada m 15%. (iii) A fatia do salário qu xcd $3500,00 é tributada m 25%. Calcul o valor d Imposto d Rnda d uma pssoa qu rcb: (a) $ 1200, 00. (b) $ 2900, 00. (c) $ 5688, 00. Solução. (a) O trabalhador qu rcb $ 1200, 00 é obviamnt isnto d Imposto d Rnda. (b) S uma pssoa rcb $2900,00, a fatia qu vai até $1500,00 é isnta d imposto. Logo, ssa pssoa dv pagar imposto d 15% sobr a difrnça $2900,00 $1500,00= $1400,00, ou sja, = = 210. Portanto, o imposto pago nst caso é d $210,00. (c) S o salário do trabalhador é $5688,00, l dv pagar 15% sobr a fatia acima d $1500,00 abaixo d $3500,00, mais 25% sobr a fatia acima d $3500,00 abaixo d $5688,00. Calculando sss valors, obtmos, rspctivamnt = = = = = 547. Portanto, o valor d Imposto d Rnda pago mnsalmnt por ss trabalhador é d $300,00+$547,00= $847,00. Exmplo 6. Todo mês, Frnando rsrva 30% da sua msada para o lanch na scola. Do rstant, l gasta 60% com a compra d gibis ainda lh rstam 84 rais. Qual o valor da msada do Frnando? Solução. Como não sabmos o valor da msada do Frnando, chamarmos ss valor d x. Plo qu foi dito no nunciado problma, Frnando rsrva 30% d x para as suas dspsas com o lanch na scola. Portanto, l fica com 70% d x para gastar com as dmais dspsas. Dss valor d 70% d x, l utiliza 60% para a compra d gibis. Logo, apósacomprados gibis, o prcntualda msadaqu lh rsta é 40% d 70% d x, o qu corrspond a 84 rais. Daí, tmos: x x = 84 = = 84 = 28x = 8400 = x = 300. Então, o valor da msada d Frnando é 300 rais. Exmplo 7. O prço do litro d gasolina m um dtrminado país ra $3,00 m Em janiro d 2016 ss prço sofru dois rajusts sucssivos d 10%. Qual o prço do litro d gasolina após os aumntos? Solução. Obsrv qu, após o primiro rajust, qu foi d 10%, o prço da gasolina passou a sr 3, ,00 = 3,00+0,30 = 3,30. Para o sgundo rajust, aplicamos o rajust d 10% m cima d $3,30, ou sja: 3, ,30 = 3,30+0,33 = 3,63. Portanto, dpois dos dois rajusts, o prço do litro d gasolina saltou para $3,63. Obsrvação 8. No xmplo 7, um modo comum (porém incorrto) d pnsar, é aplicar um rajust d 10%+10% = 20% sobr o valor d $3,00, o qu acarrtaria o prço d $3,60 para o litro d gasolina após os rajusts: 3, ,00 = 3,00+0,60 = 3,60. Exmplo 9. O salário do profssor João ra d 2500 rais, mas, dvido à cris conômica, sofru dois corts sucssivos d 10%, m janiro fvriro d Qual o salário d João após os corts? Solução. Aplicando o primiro cort d 10%, o salário passou a sr = = matmatica@obmp.org.br

4 Aplicando o sgundo cort, obtmos: = = Portanto, após os corts, o salário do profssor João passou a sr d 2025 rais. Obsrvação 10. D modo análogo ao qu foi discutido na Obsrvação 8, também no Exmplo 9 é incorrto aplicar d uma vz o cort d 10%+10% = 20% sobr o salário inicial do profssor João. Ralmnt, isso daria um salário d = = 2000 após os corts, qu é um valor incorrto. Assim: Rsumimos as obsrvaçõs 8 10 no quadro abaixo: A aplicação d porcntagns sucssivas a um crto total inicial não quival à aplicação da soma dssas porcntagns ao total inicial. Exmplo 11 (OBM ). Na população d uma spéci rara d 0 avs da florsta amazônica, 98% tinham cauda d cor vrd. Após uma mistriosa pidmia qu só matou part das avs com cauda vrd, ssa porcntagm caiu para 95%. Quantas avs foram liminadas com a pidmia? Solução. Ants da pidmia, havia 98 0 = 980 avs com cauda vrd, portanto, 20 avs qu não possuíam a cauda vrd. Após a pidmia, qu só matou avs da cauda vrd, o prcntual dssas avs caiu para 95% do total. Daí, as 20 avs qu não possuíam a cauda vrd passaram a rprsntar 5% do total d avs. Logo, s dnotamos por x o total d avs sobrvivnts após a pidmia, obtmos: 5 5x x = 20 = = 20 = x = 400. Concluímos qu morrram = 600 avs durant a pidmia. Exmplo 12 (OBM ). Gabril rsolvu uma prova d Matmática com qustõs d Álgbra, Gomtria Lógica. Após chcar o rsultado da prova, Gabril obsrvou qu rspondu corrtamnt 50% das qustõs d Álgbra, 70% das qustõs d Gomtria 80% das qustõs d Lógica. Gabril obsrvou, também, qu rspondu corrtamnt 62% das qustõs d Álgbra ou Lógica 74% das qustõs d Gomtria ou Lógica. Qual a porcntagm d qustõs corrtas na prova d Gabril? Solução. Dnotmos por A, G L, rspctivamnt, a quantidad d qustõs d Álgbra, Gomtria Lógica da prova, por a, g l a quantidad d qustõs rspondidas d modo corrto por Gabril m cada uma dssas três áras. D acordo com o nunciado no problma, tmos: a = 50 A = a = 0,5A, g = 70 G = g = 0,7G l = 80 L = l = 0,8L. Ainda d acordo com o nunciado, tmos: a+l = 62 (A+L) = a+l = 0,62(A+L) g +l = 74 (G+L) = g +l = 0,74(G+L). Substituindoosvalorsda,globtidosnastrêsprimiras quaçõs, obtmos: 0,5A+0,8L = 0,62(A+L) = 0,12A = 0,18L = A = 0,18L 0,12 = 3L 2 0,7G+0,8L = 0,74(G+L) = 0,04G= 0,06L = G = 0,06L 0,04 = 3L 2. Daí, sgu qu a+g +l A+G+L = 0,5A+0,7G+0,8L A+G+L 0,5 3L = 2 +0,7 3L 2 +0,8L 3L 2 + 3L 2 +L = 0,75L+1,05L+0,8L 1,5L+1,5L+L = 2,6L 4L = 0,65 = 65. ComoA+G+Léototald qustõsnaprovaa+g+l é o total d qustõs rspondidas corrtamnt, concluímos qu o prcntual d qustõs rspondidas corrtamnt por Gabril foi d 65%. Exmplo 13(OBM-1999). Em um aquário há pixs amarlos vrmlhos. Sab-s qu 90% são amarlos 10% são vrmlhos. Uma mistriosa donça matou muitos pixs amarlos, mas nnhum vrmlho. Dpois qu a donça foi controlada, vrificou-s qu, no aquário, 75% dos pixs vivos ram amarlos. Aproximadamnt, qu porcntagm dos pixs amarlos morrram? 3 matmatica@obmp.org.br

5 (a) 15% (b) 37% (c) 50% (d) 67% () 84% Solução. S dnotamos por x a quantidad total d pixs no aquário ants das morts causadas pla donça mistriosa, por y a quantidad d pixs após as morts, tmos qu 0,1x ram pixs vrmlhos (o qu corrspond a 10% d x), ss msmo valor corrspond a 0,25y, pois não morrram pixs vrmlhos ficamos com 25% d pixs vrmlhos após a mortandad. Então: 0,1x = 0,25y = y x = 0,1 0,25 = 2 5. O prcntual d pixs amarlos qu sobrvivram é o quocint ntr 75% d y 90% d x, qu são as quantidads d pixs amarlos no aquário dpois ants das morts, rspctivamnt: 75y 90x = y x = = 0,33. Portanto, aproximadamnt 33% dos pixs amarlos sobrvivu à donça, dond concluímos qu aproximadamnt 67% dos pixs dss tipo morrram. Exmplo 14 (OBMEP ). Em uma fsta, o númro d mulhrs ra quatro vzs o númro d homns. Após a chgada d cinco casais, a porcntagm d homns na fsta passou a sr 26%. (a) Qual ra o prcntual d homns na fsta ants da chgada dos casais? (b) Quantos homns quantas mulhrs havia na fsta dpois da chgada dos casais? Solução. (a) Dnotmos por m o númro d mulhrs por h o númro d homns ants da chgada dos cinco casais. Como o númro d mulhrs ra quatro vzs o númro dos homns, tmos m = 4h. Dst modo, a porcntagm d homns ants da chgada dos cinco casais ra h h+m = ou sja, ra igual a 20%. h h+4h = h 5h = 1 5 = 20, (b) Após a chgada dos 5 casais, o númro d homns passou a sr h+5 o d mulhrs passou a sr m+5. Portanto, o prcntual d homns na fsta passou a sr h+5 (h+5)+(m+5) = h+5 (h+5)+(4h+5) = h+5 5h+10. Como a porcntagm d homns na fsta passou a sr 26%, tmos: h+5 5h+10 = 26 = 13 = 50(h+5) = 13(5h+10) 50 = 50h+250 = 65h+130 = 15h = 120 = h = 8. Assim, ants da chgada dos cinco casais, stavam na fsta 8 homns 32 mulhrs, uma vz qu o númro d mulhrs ra 4 vzs o númro d homns. Portanto, dpois da chgada dos cinco casais, havia 8+5 = 13 homns 32+5 = 37 mulhrs na fsta. Exmplo 15. Calcul o ganho prcntual ral d um trabalhador qu tv um aumnto salarial d 35% dpois d um ano com inflação d 20%. Solução. Para fixar as idias, suponha qu o salário do trabalhador ra 5000 rais ants do aumnto, qu ss valor comprass 20 cstas básicas a um prço unitário d 250 rais. Aplicando a corrção d 35% ao salário 20% ao prço dacstabásica, concluímosquovalordo novosaláriosrá = = 6750, nquanto o novo prço da csta básica srá = = 300. Com os novos valors, o trabalhador pod comprar = 22,5 cstas básicas, ant as 20 qu l consguia comprar ants das corrçõs. Portanto, o ganho prcntual ral do trabalhador foi d ou sja, 12,5%. 22, = 2,5 20 = 0,125, Obsrv qu, no xmplo antrior, o ganho ral é mnor qu o valor sprado d 35% 20% = 15%, o qu é dvido ao fito inflacionário. Obsrv também qu o artifício d utilizar um valor arbitrário para a csta básica dcorr do fato d qu o ganho salarial ral é mdido m rlação ao aumnto do podr d compra do trabalhador. Assim, uma outra forma d rsolvr o xmplo antrior é obsrvar qu: 4 matmatica@obmp.org.br

6 (i) após o ganho nominal d 35%, o salário passou a sr d 6750 rais; (ii) o fito dos 20% d inflação ao longo do ano lvou um gasto mnsal d 5000 rais para um gasto mnsal d = 6000 rais. Empalavras,oitm(ii) dizqu, aofinaldoano, osalário do trabalhador dvria sr d 6000 rais, a fim d qu su podr d compra foss o msmo daqul dos 5000 rais no início do ano. Portanto, o ganho prcntual ral do trabalhador pod sr calculado como o quocint = 1 8 = 12,5%. Dicas para o Profssor Rcomndamos qu sjam utilizadas três sssõs d 50min para aprsntar todo o contúdo dst matrial. Rcomndamos, ainda, qu sja dada uma atnção spcial aos problmas qu tratam d aumntos dscontos prcntuais sucssivos. Também é important xplicar com todo o cuidado os problmas qu aprsntam mais d uma idia m sua solução, ou sja, aquls qu não têm uma solução imdiata, a partir do concito d porcntagm. Em particular, rcomndamos qu sja rsrvado um tmpo maior para a xplicacão dos problmas 11, 12, Sugstõs d Litura Complmntar 1. G. Izzi, S. Hazzan D. M. Dgnszajn. Os Fundamntos da Matmática Elmntar, Volum 11: Matmática Comrcial, Matmática Financira Estatística Dscritiva. São Paulo, Atual Editora, matmatica@obmp.org.br

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano

Material Teórico - Módulo Equações e Sistemas de Equações Fracionárias. Sistemas de Equações Fracionárias. Oitavo Ano Matrial Tórico - Módulo Equaçõs Sistmas d Equaçõs Fracionárias Sistmas d Equaçõs Fracionárias Oitavo Ano Autor: Prof Ulisss Lima Parnt Rvisor: Prof Antonio Caminha M Nto Sistmas d quaçõs fracionárias Nssa

Leia mais

ROTEIRO DE RECUPERAÇÃO 1 a ETAPA MATEMÁTICA 1 a SÉRIE

ROTEIRO DE RECUPERAÇÃO 1 a ETAPA MATEMÁTICA 1 a SÉRIE ROTEIRO DE RECUPERAÇÃO 1 a ETAPA MATEMÁTICA 1 a SÉRIE ASSUNTO: COJUNTOS DOS NATURAIS, PRODUTOS NOTÁVEIS, FATORAÇÃO, POTENCIAÇÃO, RADICIAÇÃO, MMC, MDC E DIVISIBILIDADE. Lista d Ercícios 1) Simplificando-s

Leia mais

Material Teórico - Módulo de Geometria Anaĺıtica 2. Círculos. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Anaĺıtica 2. Círculos. Terceiro Ano - Médio Matrial Tórico - Módulo d Gomtria Anaĺıtica Círculos Trciro Ano - Médio Autor: Prof. Anglo Papa Nto Rvisor: Prof. Antonio Caminha M. Nto 9 d julho d 018 1 Equação rduzida d um círculo Considrmos um ponto

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Exercícios Sobre Vetores. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Exercícios Sobre Vetores. Terceiro Ano - Médio Matrial Tórico - Módulo: Vtors m R R Exrcícios Sobr Vtors Trciro Ano - Médio Autor: Prof Anglo Papa Nto Rvisor: Prof Antonio Caminha M Nto 1 Exrcícios sobr vtors Nsta aula, discutimos alguns xrcícios sobr

Leia mais

RESOLUÇÃO. Revisão 03 ( ) ( ) ( ) ( ) 0,8 J= t ,3 milhões de toneladas é aproximadamente. mmc 12,20,18 = 180

RESOLUÇÃO. Revisão 03 ( ) ( ) ( ) ( ) 0,8 J= t ,3 milhões de toneladas é aproximadamente. mmc 12,20,18 = 180 Rvisão 03 RESOLUÇÃO Rsposta da qustão : Sndo XA = AB = K = HI = u, sgu qu 3 Y = X+ 0u = + 0u 6 u =. 5 Rsposta da qustão 6: Considr o diagrama, m qu U é o conjunto univrso do grupo d tradutors, I é o conjunto

Leia mais

Material Teórico - Módulo Problemas Envolvendo Áreas. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M.

Material Teórico - Módulo Problemas Envolvendo Áreas. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. atrial Tórico - ódulo roblmas Envolvndo Áras roblmas Envolvndo Áras - art 1 ono no utor: rof. Ulisss Lima arnt Rvisor: rof. ntonio aminha. to 28 d janiro d 2018 1 roblmas nvolvndo áras sta aula, aprsntarmos

Leia mais

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA

NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA NÚMEROS RACIONAIS E SUA REPRESEN- TAÇÃO FRACIONÁRIA. FRAÇÕES Com crtza todos nós já ouvimos frass como: d xícara d açúcar; d frmnto m pó tc. Basta pgar uma rcita,d bolo qu lá stão númros como sts. Ests

Leia mais

Problemas Numéricos: 1) Desde que a taxa natural de desemprego é 0.06, π = π e 2 (u 0.06), então u 0.06 = 0.5(π e π), ou u =

Problemas Numéricos: 1) Desde que a taxa natural de desemprego é 0.06, π = π e 2 (u 0.06), então u 0.06 = 0.5(π e π), ou u = Capitulo 12 (ABD) Prguntas para rvisão: 5) Os formuladors d políticas dsjam mantr a inflação baixa porqu a inflação impõ psados custos sobr a conomia. Os custos da inflação antcipado inclum custos d mnu,

Leia mais

Material Teórico - Módulo de Função Logarítmica. Função logarítmica e propriedades - Parte 1. Primeiro Ano - Ensino Médio

Material Teórico - Módulo de Função Logarítmica. Função logarítmica e propriedades - Parte 1. Primeiro Ano - Ensino Médio Matrial Tórico - Módulo d Função Logarítmica Função logarítmica propridads - Part 1 Primiro Ano - Ensino Médio Autor: Prof. Anglo Papa Nto Rvisor: Prof. Antonio Caminha M. Nto 1 Motivação para o studo

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

Material Teórico - Círculo Trigonométrico. Secante, cossecante e cotangente. Primeiro Ano do Ensino Médio

Material Teórico - Círculo Trigonométrico. Secante, cossecante e cotangente. Primeiro Ano do Ensino Médio Matrial Tórico - Círculo Trigonométrico Scant, cosscant cotangnt Primiro Ano do Ensino Médio Autor: Prof. Fabrício Siquira Bnvids Rvisor: Prof. Antonio Caminha M. Nto 5 d dzmbro d 08 Invrsas numéricas:

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

10 Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 21 a 24 de outubro, 2013

10 Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 21 a 24 de outubro, 2013 10 Encontro d Ensino, Psquisa Extnsão, Prsidnt Prudnt, 21 a 24 d outubro, 2013 DIFERENCIAÇÃO COMPLEXA E AS CONDIÇÕES DE CAUCHY-RIEMANN Pâmla Catarina d Sousa Brandão1, Frnando Prira Sousa2 1 Aluna do Curso

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC00 MICROECONOMIA II PRIMEIRA PROVA (0) () Para cada uma das funçõs d produção

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA Matmática a QUESTÃO IME-007/008 Considrando qu podmos tr csto sm bola, o númro d maniras d distribuir as bolas nos três cstos é igual ao númro d soluçõs intiras não-ngativas da quação: x + y + z = n, na

Leia mais

Aula Expressão do produto misto em coordenadas

Aula Expressão do produto misto em coordenadas Aula 15 Nsta aula vamos xprssar o produto misto m trmos d coordnadas, analisar as propridads dcorrnts dssa xprssão fazr algumas aplicaçõs intrssants dos produtos vtorial misto. 1. Exprssão do produto misto

Leia mais

COLÉGIO OBJETIVO JÚNIOR

COLÉGIO OBJETIVO JÚNIOR COLÉGIO OBJETIVO JÚNIOR NOME: N. o : DATA: / /01 FOLHETO DE MATEMÁTICA (V.C. E R.V.) 6. o ANO Est folhto é um rotiro d studo para você rcuprar o contúdo trabalhado m 01. Como l vai srvir d bas para você

Leia mais

RI406 - Análise Macroeconômica

RI406 - Análise Macroeconômica Fdral Univrsity of Roraima, Brazil From th SlctdWorks of Elói Martins Snhoras Fall Novmbr 18, 2008 RI406 - Anális Macroconômica Eloi Martins Snhoras Availabl at: http://works.bprss.com/loi/54/ Anális Macroconômica

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares - Parte 2

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares - Parte 2 Matrial Tórico - Módulo Triângulo tângulo, Lis dos ossnos dos Snos, Poĺıgonos gulars laçõs Métricas m Poĺıgonos gulars - Part Nono no utor: Prof. Ulisss Lima Parnt visor: Prof. ntonio aminha M. Nto 3 d

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. voce

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. voce COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES RESOLUÇÃO A1 Primiramnt, dividimos a figura B m dois triângulos B1 B2, um altura d 21 m bas d 3 m outro altura bas mdindo 15 m. Mosaico 1: Tmos qu os dois triângulos

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Rsoluçõs d Exrcícios MATEMÁTICA II Conhc Capítulo 07 Funçõs Equaçõs Exponnciais; Funçõs Equaçõs Logarítmicas 01 A) log 2 16 = log 2 2 4 = 4 log 2 2 = 4 B) 64 = 2 6 = 2 6 = 6 log 2 2 = 4 C) 0,125 = = 2

Leia mais

Enunciados equivalentes

Enunciados equivalentes Lógica para Ciência da Computação I Lógica Matmática Txto 6 Enunciados quivalnts Sumário 1 Equivalência d nunciados 2 1.1 Obsrvaçõs................................ 5 1.2 Exrcícios rsolvidos...........................

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia REC2010 MICROECONOMIA II SEGUNDA PROVA (2011) ROBERTO GUENA (1) Considr uma indústria m concorrência prfita formada por mprsas idênticas. Para produzir, cada mprsa dv arcar com um custo quas fixo F = 1.

Leia mais

Conteúdos Exame Final e Avaliação Especial 2017

Conteúdos Exame Final e Avaliação Especial 2017 Componnt Curricular: Matmática Ano: 7º ANO Turma: 17 D. Profssora: Frnanda Schldr Hamrski Contúdos Exam Final Avaliação Espcial 2017 1. Númros Racionais 2. Ára prímtro d figuras planas 3. Ára do círculo

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 0 Em algum momnto da sua vida você dcorou a tabuada (ou boa part dla). Como você mmorizou qu x 6 = 0, não prcisa fazr st cálculo todas as vzs qu s dpara com l. Além

Leia mais

S = evento em que uma pessoa apresente o conjunto de sintomas;

S = evento em que uma pessoa apresente o conjunto de sintomas; robabilidad Estatística I ntonio Roqu ula 15 Rgra d ays Considrmos o sguint problma: ab-s qu a taxa d ocorrência d uma crta donça m uma população é d 2 %, ou sja, o númro d pssoas da população com a donça

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce

COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES. com. e voce COLEÇÃO DARLAN MOUTINHO VOL. 04 RESOLUÇÕES voc m o c voc RESOLUÇÃO voc A1 A4 (ABCD) = AB.BC AB.2 = 6 AB = 3 cm (BCFE) = BC.BE 2.BE = 10 BE = 5 cm Um dos lados vai tr a mdida 10-2x o outro 8-2x. A altura

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

ANÁLISE CUSTO - VOLUME - RESULTADOS

ANÁLISE CUSTO - VOLUME - RESULTADOS ANÁLISE CUSTO - VOLUME - RESULTADOS 1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas qustõs

Leia mais

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS

VI - ANÁLISE CUSTO - VOLUME - RESULTADOS VI - ANÁLISE CUSTO - VOLUME - RESULTADOS 6.1 Introdução ao tma Exist todo o intrss na abordagm dst tma, pois prmit a rsolução d um conjunto d situaçõs qu s aprsntam rgularmnt na vida das organizaçõs. Estas

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES COLEÇÃO DRLN MOUTINHO VOL. 01 RESOLUÇÕES PÁGIN 42 39 LETR C Sjam as staçõs, B C, cujos lmntos são as pssoas qu scutavam, plo mnos, uma das staçõs, B ou C. Considr o diagrama abaixo: B 31500 17000 7500

Leia mais

Exercícios de equilíbrio geral

Exercícios de equilíbrio geral Exrcícios d quilíbrio gral Robrto Guna d Olivira 7 d abril d 05 Qustõs Qustão Dtrmin a curva d contrato d uma conomia d troca com dois bns, bm bm, dois indivíduos, A B, sabndo qu a dotação inicial total

Leia mais

III Encontro de Educação, Ciência e Tecnologia

III Encontro de Educação, Ciência e Tecnologia Ára d Publicação: Matmática UMA MANEIRA SIMPLES DE DETERMINAR TODOS OS TERNOS PITAGÓRICOS SILVA, Rodrigo M. F. da 1 ; SILVA, Lucas da² ; FILHO, Danil Cordiro d Morais ² 1 UFCG/CCT/UAMAT/Voluntário PET-

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão.

a) (0.2 v) Justifique que a sucessão é uma progressão aritmética e indique o valor da razão. MatPrp / Matmática Prparatória () unidad tra curricular / E-Fólio B 8 dzmbro a janiro Critérios d corrção orintaçõs d rsposta Qustão ( val) Considr a sucssão d númros rais dfinida por a) ( v) Justifiqu

Leia mais

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 8 Pro. Patricia Maria Bortolon, D. Sc. Tsts Qui Quadrado Objtivos da Aula 8 Nsta aula, você aprndrá: Como quando utilizar o tst qui-quadrado para tablas d contingência Como utilizar

Leia mais

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre

Matemática: Lista de exercícios 2º Ano do Ensino Médio Período: 1º Bimestre Matmática: Lista d xrcícios 2º Ano do Ensino Médio Príodo: 1º Bimstr Qustão 1. Três amigos saíram juntos para comr no sábado no domingo. As tablas a sguir rsumm quantas garrafas d rfrigrant cada um consumiu

Leia mais

a que responda ligado amos 01. (Darlan Moutinho 2018) A pegada ense Fiq AULA F P.1. CONHECIMENTOS ALGÉBRICOS

a que responda ligado amos 01. (Darlan Moutinho 2018) A pegada ense Fiq AULA F P.1. CONHECIMENTOS ALGÉBRICOS AULA 03 CONHECIMENTOS ALGÉBRICOS Fiq u ligado smpr, dtrminou qu, considrando só a produção dos dois ingrdints dss lanch (o pão o quijo), o consumo d água foi d 830 litros. Sabndo qu, m média, a pgada hídrica

Leia mais

Polos Olímpicos de Treinamento. Aula 9. Curso de Álgebra - Nível 3. Somas de Newton. Prof. Cícero Thiago / Prof. Marcelo Mendes

Polos Olímpicos de Treinamento. Aula 9. Curso de Álgebra - Nível 3. Somas de Newton. Prof. Cícero Thiago / Prof. Marcelo Mendes Polos Olímpicos d Trinamnto Curso d Álgbra - Nívl 3 Prof Cícro Thiago / Prof Marclo Aula 9 Somas d Nwton Chamarmos d somas d Nwton as somas das k - ésimas potências das raízs d um polinômio Iniciarmos

Leia mais

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0.

3º) Equação do tipo = f ( y) dx Solução: 2. dy dx. 2 =. Integrando ambos os membros, dx. dx dx dy dx dy. vem: Ex: Resolva a equação 6x + 7 = 0. 0 d º) Equação do tipo: f ) d Solução: d d d d f ) f ) d f ) d. Intgrando ambos os mmbros d d d d vm: d d f ) d C d [ f ) d C ]d [ f ) d C] d C d E: Rsolva a quação 6 7 0 d d d º) Equação do tipo f ) :

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL FARROUPILHA CAMPUS ALEGRETE PIBID PROPOSTA DIDÁTICA 1. Dados d Idntificação 1.1 Nom do bolsista: Marily Rodrigus Angr 1.2 Público alvo: alunos do 8 9 ano. 1.3 Duração: 2 horas. 1.4 Contúdo dsnvolvido: Smlhança d triângulos; Noçõs d Gomtria

Leia mais

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004 1 a Prova d F-18 Turmas do Noturno Sgundo smstr d 004 18/10/004 1) Um carro s dsloca m uma avnida sgundo a quação x(t) = 0t - 5t, ond x é dado m m t m s. a) Calcul a vlocidad instantâna do carro para os

Leia mais

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2

Desse modo, sendo E a energia de ligação de um núcleo formado por Z prótons e (A Z) nêutrons, de massa M(Z,A), pode-se escrever: E 2 Enrgia d Ligação Nuclar Dado um núclo qualqur, a nrgia librada quando da sua formação a partir dos sus prótons nêutrons sparados d uma distância infinita é o qu s chama d nrgia d ligação d tal núclo. Dito

Leia mais

Matemática C Extensivo V. 7

Matemática C Extensivo V. 7 Matmática C Extnsivo V 7 Exrcícios 0) 0 0) D 0 Falsa B A 4 0 6 0 4 6 4 6 0 Vrdadira A + B 0 0 + 4 6 7 04 Vrdadira A B 0 0 4 6 6 4 08 Vrdadira dt ( A) dt (A) 9 ( ) 9 dt (B) 9 0 6 Vrdadira A A 0 0 0 0 0

Leia mais

FÍSICA COMENTÁRIO DA PROVA DE FÍSICA

FÍSICA COMENTÁRIO DA PROVA DE FÍSICA COMENTÁIO DA POVA DE FÍSICA A prova d conhcimntos spcíficos d Física da UFP 009/10 tv boa distribuição d assuntos, dntro do qu é possívl cobrar m apnas 10 qustõs. Quanto ao nívl, classificamos ssa prova

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP) Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas

Leia mais

INTRODUÇÃO À ESTATÍSTICA

INTRODUÇÃO À ESTATÍSTICA INTRODUÇÃO À ESTATÍSTICA ERRATA (capítulos 1 a 6 CAP 1 INTRODUÇÃO. DADOS ESTATÍSTICOS Bnto Murtira Carlos Silva Ribiro João Andrad Silva Carlos Pimnta Pág. 10 O xmplo 1.10 trmina a sguir ao quadro 1.7,

Leia mais

PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: 13 / 06 / matricial AX M em que: ) Sejam A =

PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: 13 / 06 / matricial AX M em que: ) Sejam A = ALUNO (A) : PROFESSOR (A): ANDRÉ (MAL) DISCIPLINA: MATEMÁTICA DATA: / 06 / 06 ÁLGEBRA LINEAR: MATRIZES, DETERMINANTES E SISTEMAS. MATRIZES 0-0) Dada a matriz, B, calcul a + -7 0 a a + a. 0) Escrva a matriz

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Probabilidads Estatística o Tst Tst A 2 o smstr 2004/05 Duração: hora 0 minutos 0/04/005 9 horas RESOLUÇÃO ABREVIADA. Acontcimnto Probabilidad IP incêndio d pqunas proporçõs P (IP ) 0.75 IP incêndio d

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hwltt-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ano: 2016 Sumário INTRODUÇÃO AO PLANO CARTESIANO 2 PRODUTO CARTESIANO 2 Númro d lmntos d 2 Rprsntaçõs

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais Matmática O torma da função invrsa para funçõs d várias variávis rais a valors vtoriais Vivian Rodrigus Lal Psquisadora Prof Dr David Pirs Dias Orintador Rsumo Est artigo tm como objtivo aprsntar o Torma

Leia mais

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hwltt-Packard CONJUNTOS NUMÉRICOS Aulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz Ramos Ano: 206 Sumário CONJUNTOS NUMÉRICOS 2 Conjunto dos númros Naturais 2 Conjunto dos númros Intiros 2 Conjunto

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9

EXPRESSÕES LÓGICAS. 9.1 Lógica proposicional AULA 9 AULA 9 EXPRESSÕES LÓGICAS 9.1 Lógica proposicional Lógica é o studo do raciocínio 1. Em particular, utilizamos lógica quando dsjamos dtrminar s um dado raciocínio stá corrto. Nsta disciplina, introduzimos

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

MAE Introdução à Probabilidade e Estatística I Gabarito Lista de Exercícios 3

MAE Introdução à Probabilidade e Estatística I Gabarito Lista de Exercícios 3 MAE 0219 - Introdução à Probabilidad Estatística I Gabarito Lista d Exrcícios 3 Sgundo Smstr d 2017 Obsrvação: Nos cálculos abaixo, considramos aproximaçõs por duas casas dcimais. EXERCÍCIO 1. a. Construa

Leia mais

Exame de Matemática Página 1 de 6. obtém-se: 2 C.

Exame de Matemática Página 1 de 6. obtém-se: 2 C. Eam d Matmática -7 Página d 6. Simplificando a prssão 9 ( ) 6 obtém-s: 6.. O raio r = m d uma circunfrência foi aumntado m 5%. Qual foi o aumnto prcntual da ára da sgunda circunfrência m comparação com

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo

6. Moeda, Preços e Taxa de Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6. Moda, Prços Taxa d Câmbio no Longo Prazo 6.1. Introdução 6.3. Taxas d Câmbio ominais Rais 6.4. O Princípio da Paridad dos Podrs d Compra Burda & Wyplosz,

Leia mais

CAPÍTULO 12 REGRA DA CADEIA

CAPÍTULO 12 REGRA DA CADEIA CAPÍTULO 12 REGRA DA CADEIA 121 Introdução Em aulas passadas, aprndmos a rgra da cadia para o caso particular m qu s faz a composição ntr uma função scalar d várias variávis f uma função vtorial d uma

Leia mais

Questões para o concurso de professores Colégio Pedro II

Questões para o concurso de professores Colégio Pedro II Qustõs para o concurso d profssors Colégio Pdro II Profs Marilis, Andrzinho Fábio Prova Discursiva 1ª QUESTÃO Jhosy viaja com sua sposa, Paty, sua filha filho para a Rgião dos Lagos para curtir um friadão

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE ENTRE

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo.

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo. Mtril Tórico - Módulo Triângulo Rtângulo, Li dos Snos ossnos, Poĺıgonos Rgulrs Rzõs Trigonométrics no Triângulo Rtângulo Nono no utor: Prof Ulisss Lim Prnt Rvisor: Prof ntonio min M Nto Portl d OMEP 1

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

Derivada Escola Naval

Derivada Escola Naval Drivada Escola Naval EN A drivada f () da função f () = l og é: l n (B) 0 l n (E) / l n EN S tm-s qu: f () = s s 0 s < < 0 s < I - f () só não é drivávl para =, = 0 = II - f () só não é contínua para =

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

Resolução comentada de Estatística - ICMS/RJ Prova Amarela

Resolução comentada de Estatística - ICMS/RJ Prova Amarela ICMS-RJ 007: prova d Estatística comntada Rsolução comntada d Estatística - ICMS/RJ - 007 - Prova Amarla 9. Uma amostra d 00 srvidors d uma rpartição aprsntou média salarial d R$.700,00 com uma disprsão

Leia mais

estados. Os estados são influenciados por seus próprios valores passados x

estados. Os estados são influenciados por seus próprios valores passados x 3 Filtro d Kalman Criado por Rudolph E. Kalman [BROWN97] m 1960, o filtro d Kalman (FK) foi dsnvolvido inicialmnt como uma solução rcursiva para filtragm linar d dados discrtos. Para isto, utiliza quaçõs

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício

OFICINA 9-2ºSementre / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Professores: Edu Vicente / Gabriela / Ulício OFICINA 9-2ºSmntr / MATEMÁTICA 3ª SÉRIE / QUESTÕES TIPENEM Profssors: Edu Vicnt / Gabrila / Ulício 1. (Enm 2012) As curvas d ofrta d dmanda d um produto rprsntam, rspctivamnt, as quantidads qu vnddors

Leia mais

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA

UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DEPARTAMENTO DE ECONOMIA UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISRAÇÃO E CONABILIDADE DEPARAMENO DE ECONOMIA EAE 26 Macroconomia I 1º Smstr d 217 Profssor Frnando Rugitsky Lista d Exrcícios 4 [1] Considr uma macroconomia

Leia mais

Módulo de Probabilidade Condicional. Probabilidade Condicional. 2 a série E.M.

Módulo de Probabilidade Condicional. Probabilidade Condicional. 2 a série E.M. Módulo d Probabilidad Condicional Probabilidad Condicional. a séri E.M. Módulo d Probabilidad Condicional Probabilidad Condicional Exrcícios Introdutórios Exrcício. Qual a probabilidad d tirarmos dois

Leia mais

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6 Introdução ao Soluçõs dos Exrcícios Propostos Capítulo 6 1. Dadas as squências x[n] abaixo com sus rspctivos comprimntos, ncontr as transformadas discrtas d Fourir: a x[n] = n, para n < 4 X[] = 6 X[1]

Leia mais

Externalidades 1 Introdução

Externalidades 1 Introdução Extrnalidads 1 Introdução Há várias maniras altrnativas d s d nir xtrnalidads. Considrmos algumas dlas. D nição 1: Dizmos qu xist xtrnalidad ou fito xtrno quando as açõs d um agnt aftam dirtamnt as possibilidads

Leia mais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais UFRGS Instituto d Matmática DMPA - Dpto. d Matmática Pura Aplicada MAT 0 353 Cálculo Gomtria Analítica I A Gabarito da a PROVA fila A 5 d novmbro d 005 Qustão (,5 pontos Vrifiqu s a função f dada abaixo

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e

Fun»c~oesexponenciaiselogar ³tmicas. Uma revis~ao e o n umero e Aula 9 Fun»c~osponnciaislogar ³tmicas. Uma rvis~ao o n umro Nsta aula farmos uma pquna rvis~ao das fun»c~os f() =a g() =log a, sndo a uma constant ral, a>0 a 6=. Farmos ainda uma aprsnta»c~ao do n umro,

Leia mais

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Fadiga dos Matriais Mtálicos Prof. Carlos Baptista Cap. 4 PROPAGAÇÃO DE TRINCAS POR FADIGA LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Qualqur solução do campo d tnsõs para um dado problma m lasticidad

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES

TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES TÓPICOS DE MATEMÁTICA PROF.: PATRÍCIA ALVES 33 MATRIZES 1. Dê o tipo d cada uma das sguints prtncm às diagonais principais matrizs: scundárias d A. 1 3 a) A 7 2 7. Qual é o lmnto a 46 da matriz i j 2 j

Leia mais

Algumas distribuições de variáveis aleatórias discretas importantes:

Algumas distribuições de variáveis aleatórias discretas importantes: Algumas distribuiçõs d variávis alatórias discrtas importants: Distribuição Uniform Discrta Enquadram-s aqui as distribuiçõs m qu os possívis valors da variávl alatória tnham todos a msma probabilidad

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

O emprego da proporção na resolução de problemas

O emprego da proporção na resolução de problemas Proporção O mprgo da proporção na rsolução d problmas Vamos aprndr agora a rsolvr problmas utilizando a proporção. Considr o sguint problma Uma vara d 0 cm fincada vrticalmnt no solo produz numa dtrminada

Leia mais

Conteúdo Programático

Conteúdo Programático Toria Macroconômica I Prof. Andrson Litaiff Prof. Salomão Nvs 2 Contúdo Programático 3ª Avaliação Rfinamntos do modlo IS-LM Taxas d juros nominais rais Expctativas nas dcisõs d consumo d invstimntos Expctativas

Leia mais

[Ano] Ciências Econômicas e Administrativas Produção e Custos

[Ano] Ciências Econômicas e Administrativas Produção e Custos [Ano] Ciências Econômicas Unidad: Ciências Econômicas Unidad: Colocar o nom da Ciências Econômicas MATERIAL TEÓRICO Rsponsávl plo Contúdo: Profa. Ms. Andrssa Guimarãs Rgo Rvisão Txtual: Profa. Ms. Alssandra

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

CONCURSO PÚBLICO CONCURSO PÚBLICO GRUPO MAGISTÉRIO GRUPO MAGISTÉRIO MATEMÁTICA 14/MAIO/2006 MATEMÁTICA. Nome CPF. Assinatura _. _.

CONCURSO PÚBLICO CONCURSO PÚBLICO GRUPO MAGISTÉRIO GRUPO MAGISTÉRIO MATEMÁTICA 14/MAIO/2006 MATEMÁTICA. Nome CPF. Assinatura _. _. CONCURSO PÚBLICO MATEMÁTICA GRUPO MAGISTÉRIO Rsrvado ao CEFET-RN 4/MAIO/6 Us apnas canta sfrográfica azul ou prta. Escrva o su nom o númro do su CPF no spaço indicado nsta folha. Confira, com máima atnção,

Leia mais