Mecânica Clássica. (Notas de Aula) MÓDULO 4 (Dinâmica 1)

Tamanho: px
Começar a partir da página:

Download "Mecânica Clássica. (Notas de Aula) MÓDULO 4 (Dinâmica 1)"

Transcrição

1 UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS COORDENAÇÃO DO CURSO LICENCIATURA EM FÍSICA - MODALIDADE A DISTÂNCIA- Mecânica Clássica (Notas de Aula) MÓDULO 4 (Dinâmica 1) 2015

2 A dinâmica é o estudo do movimento sob à ação de uma força. Os princípios da dinâmica estão associados as leis de Newton, que descrevem o movimento e suas causas. Para entendermos as leis de Newton é necessário compreender os conceitos de força e massa, a partir de situações realísticas que proporciona um entendimento razoável desta grandezas. A força é uma grandeza vetorial que representa a intensidade da interação entre dois corpos. Para um estudo macroscópico é possível ter a noção de força associada à algumas aplicações cotidianas, tais como: o empurrar de uma caixa, levantamento de um objeto... A massa de um corpo está associada as propriedades do movimento: aceleração e inércia (capacidade do corpo de se opor ao movimento). 1. LEIS DE NEWTON Estudaremos as leis de Newton aplicadas a um conceito de massa que considera um objeto, que se desloca no espaço, sem levar em conta suas dimensões. Esta massa é definida como partícula ou massa pontual. 1a - Um corpo não altera seu estado de repouso ou movimento uniforme, exceto pela atuação de uma força externa. 2 a - A força resultante 𝐅, sobre a partícula é igual ao produto da sua massa m pela aceleração a. 𝐅 = 𝑚𝐚 (1) onde F é soma vetorial de todas forças que agem na partícula e a é a aceleração da partícula, podendo também a equação (1) ser representada de forma equivalente, por meio da velocidade e vetor posição 𝐅 = 𝑚𝐯 (2) 2

3 𝐅 = 𝑚𝐫 (3) 𝐅 𝐅 = 𝐅 + 𝐅 + + 𝐅 𝐅 𝐅 Figura 1: Resultante das forças que agem num corpo. Outra forma de representar a segunda lei é por meio do conceito de momento linear (ou quantidade de movimento) da partícula, definido como 𝐩 = 𝑚𝐯 (4) admitindo que não ocorra uma variação temporal na massa 𝐩 = 𝑚𝐯 (5) logo, uma outra forma para a segunda lei será 𝐅=𝐩 𝑑𝐩 (6) 𝑑𝑡 A unidade de força no Sistema Internacional é o newton (N) que é a força necessária para acelerar uma massa de 1 Kg com uma aceleração de 1 m/s2. 3a - Para dois corpos que exercem forças entre si, as forças terão magnitude iguais e sentidos e direção opostas. 3

4 SISTEMA DE REFERENCIAL INERCIAL 1 As leis de Newton são postuladas sob a hipótese de que todas as medidas e observações são tomadas em relação a um sistema de coordenada ou sistema de referencial que está fixo no espaço ou está em repouso absoluto. Esta é a hipótese de que espaço e movimentos são absolutos. Entretanto, deve ficar bem claro que uma partícula pode estar em repouso ou com um movimento uniforme em linha reta em relação a um sistema de referencial e percorrendo uma trajetória curva e acelerando com respeito a um outro sistema de referencial. Pode- se mostrar que, se as leis de Newton são verificadas para um sistema de referencial, então elas são verificadas em um outro sistema de referencial que se mova com velocidade constante a ele relativa. Todos esses sistemas de referencial são chamados de Sistemas de Referencial Inerciais ou Sistemas de Referencial Newtonianos. Para qualquer observador, em um desses sistemas, a força exercida será a mesma. A terra não é exatamente um sistema inercial, porém para muitos fins práticos pode ser assim considerada, desde que os movimentos em observação não tenham grandes velocidades. FORÇAS FUNDAMENTAIS As forças fundamentais da natureza são: gravitacional, eletromagnética, interação forte e fraca. A partir delas outras forças são originadas, tais como as que estudaremos na aplicação de forças mecânicas. CLASSIFICAÇÃO DE FORÇAS Força Gravitacional r (figura 2). Considerando dois corpos de massas m1 e m2 separados por uma distância 1 SPIEGEL, MURRAY R., Mecânica Racional, Ed. MacGraw- Hill, 1976, São Paulo. 4

5 FG FG m1 r m2 Figura 2: Força gravitacional entre duas massas. A força de interação gravitacional será F = G m. m r r (7) onde G = 6,67 10 Nm /kg. Trata- se de uma força apenas de atração entre dois corpos e que atua ao longo da distância que as separa. Força Peso Força gravitacional que atua num corpo próximo a superfície terrestre. Para um corpo de massa m a uma altura h da superfície (figura 3), a força gravitacional entre o corpo e a terra será m Z h P z Superfície Terrestre R MT Figura 3: Força de um corpo de massa m. 5

6 𝐅 = 𝐺 𝑚𝑀 𝐳 (8) 𝑅 𝐏 = 𝐅 = 𝑚𝐠 (9) onde P é a foça peso e g é o vetor aceleração da gravidade 𝐠 = 𝐺 𝑀 𝐳 9,81𝐳 (10) 𝑅 cujo módulo 𝑔 9,81 𝑚 𝑠 (11) É importante que para o cálculo acima foi feita uma aproximação considerando a massa da terra homogênea e esférica. Força Normal Força de contato de um corpo com uma superfície que tem como característica ser perpendicular à superfície de deslocamento ou repouso do corpo. N N Figura 4: Força normal perpendicular à superfície. Como visto na figura 4, N é a força normal de contato. 6

7 Força de Atrito A força de atrito é a interação entre dois corpos, na maioria das vezes um deles é a superfície, que produz um força contrária ao movimento. A força de atrito tem as seguintes características: - é proporcional à força normal, - independe do tamanho da área de contato entre objeto e superfície, - independe da aspereza da superfície, - independe da velocidade do objeto. Essas afirmações são baseadas em observações obtidas de medidas empíricas. Por isso, é possível distinguir como ela atua em dois casos: quando o objeto está em repouso, em relação a superfície de apoio (força de atrito estático) e em movimento sobre a superfície (força de atrito cinético). Força de Atrito Cinético considerando um corpo em movimento sobre uma superfície (figura 5), o módulo da força de atrito cinético, f, é f = μ N (12) N f v P=mg Figura 5: Força de atrito cinético entre um corpo e uma superfície. onde μ é o coeficiente de atrito cinético e N é o módulo da força normal. Em geral, o valor de μ está entre 0 e 1 (existem casos raros em que o valor extrapola a unidade). O caso de μ = 0, significa que não existe atrito, embora na prática esse resultado não é obtido com perfeição. 7

8 Força de Atrito Estático Considerando a situação anterior, porém com o corpo parado. Neste caso, existirá uma força de atrito estático 𝑓, oposta a uma força externa que tenta mover o bloco no sentido da velocidade. Logo, a força a de atrito máxima (𝑓"á ) será 𝑓"á = 𝜇 𝑁 𝑓 (13) onde 𝜇 é coeficiente de atrito estático, de modo que a força de atrito estático é maior que a força de atrito cinético. 𝜇 > 𝜇 (14) Força Elástica Força que atua numa mola elástica quando aplicada à um corpo. Conforme mostra a figura 6, para a situação (a), a mola está num estado de repouso, ligando um corpo a um ponto fixo (parede). Na situação (b), uma força externa (𝐅"# ) distende a mola para a direita, de tal modo, que para uma situação de equilíbrio, uma força (𝐅) de sentido contrário, atua na mola. Enquanto que na situação (c), quando a mola é comprimida, com uma força externa (𝐅"# ), a mola tende a se distender com uma força 𝐅. A força 𝐅 obedece à lei de Hook, definida como 𝐅 = 𝑘𝑥 (15) onde k é a constante da mola e x a distensão (ou contração). O sinal negativo é o sentido da força, sempre contrário ao movimento, o que a qualifica como força restauradora. 8

9 x = 0 (a) F "# F (b) F F "# (c) Figura 6: Força elástica atuando nula mola. EXERCÍCIOS RESOLVIDOS Antes de iniciarmos a resolução de problemas, apresentaremos algumas técnicas 2 que facilitam a realização de cálculos e a obtenção de soluções, envolvendo as leis de Newton. - Faça um esboço do problema, indicando força, velocidade, etc... - Anote as quantidades fornecidas. - Anote as equações úteis e o que precisa ser determinado. - A estratégia e os princípios de física deverão ser utilizados na manipulação das equações para se encontrar a quantidade buscada. Manipulações algébricas, bem como diferenciação ou integração são normalmente necessárias. Algumas vezes, os cálculos algébricos utilizando computadores constituem o método de avaliação mais fácil, senão o único. - Insira os valores reais para os nomes das variáveis consideradas de modo a determinar a quantidade buscada. 2 MARION, JERRY B., THORNTON, STEPHEN T., Dinâmica Clássica de Partículas e Sistemas, Ed. Cengage Learning, 2011, São Paulo. 9

10 Sentido do Movimento 1. Desprezando as massas da corda e da roldana, calcule a aceleração do conjunto de blocos que forma a máquina de Atwood, conforme figura abaixo. m1 m2 Inicialmente, identifique movimento. Solução as forças que atuam no sistema e o sentido do T1 m1 T2 P1 m2 P2 Onde T e T são as forças de tração na corda (sentido para fora do corpo) e P e P, são os módulos das forças pesos dos blocos 1 e 2, respectivamente. Em seguida, aplique a segunda lei de Newton, para cada bloco individualmente. Como a roldana está fixa, consideraremos as tensões iguais, ou seja T = T = T 10

11 logo, levando em conta o sentido do movimento e o fato do conjunto se deslocar com a mesma velocidade e aceleração, para cada bloco teremos 𝑇 𝑃 = 𝑚. 𝑎 𝑃 𝑇 = 𝑚. 𝑎 e resolvendo o sistema de equação, somando ambas ou substituindo o valor de T, teremos 𝑃 𝑃 = 𝑚 + 𝑚. 𝑎 𝑎=𝑔 𝑚 𝑚 𝑚 + 𝑚 onde 𝑃 = 𝑚. 𝑔 e 𝑃 = 𝑚. 𝑔 2. Uma partícula de massa 𝑚 = 2 𝑘𝑔 move- se ao longo de uma trajetória espacial definida por 𝐫 = 4𝑡 3𝑡 5𝑡 + (𝑡 2)𝐤. Ache pata 𝑡 = 1 𝑠. (a) o momento linear (b) a força atuante nela. Solução (a) Pela equação (4) na definição de momento linear 𝒑 = 𝑚𝐯 = 𝑚𝒓 𝒑 = 𝑚𝒓 = 2 8𝑡 3𝑡 5 + 4𝑡 𝐤 para 𝑡 = 1𝑠 𝒑 = 𝐤 𝒑 = 𝐤 (b) Para o cálculo da força, usaremos a equação (6) 𝑭 = 𝒑 = 𝑚𝐯 = 𝑚𝒓 𝑭 = 2 8 6𝑡 𝑡 𝐤 para 𝑡 = 1𝑠 𝑭 = 𝐤 𝑭 = 𝐤 11

12 3. Uma partícula de massa m desliza sem rolar por um plano inclinado de um ângulo α. Se ela parte do repouso no topo do plano inclinado e admitindo que o coeficiente do atrito entre a partícula e a superfície do plano seja μ. Ache (a) a aceleração (b) a velocidade num tempo t qualquer. (c) a distância percorrida após um intervalo de tempo t. Solução Os módulos das forças que atuam no sistema são N f mgcosα α Sentido do Movimento mgsenα P α (a) Aplicando a segunda lei de Newton, no sentido do movimento mgsenα f = mr onde r é a distância percorrida a partir do topo. No sentido vertical do plano, a partícula está em equilíbrio N = mgcosα e a forca de atrito cinético f = μn logo, substituindo as duas últimas equações na primeira mgsenα μmgcosα = mr a = r = g(senα μcosα) 12

13 (b) considerando o resultado anterior a = v = g(senα μcosα) dv dt = g(senα μcosα) como a partícula partiu do repouso, no topo do plano (v = 0) dv = g(senα μcosα)dt v t = g(senα μcosα)t (c) para o cálculo da distância a partir do topo dr v t = dr dt = g(senα μcosα)tdt r t = g (senα μcosα)t 2 4. A força atuante sobre uma partícula de massa m é dada, em termos do tempo t, por F = a cos wt + b sen(wt) Se a partícula está em repouso inicialmente na origem, ache sua (a) velocidade e (b) a posição em qualquer instante t. (a) Foi visto que Solução F = m dv dt a cos wt + b sen wt = m dv dt 13

14 v t = v dv = 0 1 m a cos wt + b sen wt a b sen wt i + (1 cos wt ) mw wm dt (b) assim como, usando o conceito de velocidade instantânea. v t = dr dt considerando que a partícula partiu do repouso e da origem r dr t 0 r t = = a b sen wt i + cos(wt) dt mw wm a (1 cos wt )i + b (wt sen wt ) mw mw 5. Uma partícula de massa m tem velocidade v = α/x, onde x é seu deslocamento. Determine a força F(x) responsável pelo movimento. Solução Considerando que a velocidade é função da posição x, então a força também estará em função da posição. F x = ma(x) F x = mv dv dx substituído o valor de v, dado no problema F x = m α x d dx F x = m α x α x α x F x = m α x 14

15 EXERCÍCIOS 1. Considerando o plano inclinado abaixo (despreze o atrito). Construa o diagrama de forças (forças que atuam no sistema), indique o sentido do movimento, encontre a aceleração dos blocos e a tensão dos fios. m M 𝛽 "#$% "#$ Resp. 𝑎 = 𝑔 e 𝑇 = 𝑀𝑚𝑔 2. Sob influência de um campo de força, uma partícula de massa m move- se ao longo de uma trajetória elíptica 𝐫 = 𝑎 𝑐𝑜𝑠 𝑤𝑡 + 𝑏 𝑠𝑒𝑛 𝑤𝑡 se p é o momento linear, prove que: 𝐫 𝐩 = 𝑚𝑎𝑏𝑤 𝐤 3. A velocidade de uma partícula de massa m varia com a distância x conforme 𝑣 𝑥 = 𝛼𝑥. Suponha que 𝑣 𝑥 = 0 = 0 em 𝑡 = 0. (a) Determine a força F(x) responsável pelo movimento. 𝐹 𝑥 = 𝑚𝑛𝑎 𝑥 () (b) Determine 𝑥 𝑡. 𝑥 = 𝑛 + 1 𝑎𝑡 () (c) Determine 𝐹 𝑡. 𝐹 𝑡 = 𝑚𝑛𝑎 𝑛 + 1 𝑎𝑡 /() 4. Um alpinista está subindo uma montanha, conforme figura abaixo, o coeficiente de atrito entre seus sapatos e a superfície vale 𝜇 = 0,2. Qual é o ângulo máximo de inclinação da montanha para o qual ele consegue subir? Resp. 𝜃 = 𝑎𝑟𝑐𝐶𝑜𝑡𝑎𝑛𝑔 0,2 𝜃 15

16 BIBLIOGRAFIA 1. TAYLOR, JOHN R., Mecânica Clássica, Ed. Bookman, 2013, Porto Alegre. 2. GIACOMETTI, JOSÉ ALBERTO, Mecânica Clássica Uma Abordagem para Licenciatura,, Ed. LF, 2015, São Paulo. 3. NETO, JOÃO BARCELOS, Mecânica Newtoniana, Lagrangiana e Hamiltoniana, Ed. LF, 2013, São Paulo. 4. MARION, JERRY B., THORNTON, STEPHEN T., Dinâmica Clássica de Partículas e Sistemas, Ed. Cengage Learning, 2011, São Paulo. 5. SHAPIRO, ILYA L., PEIXOTO, GUILHERME B., Introdução à Mecânica Clássica, Ed. LF, 2010, São Paulo. 6. LUIZ, ADIR M., Física Mecânica vol. I, Ed. LF, 2006, São Paulo. 7. SYMON, KEITH R., Mecânica, Ed. Campos, 1986, Rio de Janeiro. 8. SPIEGEL, MURRAY R., Mecânica Racional, Ed. MacGraw- Hill, 1976, São Paulo. 16

Mecânica Clássica. (Notas de Aula) MÓDULO 6 (Dinâmica 3)

Mecânica Clássica. (Notas de Aula) MÓDULO 6 (Dinâmica 3) UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS COORDENAÇÃO DO CURSO LICENCIATURA EM FÍSICA - MODALIDADE A DISTÂNCIA- Mecânica Clássica (Notas de Aula) MÓDULO 6 (Dinâmica 3) 2015 Neste

Leia mais

Mecânica Clássica. (Notas de Aula) MÓDULO 5 (Dinâmica 2)

Mecânica Clássica. (Notas de Aula) MÓDULO 5 (Dinâmica 2) UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS COORDENAÇÃO DO CURSO LICENCIATURA EM FÍSICA - MODALIDADE A DISTÂNCIA- Mecânica Clássica (Notas de Aula) MÓDULO 5 (Dinâmica 2) 2015 Continuando

Leia mais

Prova de Recuperação de Física 1 FCM

Prova de Recuperação de Física 1 FCM Prova de Recuperação de Física 1 FCM 0501 013 Nome do Aluno Número USP Valor das Questões 1ª. a) 1,5 b) 1,0 ª. a) 1,5 b) 1,75 3ª. a) 1,0 b) 0,5 c) 1,0 4ª. a) 1,0 b) 1,0 c) 0,5 Nota Nota Final Boa Prova

Leia mais

Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha.

Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

Problemas de Mecânica e Ondas MOAer 2015 Série 7 P 7.1

Problemas de Mecânica e Ondas MOAer 2015 Série 7 P 7.1 Problemas de Mecânica e Ondas MOAer 2015 Série 7 P 7.1 Considere que as vagonetas de massa m 1 e m 2 (ver figura) podem ser representadas por dois pontos materiais localizados nos centros de massa respectivos,

Leia mais

Movimento Rotacional. Mecânica dos Sólidos Prof. MSc. Rafael Augusto R de Paula

Movimento Rotacional. Mecânica dos Sólidos Prof. MSc. Rafael Augusto R de Paula Movimento Rotacional Mecânica dos Sólidos Prof. MSc. Rafael Augusto R de Paula Momento de Inércia de um Sistema de Partículas Momento de Inércia para um Corpo Contínuo ENERGIA CINÉTICA ROTACIONAL 2 Momento

Leia mais

Escola Secundária de Lagoa. Ficha de Trabalho 15. Chamadas de Atenção. Fórmulas Matemáticas. Exercícios

Escola Secundária de Lagoa. Ficha de Trabalho 15. Chamadas de Atenção. Fórmulas Matemáticas. Exercícios Escola Secundária de Lagoa Física e Química A 11º Ano Turma A Paula Melo Silva Chamadas de Atenção Ficha de Trabalho 15 Forças e trabalho Não se esqueçam do teorema do trabalho-energia W(F resultante )

Leia mais

Problemas de Mecânica e Ondas MOAer 2015

Problemas de Mecânica e Ondas MOAer 2015 Problemas de Mecânica e Ondas MOAer 05 Série P.. Determine a função de Lagrange de um pêndulo duplo oscilante num plano com massas m e m (ver figura) e comprimentos, respectivamente, e. L m + m ll θ +

Leia mais

Problemas de Mecânica e Ondas MOAer 2015

Problemas de Mecânica e Ondas MOAer 2015 Problemas de Mecânica e Ondas MOAer 205 Série 3 P 3.. ( Exercícios de Física, A. Noronha, P. Brogueira, McGraw Hill, 994) Considere uma esfera de densidade ρ e raio r imersa num fluido de viscosidade η

Leia mais

Enquanto que para o potencial, função apenas das molas:

Enquanto que para o potencial, função apenas das molas: Laboratório de Dinâmica e Simulação Veicular SISTEMA MECÂNICO NÃO LINEAR COM MOVIMENTO CAÓTICO EM TORNO DE ATRATORES Por: Manoel Rodrigues Trigueiro Orientador: Professor Doutor Roberto Spinola Barbosa

Leia mais

2ª. Prova de Física 1 FCM 0501 (Peso 0,35) 2013

2ª. Prova de Física 1 FCM 0501 (Peso 0,35) 2013 ª. Prova de Física 1 FCM 001 (Peso 0,3) 013 Nome do Aluno Número USP Valor das Questões 1ª. a) 1, ª. a) 1, b) 1, Bônus 0, 3ª. a) 1, 4ª. a) 1,0 c) 0, Nota Nota Final Boa Prova A prova é sem consulta. As

Leia mais

Roteiro de estudos 2º trimestre. Matemática-Física-Química. Orientação de estudos

Roteiro de estudos 2º trimestre. Matemática-Física-Química. Orientação de estudos Roteiro de estudos 2º trimestre. Matemática-Física-Química O roteiro foi montado especialmente para reforçar os conceitos dados em aula. Com os exercícios você deve fixar os seus conhecimentos e encontrar

Leia mais

6. SISTEMAS DE 2 GRAUS DE LIBERDADE

6. SISTEMAS DE 2 GRAUS DE LIBERDADE 6. SISTEMAS DE GRAUS DE LIBERDADE 6. Introdução : Sistemas que requerem ou mais coordenadas independentes para descrever o seu movimento são denominados "Sistemas de N Graus de Liberdade". Para se calcular

Leia mais

Programa de Pós-Graduação Processo de Seleção 2º Semestre de 2018 Exame de Conhecimentos em Física. Candidato(a):

Programa de Pós-Graduação Processo de Seleção 2º Semestre de 2018 Exame de Conhecimentos em Física. Candidato(a): 1 Programa de Pós-Graduação Processo de Seleção 2º Semestre de 2018 Exame de Conhecimentos em Física Candidato(a): Curso: ( ) Mestrado ( ) Doutorado Observações: O Exame de Conhecimentos em Física consiste

Leia mais

INTRODUÇÃO. Caso esta dedicatória tenha sido lida até aqui, merece ainda mais admiração: parabéns, você vai longe!

INTRODUÇÃO. Caso esta dedicatória tenha sido lida até aqui, merece ainda mais admiração: parabéns, você vai longe! INTRODUÇÃO Esta apostila é dedicada a você, jovem de boa vontade que se inscreveu no intuito de ser aprovado na seleção do IFC para os cursos técnicos integrados ao ensino médio. Saiba que, antes de tudo,

Leia mais

4) Reobtenha e reanalise os resultados auferidos nos problemas nº 1, nº 2 e nº 3 quando (a) Z! Z!, (b)

4) Reobtenha e reanalise os resultados auferidos nos problemas nº 1, nº 2 e nº 3 quando (a) Z! Z!, (b) LISTA DE EXERCÍCIOS Nº 1 Problemas 1) Uma onda eletromagnética plana linearmente polarizada incide de forma normal em uma interface existente entre um meio 1 e um meio 2. A impedância do meio 1 é Z! e

Leia mais

LISTA DE EXERCÍCIOS Nº 1

LISTA DE EXERCÍCIOS Nº 1 LISTA DE EXERCÍCIOS Nº 1 Problemas 1) Determine as dimensões físicas das quantidades (a) campo elétrico E, (b) campo magnético H, (c) campo deslocamento elétrico D e (d) campo indução magnética B em termos

Leia mais

Fi ch a do p ro fe s so r

Fi ch a do p ro fe s so r AL 2.3 Atrito e variação de Energia Mecânica TI-Nspire Autora : Fernanda Neri Palavras-chave: Energia Cinética; Energia Potencial; Transferência de energia; Transformação de energia; Energia Mecânica;

Leia mais

Escola Secundária de Lagoa. Ficha de Trabalho 3. Física e Química A 11º Ano Paula Melo Silva Forças e Movimentos

Escola Secundária de Lagoa. Ficha de Trabalho 3. Física e Química A 11º Ano Paula Melo Silva Forças e Movimentos Escola Secundária de Lagoa Física e Química A 11º Ano Paula Melo Silva Ficha de Trabalho 3 1.3. Forças e Movimentos 1. Uma bola é lançada, verticalmente para cima, a partir do solo, com uma velocidade

Leia mais

Problemas de Mecânica e Ondas MEAer 2015 Série 10

Problemas de Mecânica e Ondas MEAer 2015 Série 10 Problemas de Mecânica e Ondas MEAer 015 Série 10 P 10.1. Um comboio rápido de passageiros, viaja inicialmente a uma velocidade de 40 km/h, quando é forçado a realizar uma travagem até uma velocidade de

Leia mais

P ( Introdução à Física, J. Dias de Deus et al.)

P ( Introdução à Física, J. Dias de Deus et al.) Problemas de Mecânica e Ondas MEAer 2015 Série 11 P 11.1. ( Introdução à Física, J. Dias de Deus et al.) Uma nave, cujo comprimento em repouso é de 60 m, afasta-se de um observador na Terra (ver figura).

Leia mais

Resistência dos Materiais

Resistência dos Materiais Resistência dos Materiais Prof. Antonio Dias Antonio Dias / Resistência dos Materiais / Torção 1 Torção Antonio Dias / Resistência dos Materiais / Torção 2 Introdução A princípio vamos estudar eixos circulares

Leia mais

Breves noções de Mecânica Quântica

Breves noções de Mecânica Quântica Aula Teórica nº 38 LEM-2006/2007 Prof. responsável de EO: Mário J. Pinheiro Breves noções de Mecânica Quântica Hipótese de De Broglie A ideia que esteve na base da Mecânica Quântica foi a seguinte: visto

Leia mais

Física 1 - Aula 12. Sumário. 1 Introdução. Prof. Afonso Henriques Silva Leite. 22 de junho de Introdução. 1

Física 1 - Aula 12. Sumário. 1 Introdução. Prof. Afonso Henriques Silva Leite. 22 de junho de Introdução. 1 Física 1 - Aula 12. Prof. Afonso Henriques Silva Leite 22 de junho de 2016 Sumário 1 Introdução. 1 2 As Três Leis de Newton 3 2.1 A Primeira Lei - Lei da Inércia.................... 3 2.2 Segunda Lei -

Leia mais

LISTA DE EXERCÍCIOS Nº 1

LISTA DE EXERCÍCIOS Nº 1 Problemas LISTA DE EXERCÍCIOS Nº 1 1) Determine as dimensões físicas das quantidades (a) campo elétrico E e (b) densidade de fluxo elétrico D. (c) Quais as unidades no Sistema Internacional destas quantidades?

Leia mais

Problemas de Mecânica e Ondas MOAer 2015 Série 8

Problemas de Mecânica e Ondas MOAer 2015 Série 8 Problemas de Mecânica e Ondas MOAer 2015 Série 8 Problemas 8.1 a 8.9 são do livro Introdução à Física, J. Dias de Deus et. al.. As soluções estão disponíveis no final dos enunciados. P 8.1 a) A figura

Leia mais

INTRODUÇÃO À MECÂNICA ESTATÍSTICA

INTRODUÇÃO À MECÂNICA ESTATÍSTICA 4300259 Termo- estatística 1o Semestre 2014 - Período Diurno Profa. Kaline Coutinho ASSUNTO: Teoria Cinética dos Gases, Distribuição de velocidades de Maxwell- Boltzmann LIVRO: Introduction to Atomic Physics,

Leia mais

Problemas de Mecânica e Ondas MOAer 2015

Problemas de Mecânica e Ondas MOAer 2015 Problemas de Mecânica e Ondas MOAer 015 Série 5 P 5.1. Um automóvel com uma massa total de 1000 kg (incluindo ocupantes) desloca-se com uma velocidade (módulo) de 90 km/h. a) Suponha que o carro sofre

Leia mais

Modelagem Computacional. Parte 4 2

Modelagem Computacional. Parte 4 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 4 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 5] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

FORÇA E MOVIMENTO Leis de Newton

FORÇA E MOVIMENTO Leis de Newton PROF. OSCAR FORÇA E MOVIMENTO Leis de Newton Qual é o fator responsável pela sensação de perigo para alguém que está no último carro de uma montanha russa? Uma força aceleração. atuando sobre o quilograma

Leia mais

Exame de Ingresso ao PPG- AEM 2013/2sem

Exame de Ingresso ao PPG- AEM 2013/2sem Universidade de São Paulo Escola de Engenharia de São Carlos Exame de Ingresso ao PPG- AEM 2013/2sem Nome do Candidato: R.G.: Data: Assinatura: Indique a área de concentração de interesse (em ordem decrescente

Leia mais

6 (FFC 2005) A velocidade escalar de um móvel, que percorre uma trajetória retilínea, varia

6 (FFC 2005) A velocidade escalar de um móvel, que percorre uma trajetória retilínea, varia 1 Sabe-se que a equação horária do movimento de um corpo é S = 2 + 10 t + 3 t 2. A posição está em metros e o tempo em segundos. Determine: a) A posição inicial do corpo; b) A velocidade inicial do corpo;

Leia mais

Introdução à Cosmologia Física

Introdução à Cosmologia Física Problemas do modelo padrão de FLRW * Planura (flatness) * Horizontes cosmológicos * Formação de estruturas no universo Introdução à Cosmologia Física Enigmas do modelo- História da dominação cósmica padrão

Leia mais

Definição de fluido. Massa específica. Pressão em fluidos. Teorema de Stevin. Princípio de Pascal. Princípio de Arquimedes

Definição de fluido. Massa específica. Pressão em fluidos. Teorema de Stevin. Princípio de Pascal. Princípio de Arquimedes Aula introdutória FÍSICA II - março 2017 Definição de fluido Massa específica Pressão em fluidos Teorema de Stevin Princípio de Pascal Princípio de Arquimedes Hidrostática É o ramo da Física que estuda

Leia mais

Leis de Newton. Se eu vi mais longe, foi por estar de pé sobre ombros de gigantes. Sir Isaac Newton

Leis de Newton. Se eu vi mais longe, foi por estar de pé sobre ombros de gigantes. Sir Isaac Newton Leis de Newton Se eu vi mais longe, foi por estar de pé sobre ombros de gigantes. Sir Isaac Newton O QUE É FORÇA? A ideia de empurrar ou puxar um corpo para colocá-lo em movimento está relacionada ao conceito

Leia mais

Mecânica e Ondas. Estudo experimental da dinâmica da Roda de Maxwell

Mecânica e Ondas. Estudo experimental da dinâmica da Roda de Maxwell Mecânica e Ondas Estudo experimental da dinâmica da Roda de Maxwell Objectivo Determinação da aceleração linear e do momento de inércia da roda de Maxwell. Estudo da conversão de energia potencial gravítica

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Área de Ciências da Natureza Disciplina: Ano: 1º Ensino Médio Professor: Newton Atividades para Estudos Autônomos Data: 10 / 5 / 2019 Aluno(a): Nº: Turma: Caro(a) Aluno(a), Neste momento, você está recebendo

Leia mais

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change Físico-Química 01 Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change, 2nd Ed., Oxford, 2014 Prof. Dr. Anselmo E

Leia mais

Ou seja, sempre que a distância entre centro for d há colisão.

Ou seja, sempre que a distância entre centro for d há colisão. MOVIMENTO DE DIFUSÃO DAS MOLÉCULAS Como vimos, usando a distribuição de velocidade de Maxwell- Boltzmann, as moléculas de um gás a temperatura ambiente têm velocidade média da ordem de 400m/s, porém ao

Leia mais

CURSO PRF 2017 FÍSICA. diferencialensino.com.br. Aula 001 Física 1

CURSO PRF 2017 FÍSICA. diferencialensino.com.br. Aula 001 Física 1 Aula 001 Física 1 PROFESSOR AULA 001 MATEMÁTICA VICTOR ROCHA (VITINHO) 2 AULA 01 CINEMÁTICA ESCALAR VELOCIDADE MÉDIA É a razão entre a distância percorrida por uma partícula e o tempo gasto por ela para

Leia mais

FACULDADE EDUCACIONAL DE MEDIANEIRA MISSÃO: FORMAR PROFISSIONAIS CAPACITADOS, SOCIALMENTE RESPONSÁVEIS E APTOS A PROMOVEREM AS TRANSFORMAÇÕES FUTURAS

FACULDADE EDUCACIONAL DE MEDIANEIRA MISSÃO: FORMAR PROFISSIONAIS CAPACITADOS, SOCIALMENTE RESPONSÁVEIS E APTOS A PROMOVEREM AS TRANSFORMAÇÕES FUTURAS FACULDADE EDUCACIONAL DE MEDIANEIRA MISSÃO: FORMAR PROFISSIONAIS CAPACITADOS, SOCIALMENTE RESPONSÁVEIS E APTOS A PROMOVEREM AS TRANSFORMAÇÕES FUTURAS Medianeira, de setembro de 017. Alunos(as): Curso:

Leia mais

LISTA DE EXERCÍCIOS FÍSICA - 1º EM CAPÍTULO 07 LEIS DE NEWTON E APLICAÇÕES PROF. BETO E PH

LISTA DE EXERCÍCIOS FÍSICA - 1º EM CAPÍTULO 07 LEIS DE NEWTON E APLICAÇÕES PROF. BETO E PH LISTA DE EXERCÍCIOS FÍSICA - 1º EM CAPÍTULO 07 LEIS DE NEWTON E APLICAÇÕES PROF. BETO E PH 1) Um paraquedista salta de um avião e cai até sua velocidade de queda se tornar constante. Podemos afirmar que

Leia mais

Segunda Verificação de Aprendizagem (2 a V.A.) - 09/07/2014. a) (1,0) Massa e Peso são a mesma coisa? Justifique sua resposta.

Segunda Verificação de Aprendizagem (2 a V.A.) - 09/07/2014. a) (1,0) Massa e Peso são a mesma coisa? Justifique sua resposta. UNIVERSIDADE FEDERAL DA PARAÍBA Centro de Ciências Exatas e da Natureza Departamento de Física Disciplina: Física Geral I Prof.: Carlos Alberto Aluno(a): Matrícula: Questão 1. Responda: Segunda Verificação

Leia mais

1.(UFB - adaptado) Determine a intensidade da Força Resultante necessária para manter um trem de 5 toneladas com velocidade constante de 5 m/s.

1.(UFB - adaptado) Determine a intensidade da Força Resultante necessária para manter um trem de 5 toneladas com velocidade constante de 5 m/s. 1.(UFB - adaptado) Determine a intensidade da Força Resultante necessária para manter um trem de 5 toneladas com velocidade constante de 5 m/s. 2. -(PUC-RJ - adaptado) Considere as seguintes afirmações

Leia mais

INTRODUÇÃO À MECÂNICA ESTATÍSTICA

INTRODUÇÃO À MECÂNICA ESTATÍSTICA ASSUNTO: Teoria Cinética dos Gases, Distribuição de velocidades de Maxwell- Boltzmann LIVROS: Introduction to Atomic Physics, H. A. Enge, M. R. Wehr, J. A. Richards, Addison- Wesley Publishing Company,

Leia mais

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO MATEMÁTICA 1ª QUESTÃO O valor do número real que satisfaz a equação =5 é A) ln5 B) 3 ln5 C) 3+ln5 D) ln5 3 E) ln5 ª QUESTÃO O domínio da função real = 64 é o intervalo A) [,] B) [, C), D), E), 3ª QUESTÃO

Leia mais

Lista de Exercícios de MAT 112

Lista de Exercícios de MAT 112 1 Lista de Exercícios de MAT 112 1. Determine o vetor v tal que v (1, 4, 3) = 7 e v (4, 2, 1) = (3, 5, 2). 2. Considere os vetores u= (1, 2, 1), v = (1, 0, 1), e w= (1, 1, 1). Verifique que ( u, v, w)

Leia mais

As leis de Newton e suas aplicações

As leis de Newton e suas aplicações INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA PARAÍBA Campus Princesa Isabel As leis de Newton e suas aplicações Disciplina: Física Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este

Leia mais

Gabarito. b) Quantos mols de sítios ativos existem em 1 mg de enzima? Assuma que cada subunidade possui um sítio ativo.

Gabarito. b) Quantos mols de sítios ativos existem em 1 mg de enzima? Assuma que cada subunidade possui um sítio ativo. Gabarito 4. A hidrólise de pirofosfato a ortofosfato é uma reação acoplada importante para deslocar o equilíbrio de reações biossintéticas, por exemplo a síntese de DNA. Esta reação de hidrólise é catalisada

Leia mais

28/Fev/2018 Aula Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos. 26/Fev/2018 Aula 3

28/Fev/2018 Aula Aplicações das leis de Newton do movimento 4.1 Força de atrito 4.2 Força de arrastamento Exemplos. 26/Fev/2018 Aula 3 26/Fev/2018 Aula 3 3. Leis de Newton (leis do movimento) 3.1 Conceitos básicos 3.2 Primeira lei (inércia) 3.2.1 Referenciais de inércia 3.3 Segunda lei (F=ma) 3.4 Terceira lei (reação) 3.4.1 Peso e peso

Leia mais

22/Fev/2018 Aula Queda livre 2.2 Movimento 2 e 3-D Vetor deslocamento Vetor velocidade Vetor aceleração

22/Fev/2018 Aula Queda livre 2.2 Movimento 2 e 3-D Vetor deslocamento Vetor velocidade Vetor aceleração 22/Fev/2018 Aula2 2.1 Queda livre 2.2 Movimento 2 e 3-D 2.2.1 Vetor deslocamento 2.2.2 Vetor velocidade 2.2.3 Vetor aceleração 2.3 Lançamento de projétil 2.3.1 Independência dos movimentos 2.3.2 Forma

Leia mais

LISTA DE EXERCÍCIOS PLANO INCLINADO PROF. PEDRO RIBEIRO

LISTA DE EXERCÍCIOS PLANO INCLINADO PROF. PEDRO RIBEIRO LISTA DE EXERCÍCIOS PLANO INCLINADO PROF. PEDRO RIBEIRO 1 Um bloco de massa m = 10 kg, inicialmente a uma altura de 2 m do solo, desliza em uma rampa de inclinação 30 o com a horizontal. O bloco é seguro

Leia mais

COLÉGIO MONJOLO ENSINO MÉDIO

COLÉGIO MONJOLO ENSINO MÉDIO COLÉGIO MONJOLO ENSINO MÉDIO Aluno (a): Professor: Jadson Rodrigo Corrêa Data: 11/09/2018 TRABALHO DE UMA FORÇA E ENERGIAS 1ª série 1. Determine o trabalho de uma força constante de 300N a aplicada a um

Leia mais

Fís. Semana. Leonardo Gomes (Guilherme Brigagão)

Fís. Semana. Leonardo Gomes (Guilherme Brigagão) Semana 9 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA

Leia mais

Prova de Análise de Dados

Prova de Análise de Dados Prova de Análise de Dados Página 1 de (D1) Pulsar Binário Através de buscas sistemáticas ao longo das últimas décadas, astrônomos encontraram um grande número de pulsares de milissegundo (período de rotação

Leia mais

Técnicas de Cartografia Digital

Técnicas de Cartografia Digital Técnicas de Cartografia Digital Maria Cecília Bonato Brandalize 2011 Aula 7 Parte 1 1. Vetoriais 2. Matriciais 3. Vantagens e Desvantagens 1. Vetoriais 2. Matriciais 3. Vantagens e Desvantagens Como se

Leia mais

Um exemplo de outra grandeza que se conserva é a carga elétrica de um sistema isolado.

Um exemplo de outra grandeza que se conserva é a carga elétrica de um sistema isolado. Leis de Conservação Em um sistema isolado, se uma grandeza ou propriedade se mantém constante em um intervalo de tempo no qual ocorre um dado processo físico, diz-se que há conservação da propriedade ou

Leia mais

Módulo 2: Conteúdo programático Lei de Stevin. Estática dos Fluidos Lei de Stevin

Módulo 2: Conteúdo programático Lei de Stevin. Estática dos Fluidos Lei de Stevin Móulo : Conteúo programático Lei e Stevin Bibliografia: Bunetti, F. Mecânica os Fluios, São aulo, rentice Hall, 007. Estática os Fluios Lei e Stevin Em Estática os Fluios, analisaremos o comportamento

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Distribuições Contínuas de Cargas (Páginas 33 a 41 no livro teto) Densidade Volumétrica de Cargas Campo Elétrico de uma densidade volumétrica de cargas Densidade Superficial

Leia mais

Halliday Fundamentos de Física Volume 1

Halliday Fundamentos de Física Volume 1 Halliday Fundamentos de Física Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

MECÂNICA GERAL 1. Marcel Merlin dos Santos

MECÂNICA GERAL 1. Marcel Merlin dos Santos MECÂNICA GERAL 1 Marcel Merlin dos Santos TÓPICOS DE HOJE Revisão de álgebra vetorial Lei dos cossenos Lei dos senos Exercícios Componentes cartesianas de uma força Exercícios Equilíbrio de uma partícula

Leia mais

SOLUÇÃO COMECE DO BÁSICO

SOLUÇÃO COMECE DO BÁSICO SOLUÇÃO COMECE DO BÁSICO SOLUÇÃO CB1. [C] Dados: m = 00 kg; g = 10 m/s ; sen θ = 0,6 e cos θ = 0,8. Como o movimento é retilíneo e uniforme, pelo Princípio da Inércia (1ª lei de Newton), a resultante das

Leia mais

CÁLCULO I. Lista Semanal 2 - Gabarito. Questão 1. Considere a função f(x) = x 3 + x e o ponto P (2, 10) no gráco de f.

CÁLCULO I. Lista Semanal 2 - Gabarito. Questão 1. Considere a função f(x) = x 3 + x e o ponto P (2, 10) no gráco de f. CÁLCULO I Prof. André Almeida Prof. Marcos Diniz Lista Semanal 2 - Gabarito Questão 1. Considere a função f(x) = x 3 + x e o ponto P (2, 10) no gráco de f. (a) Utilizando um recurso computacional, plote

Leia mais

Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova. Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

CINEMÁTICA E DINÂMICA

CINEMÁTICA E DINÂMICA PETROBRAS TECNICO(A) DE OPERAÇÃO JÚNIOR CINEMÁTICA E DINÂMICA QUESTÕES RESOLVIDAS PASSO A PASSO PRODUZIDO POR EXATAS CONCURSOS www.exatas.com.br v3 RESUMÃO GRANDEZAS E UNIDADES (S.I.) s: Espaço (distância)

Leia mais

PROGRESSÃO GEOMÉTRICA

PROGRESSÃO GEOMÉTRICA Hewlett-Packard PROGRESSÃO GEOMÉTRICA Aulas 01 a 05 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2015 Sumário PROGRESSÃO GEOMÉTRICA (P.G.)... 1 PRELIMINAR 1... 1 DEFINIÇÃO... 1 A RAZÃO DE

Leia mais

Aluno (a): nº: Turma:

Aluno (a): nº: Turma: Aluno (a): nº: Turma: Nota Ano: 1º EM Data: / /2018 Trabalho Recuperação Final Professor (a): Lélio Matéria: Física Valor: 20,0 pts 1 O gráfico seguinte representa a projeção da força resultante que atua

Leia mais

Instituto de Física. Experimento 11. Deflexão de feixe de elétrons - relação carga massa (e/m) 1. Descrição do experimento

Instituto de Física. Experimento 11. Deflexão de feixe de elétrons - relação carga massa (e/m) 1. Descrição do experimento Experimento Deflexão de feixe de elétrons - relação carga massa (e/m). Descrição do experimento Sabe-se que um elétron de massa m e carga e ao mover-se num campo magnético B e num campo elétrico E, a uma

Leia mais

Duração do exame: 3h 00min. Duração dos testes: 1h 30min. 1º teste: grupos 1 e 2 (20 valores) 2º teste: grupos 3 e 4 (20 valores) [10,0]

Duração do exame: 3h 00min. Duração dos testes: 1h 30min. 1º teste: grupos 1 e 2 (20 valores) 2º teste: grupos 3 e 4 (20 valores) [10,0] Duração do exame: 3h 00min. Duração dos testes: 1h 30min. 1º teste: grupos 1 e 2 (20 valores) 2º teste: grupos 3 e 4 (20 valores) Exame: todos grupos (40 valores/2) Proposta de Resolução do Exame e Testes

Leia mais

Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 2 a prova 02/07/2016. Atenção: Leia as recomendações antes de fazer a prova. Física 1 2 a prova 02/07/2016 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

Força direção magnitude magnitude

Força direção magnitude magnitude Leis de Newton Sir Isaac Newton 1642 1727 Formulou as leis básicas da mecânica. Descobriu a Lei da Gravitação Universal. Inventou o cálculo Diferencial e Integral. Fez muitas observações sobre luz e óptica.

Leia mais

Fís. Semana. Leonardo Gomes (Guilherme Brigagão)

Fís. Semana. Leonardo Gomes (Guilherme Brigagão) Semana 9 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA

Leia mais

Física I. Curso: Engenharia Elétrica Prof. Rafael Augusto R de Paula

Física I. Curso: Engenharia Elétrica Prof. Rafael Augusto R de Paula Física I Curso: Engenharia Elétrica Prof. Rafael Augusto R de Paula A natureza da Física É a ciência procura descrever a natureza fundamental do universo e como ele funciona. Baseia-se em observações experimentais

Leia mais

Aplicações de Leis de Newton

Aplicações de Leis de Newton Aplicações de Leis de Newton Evandro Bastos dos Santos 22 de Maio de 2017 1 Introdução Na aula anterior vimos o conceito de massa inercial e enunciamos as leis de Newton. Nessa aula, nossa tarefa é aplicar

Leia mais

Universidade Federal de Minas Gerais Colégio Técnico Plano de Ensino

Universidade Federal de Minas Gerais Colégio Técnico Plano de Ensino Disciplina: Carga horária total: Universidade Federal de Minas Gerais Plano de Ensino 4 horas/aula semanais (3 horas e 20 minutos) Ano: 2015 Curso: Matemática Regime: anual (anual/semestral/outro) Série:

Leia mais

Revisão Grandezas - Comprimento

Revisão Grandezas - Comprimento Revisão Grandezas - Comprimento Revisão Grandezas - Tempo Revisão Gradezas - Prefixos Revisão Gradezas (densidade) Revisão - Dimensões Revisão Movimento 1D v x = x t Revisão Velocidade Instantânea v x

Leia mais

UNIDADE 6 Defeitos do Sólido Cristalino

UNIDADE 6 Defeitos do Sólido Cristalino UNIDADE 6 Defeitos do Sólido Cristalino 1. Em condições de equilíbrio, qual é o número de lacunas em 1 m de cobre a 1000 o C? Dados: N: número de átomos por unidade de volume N L : número de lacunas por

Leia mais

grupoexatas.wordpress.com Dina mica Exercı cios Objetivos

grupoexatas.wordpress.com Dina mica Exercı cios Objetivos Exercı cios Objetivos 1. (06/2009) Uma esfera de 12, 5 g de massa repousa sobre uma mola helicoidal, comprimida e travada, conforme ilustra a figura 2. Sabe-se que a constante ela stica da mola e k = 500

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

GRANDEZAS PROPORCIONAIS

GRANDEZAS PROPORCIONAIS Hewlett-Packard GRANDEZAS PROPORCIONAIS Aulas 01 a 03 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário GRANDEZAS... 2 O QUE É UMA GRANDEZA?... 2 PRELIMINAR 1... 2 PRELIMINAR 2... 2 GRANDEZAS DIRETAMENTE

Leia mais

Calcule: a) o valor da relação, sendo N 1 o módulo da força normal que a mesa exerce sobre o

Calcule: a) o valor da relação, sendo N 1 o módulo da força normal que a mesa exerce sobre o 1. (Unifesp 015) Um abajur está apoiado sobre a superfície plana e horizontal de uma mesa em repouso em relação ao solo. Ele é acionado por meio de um cordão que pende verticalmente, paralelo à haste do

Leia mais

Aula 00 Aula Demonstrativa

Aula 00 Aula Demonstrativa Aula 00 Modelos de questões comentadas CESPE-UnB... 4 Relação das questões comentadas... 13 Gabaritos... 14 1 Olá, pessoal. Vamos começar a estudar Estatística para o futuro concurso do TCU? Esta é a aula

Leia mais

Lista 5 Leis de Newton

Lista 5 Leis de Newton Sigla: Disciplina: Curso: FISAG Física Aplicada a Agronomia Agronomia Lista 5 Leis de Newton 01) Um corpo de massa m sofre ação de duas forças F1 e F2, como mostra a figura. Se m = 5,2 kg, F1 = 3,7 N e

Leia mais

Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica e Trabalho Mecânico

Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica e Trabalho Mecânico Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica e Trabalho Mecânico 1. (Uern 2013) A tabela apresenta a força elástica e a deformação

Leia mais

Fís. Leonardo Gomes (Arthur Ferreira Vieira)

Fís. Leonardo Gomes (Arthur Ferreira Vieira) Semana 10 Leonardo Gomes (Arthur Ferreira Vieira) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA

Leia mais

Fís. Semana. Leonardo Gomes (Guilherme Brigagão)

Fís. Semana. Leonardo Gomes (Guilherme Brigagão) Semana 9 Leonardo Gomes (Guilherme Brigagão) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. CRONOGRAMA

Leia mais

OFICINA 10 GEOMETRIA E ARTE: O LOGO DO CAEM 30 ANOS

OFICINA 10 GEOMETRIA E ARTE: O LOGO DO CAEM 30 ANOS OFICINA 10 GEOMETRIA E ARTE: O LOGO DO CAEM 30 ANOS Aline dos Reis Matheus, CAEM IME-USP, alinerm@ime.usp.br Marcos Alves dos Santos, CAEM IME-USP, malvess@ime.usp.br Resumo O logotipo CAEM 30 anos foi

Leia mais

Hewlett-Packard DETERMINANTE. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard DETERMINANTE. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard DETERMINANTE Aulas a Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário DETERMINANTE... Exemplo... Exemplo...... Exemplo...... TEOREMA DE LAPLACE... COFATOR... Exemplo... TEOREMA DE

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I FORÇA E MOVIMENTO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I FORÇA E MOVIMENTO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I FORÇA E MOVIMENTO Prof. Bruno Farias Introdução A partir de agora vamos estudar o movimento

Leia mais

Física Geral I F semestre, Aula 5 Força e movimento I: Leis de Newton

Física Geral I F semestre, Aula 5 Força e movimento I: Leis de Newton Física Geral I F -18 0 semestre, 010 Aula 5 Força e movimento I: Leis de Newton Leis de Newton (Isaac Newton, 164-177) Até agora apenas descrevemos os movimentos cinemática. É impossível, no entanto, prever

Leia mais

Trabalho e Energia. = g sen. 2 Para = 0, temos: a g 0. onde L é o comprimento do pêndulo, logo a afirmativa é CORRETA.

Trabalho e Energia. = g sen. 2 Para = 0, temos: a g 0. onde L é o comprimento do pêndulo, logo a afirmativa é CORRETA. Trabalho e Energia UFPB/98 1. Considere a oscilação de um pêndulo simples no ar e suponha desprezível a resistência do ar. É INCORRETO afirmar que, no ponto m ais baixo da trajetória, a) a energia potencial

Leia mais

Leis de Newton: Dinâmica 2- Atrito e Força em Trajetória Curva.

Leis de Newton: Dinâmica 2- Atrito e Força em Trajetória Curva. QUESTÕES DO CAPÍTULO 6 DO LIVRO FUNDAMENTOS DE FÍSICA HALLIDAY & RESNICK - JEARL WALKER 9ª EDIÇÃO VOLUME 1 MECÂNICA Leis de Newton: Dinâmica 2- Atrito e Força em Trajetória Curva. Leis de Newton Força

Leia mais

Instruções. Se o Caderno estiver incompleto ou contiver imperfeição gráfica que prejudique a leitura, peça imediatamente ao Fiscal que o substitua.

Instruções. Se o Caderno estiver incompleto ou contiver imperfeição gráfica que prejudique a leitura, peça imediatamente ao Fiscal que o substitua. 2 1 Instruções Confira se os dados contidos na parte inferior desta capa estão corretos e, em seguida, assine no espaço reservado para isso. Se, em qualquer outro local deste Caderno, você assinar, rubricar,

Leia mais

Plano de Recuperação Semestral 1º Semestre 2017

Plano de Recuperação Semestral 1º Semestre 2017 Disciplina: FÍSICA Série/Ano: 1º ANO Professores: BETO e DIOGO Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos quais apresentou defasagens

Leia mais

Prof. Neckel. 1ª Lei de Newton: A Lei da Inércia

Prof. Neckel. 1ª Lei de Newton: A Lei da Inércia Prof. Neckel Leis de Newton e suas aplicações As leis de Newton são responsáveis pelo tratamento e compreensão da grandeza que representa a interação entre corpos: a Força. Porém, antes da definição formal

Leia mais

Exemplos de aplicação das leis de Newton e Conservação da Energia

Exemplos de aplicação das leis de Newton e Conservação da Energia Exemplos de aplicação das leis de Newton e Conservação da Energia O Plano inclinado m N Vimos que a força resultante sobre o bloco é dada por. F r = mg sin α i Portanto, a aceleração experimentada pelo

Leia mais

Nome: Nº: Turma: Os exercícios a seguir foram retirados do livro Aulas de Física, volume I, da Editora Atual.

Nome: Nº: Turma: Os exercícios a seguir foram retirados do livro Aulas de Física, volume I, da Editora Atual. Física 2ª Lei de Newton I 2 os anos Hugo maio/12 Nome: Nº: Turma: Os exercícios a seguir foram retirados do livro Aulas de Física, volume I, da Editora Atual. 1. Aplica-se uma força F de intensidade 20

Leia mais

Aula 13 e 14. Leis de Newton e Energia

Aula 13 e 14. Leis de Newton e Energia Aula 13 e 14 Leis de Newton e Energia Revisão Estudo dos Movimentos Princípio da Independência dos Movimentos (Galileu) O movimento da bola é um movimento bidimensional, sendo realizado nas direções horizontal

Leia mais